Insights into Temperature and Hypoxia Tolerance in Cowpea Weevil via HIF-1
Abstract
:1. Introduction
2. Results
2.1. Three Sub-Phases of Egg Development
2.2. The Survival Rate Effect upon Low-Temperature Treatment
2.3. Sequencing of Cowpea Weevil HIF-1α cDNA
2.4. Relative Expression of HIF-1 Gene under Temperature and Oxygen Treatment
2.5. Reduction in Survival Rate of Cowpea Weevils upon HIF-1 Inhibitor Treatments
3. Discussion and Conclusions
4. Materials and Methods
4.1. Insect Source and Feeding Method
4.2. Observation of Egg Morphology
4.3. The Effect of Low Temperature on the Survival of Cowpea Weevils at Different Stages of Development
4.4. Extraction of Total RNA under Different Temperature and Oxygen Treatments
4.5. Design and Synthesis of Primers and Gene Sequencing
4.6. Standard Curve, RT-qPCR, and Data Analysis
4.7. Monitoring Eclosion of Cowpea Weevils from Beans Treated with HIF-1 Inhibitors
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rahman, A.; Talukder, F.A. Bioefficacy of some plant derivatives that protect grain against the pulse beetle, Callosobruchus maculatus. J. Insect Sci. 2006, 6, 1–10. [Google Scholar] [CrossRef]
- Izakmehri, K.; Saber, M.; Mehrvar, A.; Hassanpouraghdam, M.B.; Vojoudi, S. Lethal and sublethal effects of essential oils from Eucalyptus camaldulensis and Heracleum persicum against the adults of Callosobruchus maculatus. J. Insect. Sci. 2013, 13, 152. [Google Scholar] [CrossRef] [Green Version]
- Kedia, A.; Prakash, B.; Mishra, P.K.; Singh, P.; Dubey, N.K. Botanicals as eco friendly biorational alternatives of synthetic pesticides against Callosobruchus spp. (Coleoptera: Bruchidae)—A review. J. Food Sci. Technol. 2013, 52, 1239–1257. [Google Scholar] [CrossRef]
- Umeozor, O.C. Effect of the Infection of Callosobruchus maculatus (Fab.) on the Weight Loss of Stored Cowpea (Vigna unguiculata (L.) Walp). J. Appl. Sci. Environ. Manag. 2005, 9, 169–172. [Google Scholar]
- Owolabi, M.S.; Padilla-Camberos, E.; Ogundajo, A.L.; Ogunwande, I.A.; Flamini, G.; Yusuff, O.K.; Allen, K.; Flores-Fernandez, K.I.; Flores-Fernandez, J.M. Insecticidal Activity and Chemical Composition of theMorinda lucidaEssential Oil against Pulse Beetle Callosobruchus maculatus. Sci. World J. 2014, 2014, 784613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouedraogo, P.A.; Sou, S.; Sanon, A.; Monge, J.P.; Huignard, J.; Tran, B.; Credland, P.F. Influence of temperature and humidity on populations of Callosobruchus maculatus (Coleoptera: Bruchidae) and its parasitoid Dinarmus basalis (Pteromalidae) in two climatic zones of Burkina Faso. Bull. Èntomol. Res. 1996, 86, 695–702. [Google Scholar] [CrossRef]
- Aboua, L.; Seri-Kouassi, B.P.; Koua, H.K. Insecticidal activity of essential oils from three aromatic plants on Callosobruchus maculatus F. in Cte D’Ivoire. Eur. J. Sci. Res. 2010, 39, 243–250. [Google Scholar]
- Mazarin, A.; Nukenine, E.N.; Niu, C.; Vencl, F.V. Synergistic Effects of Wood Ash and Essential Oilon Fecundity, Pupal Eclosion and Adult Mortality of Callosobruchus maculatus (Coleoptera: Bruchidae) Cowpea Seed Weevil. Am. J. Exp. Agric. 2016, 11, 1–12. [Google Scholar]
- Ajayi, F.; Lale, N. Seed coat texture, host species and time of application affect the efficacy of essential oils applied for the control of Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) in stored pulses. Int. J. Pest Manag. 2001, 47, 161–166. [Google Scholar] [CrossRef]
- Tapondjou, L.; Adler, C.; Bouda, H.; Fontem, D. Efficacy of powder and essential oil from Chenopodium ambrosioides leaves as post-harvest grain protectants against six-stored product beetles. J. Stored Prod. Res. 2002, 38, 395–402. [Google Scholar] [CrossRef]
- Zhong, J.F.; Wan, Z.H.; Li, L.; Chen, H.W.; Wu, G.H. Effect of Extreme Temperatures on the Control of Azuki Bean Beetle, Callosobruchus chinensis L. (Coleoptera: Bruchidae) and Quality of Mungbean Seed. Hubei Agric. Sci. 2012, 51, 2719–2722, (In Chinese with English abstract). [Google Scholar]
