Circumcision as an Intervening Strategy against HIV Acquisition in the Male Genital Tract
Abstract
:1. Introduction
2. Anatomy of Male Genital Tract and Risk of HIV Infection
2.1. Anatomy of the Male Genital Tract
2.2. Exposure of Inner Foreskin and Trapping Infectious Secretion under Foreskin Increase the Risk of Infection
2.3. Abundance of Immune Cells in the Inner Foreskin Increase the Risk of HIV Infection
3. Cell-Free Transmission and Cell-Associated HIV Transmission
3.1. Cell-Free Transmission of HIV-1
3.2. Cell-to-Cell HIV Infection
3.2.1. HIV Cell-to-Cell Transmission at the Virological Synapse for Cis-Infection
3.2.2. Virus Transmission through Trans-Infection
4. Acquisition of HIV in the Male Genital Tract
5. Male Circumcision (MC) and HIV Infection
5.1. Randomized Clinical Trials (RCTs)
5.2. Safety, Complications, and Acceptability
5.3. Effect of MC on Sexual Function
5.4. Evidence-Based Explanation of MC against the HIV Acquisition
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cohen, M.S.; Chen, Y.Q.; McCauley, M.; Gamble, T.; Hosseinipour, M.C.; Kumarasamy, N.; Hakim, J.G.; Kumwenda, J.; Grinsztejn, B.; Pilotto, J.H.; et al. Prevention of HIV-1 infection with early antiretroviral therapy. N. Engl. J. Med. 2011, 365, 493–505. [Google Scholar] [CrossRef] [Green Version]
- Hokello, J.; Sharma, A.L.; Dimri, M.; Tyagi, M. Insights into the HIV Latency and the Role of Cytokines. Pathogens 2019, 8, 137. [Google Scholar] [CrossRef] [Green Version]
- Tyagi, M.; Bukrinsky, M. Human immunodeficiency virus (HIV) latency: The major hurdle in HIV eradication. Mol. Med. 2012, 18, 1096–1108. [Google Scholar] [CrossRef] [PubMed]
- Marzio, G.; Tyagi, M.; Gutierrez, M.I.; Giacca, M. HIV-1 tat transactivator recruits p300 and CREB-binding protein histone acetyltransferases to the viral promoter. Proc. Natl. Acad. Sci. USA 1998, 95, 13519–13524. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.L.; Hokello, J.; Sonti, S.; Zicari, S.; Sun, L.; Alqatawni, A.; Bukrinsky, M.; Simon, G.; Chauhan, A.; Daniel, R.; et al. CBF-1 Promotes the Establishment and Maintenance of HIV Latency by Recruiting Polycomb Repressive Complexes, PRC1 and PRC2, at HIV LTR. Viruses 2020, 12, 1040. [Google Scholar] [CrossRef]
- Hokello, J.; Sharma, A.L.; Tyagi, M. Efficient Non-Epigenetic Activation of HIV Latency through the T-Cell Receptor Signalosome. Viruses 2020, 12, 868. [Google Scholar] [CrossRef] [PubMed]
- Zicari, S.; Sharma, A.L.; Sahu, G.; Dubrovsky, L.; Sun, L.; Yue, H.; Jada, T.; Ochem, A.; Simon, G.; Bukrinsky, M.; et al. DNA dependent protein kinase (DNA-PK) enhances HIV transcription by promoting RNA polymerase II activity and recruitment of transcription machinery at HIV LTR. Oncotarget 2020, 11, 699–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hokello, J.; Lakhikumar Sharma, A.; Tyagi, M. AP-1 and NF-kappaB synergize to transcriptionally activate latent HIV upon T-cell receptor activation. FEBS Lett. 2021, 595, 577–594. [Google Scholar] [CrossRef]
- Antiretroviral Therapy Cohort, C. Survival of HIV-positive patients starting antiretroviral therapy between 1996 and 2013: A collaborative analysis of cohort studies. Lancet HIV 2017, 4, e349–e356. [Google Scholar] [CrossRef] [Green Version]