- Dosland, O. Temperature Modification for Insect Control-ScienceDirect. In Insect Management for Food Storage and Processing, 2nd ed.; American Associate of Cereal Chemists International: Saint Paul, MN, USA, 2006; pp. 89–103. [Google Scholar]
- Phillips, T.W.; Throne, J.E. Biorational Approaches to Managing Stored-Product Insects. Annu. Rev. Èntomol. 2010, 55, 375–397. [Google Scholar] [CrossRef]
- Loganathan, M.; Jayas, D.; Fields, P.; White, N. Low and high temperatures for the control of cowpea beetle, Callosobruchus maculatus (F.) (coleoptera: Bruchidae) in chickpeas. J. Stored Prod. Res. 2011, 47, 244–248. [Google Scholar] [CrossRef]
- Arthur, F.H.; Morrison, W.R.; Trdan, S. Feasibility of Using Aeration to Cool Wheat Stored in Slovenia: A Predictive Modeling Approach Using Historical Weather Data. Appl. Sci. 2020, 10, 6066. [Google Scholar] [CrossRef]
- Van Lieshout, E.; Tomkins, J.L.; Simmons, L.W. Heat stress but not inbreeding affects offensive sperm competitiveness in Callosobruchus maculatus. Ecol. Evol. 2013, 3, 2859–2866. [Google Scholar] [CrossRef]
- Quellhorst, H.; Williams, S.B.; Murdock, L.L.; Baributsa, D. Cumulative oxygen consumption during development of two postharvest insect pests: Callosobruchus maculatus Fabricius and Plodia interpunctella Hübner. J. Stored Prod. Res. 2018, 77, 92–95. [Google Scholar] [CrossRef] [PubMed]
- Navarro, S. Modified Atmospheres for the Control of Stored-Product Insects and Mites. In Insect Management for Food Storage and Processing, 2nd ed.; American Associate of Cereal Chemists International: Saint Paul, MN, USA, 2006; pp. 105–146. [Google Scholar]
- Cui, S.; Qiu, J.; Liu, Z.; Geng, X.; Wang, L. Comparative metabolomics analysis of Callosobruchus chinensis larvae under hypoxia, hypoxia/hypercapnia and normoxia. Pest Manag. Sci. 2017, 73, 1267–1276. [Google Scholar] [CrossRef]
- Semenza, G.L. Regulation of Mammalian O2Homeostasis by Hypoxia-Inducible Factor 1. Annu. Rev. Cell Dev. Biol. 1999, 15, 551–578. [Google Scholar] [CrossRef] [PubMed]
- Majmundar, A.J.; Wong, W.J.; Simon, M.C. Hypoxia-Inducible Factors and the Response to Hypoxic Stress. Mol. Cell 2010, 40, 294–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, H.; Jiang, K.; Zhang, F.; Song, W.; Zhao, M.; Meng, Y.; Chen, F.; Zhao, M.; Ma, L. Two transcripts of hypoxia inducible factor-1 (HIF-1) from Scylla paramamosain Estampador, 1950 (Brachyura: Portunidae) and their expression profiles under different hypoxic conditions. J. Crustac. Biol. 2017, 37, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Semenza, G.L. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 2003, 3, 721–732. [Google Scholar] [CrossRef]
- Koyasu, S.; Kobayashi, M.; Goto, Y.; Hiraoka, M.; Harada, H. Regulatory mechanisms of HIF-1 activity: Two decades of knowledge. Cancer Sci. 2017, 109, 560–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catron, T.; Mendiola, M.A.; Smith, S.M.; Born, J.; Walker, M.K. Hypoxia Regulates Avian Cardiac Arnt and HIF-1α mRNA Expression. Biochem. Biophys. Res. Commun. 2001, 282, 602–607. [Google Scholar] [CrossRef]
- Beaucourt, A.D.; Coumailleau, P. Molecular cloning and characterization of the Xenopus hypoxia-inducible factor 1alpha (xHIF1alpha). J. Cell. Biochem. 2007, 102, 1542–1552. [Google Scholar] [CrossRef]
- Soitamo, A.J.; Råbergh, C.M.; Gassmann, M.; Sistonen, L.; Nikinmaa, M. Characterization of a Hypoxia-inducible Factor (HIF-1α) from Rainbow Trout. J. Biol. Chem. 2001, 276, 19699–19705. [Google Scholar] [CrossRef] [Green Version]
- Thomas, P.; Rahman, M.S. Biomarkers of hypoxia exposure and reproductive function in Atlantic croaker: A review with some preliminary findings from the northern Gulf of Mexico hypoxic zone. J. Exp. Mar. Biol. Ecol. 2009, 381 (Suppl. 1), S38–S50. [Google Scholar] [CrossRef]