- Alexaki, A.; Liu, Y.; Wigdahl, B. Cellular reservoirs of HIV-1 and their role in viral persistence. Curr. HIV Res. 2008, 6, 388–400. [Google Scholar] [CrossRef] [Green Version]
- Auvert, B.; Taljaard, D.; Lagarde, E.; Sobngwi-Tambekou, J.; Sitta, R.; Puren, A. Randomized, controlled intervention trial of male circumcision for reduction of HIV infection risk: The ANRS 1265 Trial. PLoS Med. 2005, 2, e298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, R.C.; Moses, S.; Parker, C.B.; Agot, K.; Maclean, I.; Krieger, J.N.; Williams, C.F.; Campbell, R.T.; Ndinya-Achola, J.O. Male circumcision for HIV prevention in young men in Kisumu, Kenya: A randomised controlled trial. Lancet 2007, 369, 643–656. [Google Scholar] [CrossRef]
- Alsallaq, R.A.; Cash, B.; Weiss, H.A.; Longini, I.M., Jr.; Omer, S.B.; Wawer, M.J.; Gray, R.H.; Abu-Raddad, L.J. Quantitative assessment of the role of male circumcision in HIV epidemiology at the population level. Epidemics 2009, 1, 139–152. [Google Scholar] [CrossRef]
- Cook, L.S.; Koutsky, L.A.; Holmes, K.K. Circumcision and sexually transmitted diseases. Am. J. Public Health 1994, 84, 197–201. [Google Scholar] [CrossRef] [Green Version]
- Siegfried, N.; Muller, M.; Deeks, J.J.; Volmink, J. Male circumcision for prevention of heterosexual acquisition of HIV in men. Cochrane Database Syst. Rev. 2009. [Google Scholar] [CrossRef] [Green Version]
- Yuan, T.; Fitzpatrick, T.; Ko, N.Y.; Cai, Y.; Chen, Y.; Zhao, J.; Li, L.; Xu, J.; Gu, J.; Li, J.; et al. Circumcision to prevent HIV and other sexually transmitted infections in men who have sex with men: A systematic review and meta-analysis of global data. Lancet Glob. Health 2019, 7, e436–e447. [Google Scholar] [CrossRef] [Green Version]
- Boily, M.C.; Baggaley, R.F.; Wang, L.; Masse, B.; White, R.G.; Hayes, R.J.; Alary, M. Heterosexual risk of HIV-1 infection per sexual act: Systematic review and meta-analysis of observational studies. Lancet Infect. Dis. 2009, 9, 118–129. [Google Scholar] [CrossRef] [Green Version]
- Jin, F.; Jansson, J.; Law, M.; Prestage, G.P.; Zablotska, I.; Imrie, J.C.; Kippax, S.C.; Kaldor, J.M.; Grulich, A.E.; Wilson, D.P. Per-contact probability of HIV transmission in homosexual men in Sydney in the era of HAART. AIDS 2010, 24, 907–913. [Google Scholar] [CrossRef]
- Szabo, R.; Short, R.V. How does male circumcision protect against HIV infection? BMJ 2000, 320, 1592–1594. [Google Scholar] [CrossRef] [Green Version]
- Morris, B.J.; Wamai, R.G. Biological basis for the protective effect conferred by male circumcision against HIV infection. Int. J. STD AIDS 2012, 23, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Patterson, B.K.; Landay, A.; Siegel, J.N.; Flener, Z.; Pessis, D.; Chaviano, A.; Bailey, R.C. Susceptibility to human immunodeficiency virus-1 infection of human foreskin and cervical tissue grown in explant culture. Am. J. Pathol. 2002, 161, 867–873. [Google Scholar] [CrossRef] [Green Version]
- Cameron, D.W.; Simonsen, J.N.; D’Costa, L.J.; Ronald, A.R.; Maitha, G.M.; Gakinya, M.N.; Cheang, M.; Ndinya-Achola, J.O.; Piot, P.; Brunham, R.C.; et al. Female to male transmission of human immunodeficiency virus type 1: Risk factors for seroconversion in men. Lancet 1989, 2, 403–407. [Google Scholar] [CrossRef]
- Hussain, L.A.; Lehner, T. Comparative investigation of Langerhans’ cells and potential receptors for HIV in oral, genitourinary and rectal epithelia. Immunology 1995, 85, 475–484. [Google Scholar]
- Sennepin, A.; Real, F.; Duvivier, M.; Ganor, Y.; Henry, S.; Damotte, D.; Revol, M.; Cristofari, S.; Bomsel, M. The Human Penis Is a Genuine Immunological Effector Site. Front. Immunol. 2017, 8, 1732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, D.C.; Huber, M.T. Directed egress of animal viruses promotes cell-to-cell spread. J. Virol. 2002, 76, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Igakura, T.; Stinchcombe, J.C.; Goon, P.K.; Taylor, G.P.; Weber, J.N.; Griffiths, G.M.; Tanaka, Y.; Osame, M.; Bangham, C.R. Spread of HTLV-I between lymphocytes by virus-induced polarization of the cytoskeleton. Science 2003, 299, 1713–1716. [Google Scholar] [CrossRef] [Green Version]
- Phillips, D.M. The role of cell-to-cell transmission in HIV infection. AIDS 1994, 8, 719–731. [Google Scholar] [CrossRef]
- Ward, A.B.; Wilson, I.A. Insights into the trimeric HIV-1 envelope glycoprotein structure. Trends Biochem. Sci. 2015, 40, 101–107. [Google Scholar] [CrossRef] [Green Version]
- Dalgleish, A.G.; Beverley, P.C.; Clapham, P.R.; Crawford, D.H.; Greaves, M.F.; Weiss, R.A. The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 1984, 312, 763–767. [Google Scholar] [CrossRef]
- Deng, H.; Liu, R.; Ellmeier, W.; Choe, S.; Unutmaz, D.; Burkhart, M.; Di Marzio, P.; Marmon, S.; Sutton, R.E.; Hill, C.M.; et al. Identification of a major co-receptor for primary isolates of HIV-1. Nature 1996, 381, 661–666. [Google Scholar] [CrossRef]
- Feng, Y.; Broder, C.C.; Kennedy, P.E.; Berger, E.A. HIV-1 entry cofactor: Functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 1996, 272, 872–877. [Google Scholar] [CrossRef]
- Fischetti, L.; Barry, S.M.; Hope, T.J.; Shattock, R.J. HIV-1 infection of human penile explant tissue and protection by candidate microbicides. AIDS 2009, 23, 319–328. [Google Scholar] [CrossRef] [PubMed]
- McCoombe, S.G.; Short, R.V. Potential HIV-1 target cells in the human penis. AIDS 2006, 20, 1491–1495. [Google Scholar] [CrossRef] [PubMed]
- Ganor, Y.; Zhou, Z.; Tudor, D.; Schmitt, A.; Vacher-Lavenu, M.C.; Gibault, L.; Thiounn, N.; Tomasini, J.; Wolf, J.P.; Bomsel, M. Within 1 h, HIV-1 uses viral synapses to enter efficiently the inner, but not outer, foreskin mucosa and engages Langerhans-T cell conjugates. Mucosal. Immunol. 2010, 3, 506–522. [Google Scholar] [CrossRef] [Green Version]
- Donoval, B.A.; Landay, A.L.; Moses, S.; Agot, K.; Ndinya-Achola, J.O.; Nyagaya, E.A.; MacLean, I.; Bailey, R.C. HIV-1 target cells in foreskins of African men with varying histories of sexually transmitted infections. Am. J. Clin. Pathol. 2006, 125, 386–391. [Google Scholar] [CrossRef] [PubMed]
- Hirbod, T.; Bailey, R.C.; Agot, K.; Moses, S.; Ndinya-Achola, J.; Murugu, R.; Andersson, J.; Nilsson, J.; Broliden, K. Abundant expression of HIV target cells and C-type lectin receptors in the foreskin tissue of young Kenyan men. Am. J. Pathol. 2010, 176, 2798–2805. [Google Scholar] [CrossRef]
- Valladeau, J.; Ravel, O.; Dezutter-Dambuyant, C.; Moore, K.; Kleijmeer, M.; Liu, Y.; Duvert-Frances, V.; Vincent, C.; Schmitt, D.; Davoust, J.; et al. Langerin, a novel C-type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity 2000, 12, 71–81. [Google Scholar] [CrossRef] [Green Version]
- Zhong, P.; Agosto, L.M.; Munro, J.B.; Mothes, W. Cell-to-cell transmission of viruses. Curr. Opin. Virol. 2013, 3, 44–50. [Google Scholar] [CrossRef] [Green Version]
- Sewald, X.; Motamedi, N.; Mothes, W. Viruses exploit the tissue physiology of the host to spread in vivo. Curr. Opin. Cell Biol. 2016, 41, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Hubner, W.; Spinelli, M.A.; Chen, B.K. Predominant mode of human immunodeficiency virus transfer between T cells is mediated by sustained Env-dependent neutralization-resistant virological synapses. J. Virol. 2007, 81, 12582–12595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jolly, C.; Kashefi, K.; Hollinshead, M.; Sattentau, Q.J. HIV-1 cell to cell transfer across an Env-induced, actin-dependent synapse. J. Exp. Med. 2004, 199, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Dimitrov, D.S.; Broder, C.C.; Berger, E.A.; Blumenthal, R. Calcium ions are required for cell fusion mediated by the CD4-human immunodeficiency virus type 1 envelope glycoprotein interaction. J. Virol. 1993, 67, 1647–1652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carr, J.M.; Hocking, H.; Li, P.; Burrell, C.J. Rapid and efficient cell-to-cell transmission of human immunodeficiency virus infection from monocyte-derived macrophages to peripheral blood lymphocytes. Virology 1999, 265, 319–329. [Google Scholar] [CrossRef]
- Martin, N.; Sattentau, Q. Cell-to-cell HIV-1 spread and its implications for immune evasion. Curr. Opin. HIV AIDS 2009, 4, 143–149. [Google Scholar] [CrossRef]
- Agosto, L.M.; Uchil, P.D.; Mothes, W. HIV cell-to-cell transmission: Effects on pathogenesis and antiretroviral therapy. Trends Microbiol. 2015, 23, 289–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Portillo, A.; Tripodi, J.; Najfeld, V.; Wodarz, D.; Levy, D.N.; Chen, B.K. Multiploid inheritance of HIV-1 during cell-to-cell infection. J. Virol. 2011, 85, 7169–7176. [Google Scholar] [CrossRef] [Green Version]
- Russell, R.A.; Martin, N.; Mitar, I.; Jones, E.; Sattentau, Q.J. Multiple proviral integration events after virological synapse-mediated HIV-1 spread. Virology 2013, 443, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Hubner, W.; McNerney, G.P.; Chen, P.; Dale, B.M.; Gordon, R.E.; Chuang, F.Y.; Li, X.D.; Asmuth, D.M.; Huser, T.; Chen, B.K. Quantitative 3D video microscopy of HIV transfer across T cell virological synapses. Science 2009, 323, 1743–1747. [Google Scholar] [CrossRef] [Green Version]
- Cameron, P.U.; Freudenthal, P.S.; Barker, J.M.; Gezelter, S.; Inaba, K.; Steinman, R.M. Dendritic cells exposed to human immunodeficiency virus type-1 transmit a vigorous cytopathic infection to CD4+ T cells. Science 1992, 257, 383–387. [Google Scholar] [CrossRef]
- Geijtenbeek, T.B.; Kwon, D.S.; Torensma, R.; van Vliet, S.J.; van Duijnhoven, G.C.; Middel, J.; Cornelissen, I.L.; Nottet, H.S.; KewalRamani, V.N.; Littman, D.R.; et al. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 2000, 100, 587–597. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; KewalRamani, V.N. Dendritic-cell interactions with HIV: Infection and viral dissemination. Nat. Rev. Immunol. 2006, 6, 859–868. [Google Scholar] [CrossRef]
- Hammonds, J.E.; Beeman, N.; Ding, L.; Takushi, S.; Francis, A.C.; Wang, J.J.; Melikyan, G.B.; Spearman, P. Siglec-1 initiates formation of the virus-containing compartment and enhances macrophage-to-T cell transmission of HIV-1. PLoS Pathog. 2017, 13, e1006181. [Google Scholar] [CrossRef]
- Rappocciolo, G.; Piazza, P.; Fuller, C.L.; Reinhart, T.A.; Watkins, S.C.; Rowe, D.T.; Jais, M.; Gupta, P.; Rinaldo, C.R. DC-SIGN on B lymphocytes is required for transmission of HIV-1 to T lymphocytes. PLoS Pathog. 2006, 2, e70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rappocciolo, G.; Jais, M.; Piazza, P.; Reinhart, T.A.; Berendam, S.J.; Garcia-Exposito, L.; Gupta, P.; Rinaldo, C.R. Alterations in cholesterol metabolism restrict HIV-1 trans infection in nonprogressors. mBio 2014, 5, e01031-13. [Google Scholar] [CrossRef] [Green Version]
- Rinaldo, C.R. HIV-1 Trans Infection of CD4(+) T Cells by Professional Antigen Presenting Cells. Scientifica 2013, 2013, 164203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rappocciolo, G.; Sluis-Cremer, N.; Rinaldo, C.R. Efficient HIV-1 Trans Infection of CD4(+) T Cells Occurs in the Presence of Antiretroviral Therapy. Open Forum Infect. Dis. 2019, 6, ofz253. [Google Scholar] [CrossRef]
- Ganor, Y.; Bomsel, M. HIV-1 transmission in the male genital tract. Am. J. Reprod. Immunol. 2011, 65, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Dinh, M.H.; Anderson, M.R.; McRaven, M.D.; Cianci, G.C.; McCoombe, S.G.; Kelley, Z.L.; Gioia, C.J.; Fought, A.J.; Rademaker, A.W.; Veazey, R.S.; et al. Visualization of HIV-1 interactions with penile and foreskin epithelia: Clues for female-to-male HIV transmission. PLoS Pathog. 2015, 11, e1004729. [Google Scholar] [CrossRef]
- Kaushic, C. HIV-1 infection in the female reproductive tract: Role of interactions between HIV-1 and genital epithelial cells. Am. J. Reprod. Immunol. 2011, 65, 253–260. [Google Scholar] [CrossRef]
- German Advisory Committee Blood, Subgroup Assessment of Pathogens Transmissible by Blood (S.A.o.P.T.b.B.). Human Immunodeficiency Virus (HIV). Transfus. Med. Hemother 2016, 43, 203–222. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Barry de Longchamps, N.; Schmitt, A.; Zerbib, M.; Vacher-Lavenu, M.C.; Bomsel, M.; Ganor, Y. HIV-1 efficient entry in inner foreskin is mediated by elevated CCL5/RANTES that recruits T cells and fuels conjugate formation with Langerhans cells. PLoS Pathog. 2011, 7, e1002100. [Google Scholar] [CrossRef] [Green Version]
- Fahrbach, K.M.; Barry, S.M.; Anderson, M.R.; Hope, T.J. Enhanced cellular responses and environmental sampling within inner foreskin explants: Implications for the foreskin’s role in HIV transmission. Mucosal. Immunol. 2010, 3, 410–418. [Google Scholar] [CrossRef] [PubMed]
- de Jong, M.A.; de Witte, L.; Oudhoff, M.J.; Gringhuis, S.I.; Gallay, P.; Geijtenbeek, T.B. TNF-alpha and TLR agonists increase susceptibility to HIV-1 transmission by human Langerhans cells ex vivo. J. Clin. Investig. 2008, 118, 3440–3452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munch, J.; Rucker, E.; Standker, L.; Adermann, K.; Goffinet, C.; Schindler, M.; Wildum, S.; Chinnadurai, R.; Rajan, D.; Specht, A.; et al. Semen-derived amyloid fibrils drastically enhance HIV infection. Cell 2007, 131, 1059–1071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabatte, J.; Ceballos, A.; Raiden, S.; Vermeulen, M.; Nahmod, K.; Maggini, J.; Salamone, G.; Salomon, H.; Amigorena, S.; Geffner, J. Human seminal plasma abrogates the capture and transmission of human immunodeficiency virus type 1 to CD4+ T cells mediated by DC-SIGN. J. Virol. 2007, 81, 13723–13734. [Google Scholar] [CrossRef] [Green Version]
- Shaw, J.L.; Smith, C.R.; Diamandis, E.P. Proteomic analysis of human cervico-vaginal fluid. J. Proteome. Res. 2007, 6, 2859–2865. [Google Scholar] [CrossRef]
- Wahl, S.M.; McNeely, T.B.; Janoff, E.N.; Shugars, D.; Worley, P.; Tucker, C.; Orenstein, J.M. Secretory leukocyte protease inhibitor (SLPI) in mucosal fluids inhibits HIV-I. Oral Dis. 1997, 3 (Suppl. 1), S64–S69. [Google Scholar] [CrossRef]
- Spear, G.T.; Sha, B.E.; Saarloos, M.N.; Benson, C.A.; Rydman, R.; Massad, L.S.; Gilmore, R.; Landay, A.L. Chemokines are present in the genital tract of HIV-seropositive and HIV-seronegative women: Correlation with other immune mediators. J. Acquir. Immun. Defic. Syndr. Hum. Retrovirol. 1998, 18, 454–459. [Google Scholar] [CrossRef] [PubMed]
- Padian, N.S.; Buve, A.; Balkus, J.; Serwadda, D.; Cates, W., Jr. Biomedical interventions to prevent HIV infection: Evidence, challenges, and way forward. Lancet 2008, 372, 585–599. [Google Scholar] [CrossRef]
- Galvin, S.R.; Cohen, M.S. The role of sexually transmitted diseases in HIV transmission. Nat. Rev. Microbiol. 2004, 2, 33–42. [Google Scholar] [CrossRef]
- Merz, A.J.; So, M. Interactions of pathogenic neisseriae with epithelial cell membranes. Annu. Rev. Cell Dev. Biol. 2000, 16, 423–457. [Google Scholar] [CrossRef] [Green Version]
- Hogan, R.J.; Mathews, S.A.; Mukhopadhyay, S.; Summersgill, J.T.; Timms, P. Chlamydial persistence: Beyond the biphasic paradigm. Infect Immun. 2004, 72, 1843–1855. [Google Scholar] [CrossRef] [Green Version]
- Edwards, J.L.; Apicella, M.A. The molecular mechanisms used by Neisseria gonorrhoeae to initiate infection differ between men and women. Clin. Microbiol. Rev. 2004, 17, 965–981. [Google Scholar] [CrossRef] [Green Version]
- Gray, R.H.; Kigozi, G.; Serwadda, D.; Makumbi, F.; Watya, S.; Nalugoda, F.; Kiwanuka, N.; Moulton, L.H.; Chaudhary, M.A.; Chen, M.Z.; et al. Male circumcision for HIV prevention in men in Rakai, Uganda: A randomised trial. Lancet 2007, 369, 657–666. [Google Scholar] [CrossRef]
- Muula, A.S. The complications and safety of male circumcision: Implications for HIV prevention. Int. Urol. Nephrol. 2006, 38, 293. [Google Scholar] [CrossRef]
- Quinn, T.C. Circumcision and HIV transmission. Curr. Opin. Infect. Dis. 2007, 20, 33–38. [Google Scholar] [CrossRef]
- WHO; UNAIDS; JHPIEGO. Manual for Male Circumcision under Local Anaesthesia; World Health Organisation: Geneva, Switzerland, 2006. [Google Scholar]
- WHO. Male Circumcision Quality Assurance: A Guide to Enhancing the Safety and Quality of Services; World Health Organisation: Geneva, Switzerland, 2008. [Google Scholar]
- Halperin, D.T.; Fritz, K.; McFarland, W.; Woelk, G. Acceptability of adult male circumcision for sexually transmitted disease and HIV prevention in Zimbabwe. Sex. Transm. Dis. 2005, 32, 238–239. [Google Scholar] [CrossRef] [PubMed]
- Ngalande, R.C.; Levy, J.; Kapondo, C.P.; Bailey, R.C. Acceptability of male circumcision for prevention of HIV infection in Malawi. AIDS Behav. 2006, 10, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Scott, B.E.; Weiss, H.A.; Viljoen, J.I. The acceptability of male circumcision as an HIV intervention among a rural Zulu population, Kwazulu-Natal, South Africa. AIDS Care 2005, 17, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Kigozi, G.; Watya, S.; Polis, C.B.; Buwembo, D.; Kiggundu, V.; Wawer, M.J.; Serwadda, D.; Nalugoda, F.; Kiwanuka, N.; Bacon, M.C.; et al. The effect of male circumcision on sexual satisfaction and function, results from a randomized trial of male circumcision for human immunodeficiency virus prevention, Rakai, Uganda. BJU Int. 2008, 101, 65–70. [Google Scholar] [CrossRef]
- Krieger, J.N.; Mehta, S.D.; Bailey, R.C.; Agot, K.; Ndinya-Achola, J.O.; Parker, C.; Moses, S. Adult male circumcision: Effects on sexual function and sexual satisfaction in Kisumu, Kenya. J. Sex. Med. 2008, 5, 2610–2622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krieger, J.N.; Bailey, R.C.; Opeya, J.C.; Ayieko, B.O.; Opiyo, F.A.; Omondi, D.; Agot, K.; Parker, C.; Ndinya-Achola, J.O.; Moses, S. Adult male circumcision outcomes: Experience in a developing country setting. Urol. Int. 2007, 78, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Pang, M.G. The effect of male circumcision on sexuality. BJU Int. 2007, 99, 619–622. [Google Scholar] [CrossRef]
- Senel, F.M.; Demirelli, M.; Misirlioglu, F.; Sezgin, T. Adult male circumcision performed with plastic clamp technique in Turkey: Results and long-term effects on sexual function. Urol. J. 2012, 9, 700–705. [Google Scholar]
- Waldinger, M.D.; McIntosh, J.; Schweitzer, D.H. A five-nation survey to assess the distribution of the intravaginal ejaculatory latency time among the general male population. J. Sex. Med. 2009, 6, 2888–2895. [Google Scholar] [CrossRef]
- Mao, L.; Templeton, D.J.; Crawford, J.; Imrie, J.; Prestage, G.P.; Grulich, A.E.; Donovan, B.; Kaldor, J.M.; Kippax, S.C. Does circumcision make a difference to the sexual experience of gay men? Findings from the Health in Men (HIM) cohort. J. Sex. Med. 2008, 5, 2557–2561. [Google Scholar] [CrossRef]
- Friedman, B.; Khoury, J.; Petersiel, N.; Yahalomi, T.; Paul, M.; Neuberger, A. Pros and cons of circumcision: An evidence-based overview. Clin. Microbiol. Infect. 2016, 22, 768–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kigozi, G.; Lukabwe, I.; Kagaayi, J.; Wawer, M.J.; Nantume, B.; Kigozi, G.; Nalugoda, F.; Kiwanuka, N.; Wabwire-Mangen, F.; Serwadda, D.; et al. Sexual satisfaction of women partners of circumcised men in a randomized trial of male circumcision in Rakai, Uganda. BJU Int. 2009, 104, 1698–1701. [Google Scholar] [CrossRef]
- Shacham, E.; Godlonton, S.; Thornton, R.L. Perceptions of Male Circumcision among Married Couples in Rural Malawi. J. Int. Assoc. Provid. AIDS Care 2014, 13, 443–449. [Google Scholar] [CrossRef] [Green Version]
- Westercamp, M.; Bailey, R.C.; Bukusi, E.A.; Montandon, M.; Kwena, Z.; Cohen, C.R. Male circumcision in the general population of Kisumu, Kenya: Beliefs about protection, risk behaviors, HIV, and STIs. PLoS ONE 2010, 5, e15552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prodger, J.L.; Kaul, R. The biology of how circumcision reduces HIV susceptibility: Broader implications for the prevention field. AIDS Res. Ther. 2017, 14, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hladik, F.; McElrath, M.J. Setting the stage: Host invasion by HIV. Nat. Rev. Immunol. 2008, 8, 447–457. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.; Politch, J.A.; Pudney, J. HIV infection and immune defense of the penis. Am. J. Reprod. Immunol. 2011, 65, 220–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.M.; Prodger, J.L.; Tobian, A.A.R.; Abraham, A.G.; Kigozi, G.; Hungate, B.A.; Aziz, M.; Nalugoda, F.; Sariya, S.; Serwadda, D.; et al. Penile Anaerobic Dysbiosis as a Risk Factor for HIV Infection. mBio 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Schneider, J.A.; Vadivelu, S.; Liao, C.; Kandukuri, S.R.; Trikamji, B.V.; Chang, E.; Antonopoulos, D.; Prasad, S.; Lakshmi, V. Increased Likelihood of Bacterial Pathogens in the Coronal Sulcus and Urethra of Uncircumcised Men in a Diverse Group of HIV Infected and Uninfected Patients in India. J. Glob. Infect. Dis. 2012, 4, 6–9. [Google Scholar] [CrossRef]
- Liu, C.M.; Hungate, B.A.; Tobian, A.A.; Serwadda, D.; Ravel, J.; Lester, R.; Kigozi, G.; Aziz, M.; Galiwango, R.M.; Nalugoda, F.; et al. Male circumcision significantly reduces prevalence and load of genital anaerobic bacteria. mBio 2013, 4, e00076. [Google Scholar] [CrossRef] [Green Version]
- Alanis, M.C.; Lucidi, R.S. Neonatal circumcision: A review of the world’s oldest and most controversial operation. Obstet. Gynecol. Surv. 2004, 59, 379–395. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, Z. Male circumcision and human immunodeficiency virus infection: An update on randomized controlled trials and molecular evidences. Int. J. Health Sci. 2018, 12, 1–3. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, A.L.; Hokello, J.; Tyagi, M. Circumcision as an Intervening Strategy against HIV Acquisition in the Male Genital Tract. Pathogens 2021, 10, 806. https://doi.org/10.3390/pathogens10070806
Sharma AL, Hokello J, Tyagi M. Circumcision as an Intervening Strategy against HIV Acquisition in the Male Genital Tract. Pathogens. 2021; 10(7):806. https://doi.org/10.3390/pathogens10070806
Chicago/Turabian StyleSharma, Adhikarimayum Lakhikumar, Joseph Hokello, and Mudit Tyagi. 2021. "Circumcision as an Intervening Strategy against HIV Acquisition in the Male Genital Tract" Pathogens 10, no. 7: 806. https://doi.org/10.3390/pathogens10070806
APA StyleSharma, A. L., Hokello, J., & Tyagi, M. (2021). Circumcision as an Intervening Strategy against HIV Acquisition in the Male Genital Tract. Pathogens, 10(7), 806. https://doi.org/10.3390/pathogens10070806