- Soñanez-Organis, J.G.; Peregrino-Uriarte, A.B.; Gómez-Jiménez, S.; Lopez-zavala, A.; Forman, H.J.; Yepiz-Plascencia, G. Molecular characterization of hypoxia inducible factor-1 (HIF-1) from the white shrimp Litopenaeus vannamei and tissue-specific expression under hypoxia. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2009, 150, 395–405. [Google Scholar] [CrossRef]
- Wang, L.; Cui, S.; Ma, L.; Kong, L.; Geng, X. Current advances in the novel functions of hypoxia-inducible factor and prolyl hydroxylase in invertebrates. Insect Mol. Biol. 2015, 24, 634–648. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.; Zhou, X.; Dowd, S.E.; Chapkin, R.S.; Zhu-Salzman, K. Insight into Hypoxia Tolerance in Cowpea Bruchid: Metabolic Repression and Heat Shock Protein Regulation via Hypoxia-Inducible Factor 1. PLoS ONE 2013, 8, e57267. [Google Scholar] [CrossRef] [Green Version]
- Morin, P.; McMullen, D.C.; Storey, K.B. HIF-1α involvement in low temperature and anoxia survival by a freeze tolerant insect. Mol. Cell. Biochem. 2005, 280, 99–106. [Google Scholar] [CrossRef]
- Xiaofeng, D.; Pinwu, W.X.L.; Ping, P. Research Progress on the Effects of Several Environmental Factors on Adaptability of Insects. Chin. Agric. Sci. Bull. 2015, 31, 79–82. [Google Scholar]
- Mullen, M.A.; Arbogast, R.T. Time-temperature-mortality relationships for various stored-product insect eggs and chilling times for selected commodities. J. Econ. Èntomol. 1979, 72, 476–478. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X. A study on the cold hardiness of the beet armyworm. Spodoptera Exigua. Acta Ecol. Sin. 2001, 21, 1575–1582. [Google Scholar]
- Perry, A.S.; Yamamoto, I.; Ishaaya, I.; Perry, R. Insecticides in Agriculture and Environment: Retrospects and Prospects. In Insecticides in Agriculture and Environment; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Murray, I.B. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol. 2006, 51, 45–66. [Google Scholar]
- Cheng, W.; Lei, J.; Ahn, J.-E.; Liu, T.-X.; Zhu-Salzman, K. Effects of decreased O2 and elevated CO2 on survival, development, and gene expression in cowpea bruchids. J. Insect Physiol. 2012, 58, 792–800. [Google Scholar] [CrossRef] [PubMed]
- Masoud, G.N.; Li, W. HIF-1α pathway: Role, regulation and intervention for cancer therapy. Acta Pharm. Sin. B 2015, 5, 378–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soni, S.; Padwad, Y.S. HIF-1 in cancer therapy: Two decade long story of a transcription factor. Acta Oncol. 2017, 56, 503–515. [Google Scholar] [CrossRef]
- Mbata, G.N.; Johnson, M.; Phillips, T.W.; Payton, M. Mortality of Life Stages of Cowpea Weevil (Coleoptera: Bruchidae) Exposed to Low Pressure at Different Temperatures. J. Econ. Èntomol. 2005, 98, 1070–1075. [Google Scholar] [CrossRef]
- Yan, Y.; Williams, S.B.; Baributsa, D.; Murdock, L.L. Hypoxia Treatment of Callosobruchus maculatus Females and Its Effects on Reproductive Output and Development of Progeny Following Exposure. Insects 2016, 7, 26. [Google Scholar] [CrossRef] [Green Version]
- Mabjeesh, N.J.; Escuin, D.; LaVallee, T.M.; Pribluda, V.S.; Swartz, G.M.; Johnson, M.S.; Willard, M.T.; Zhong, H.; Simons, J.W.; Giannakakou, P. 2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF. Cancer Cell 2003, 3, 363–375. [Google Scholar] [CrossRef] [Green Version]
- Johnson, I.S.; Armstrong, J.G.; Gorman, M.; Burnett, J.P. The vinca alkaloids: A new class of oncolytic agents. Cancer Res. 1963, 23, 1390–1427. [Google Scholar]
- Park, K.-J.; Yu, M.O.; Park, D.-H.; Park, J.-Y.; Chung, Y.-G.; Kang, S.-H. Role of vincristine in the inhibition of angiogenesis in glioblastoma. Neurol. Res. 2016, 38, 871–879. [Google Scholar] [CrossRef] [PubMed]
- Blackwell, K.L.; Chi, J.; Sidor, C.; Burke, P.; LaVallee, T.; Liotcheva, H.S.S.; Sims, D.; Hobbs, L.; Arnott, J.; Dewhirst, M.W. The effects of paclitaxel (PTX) and 2-methoxyestradiol (2-ME2) on tumor oxygenation and HIF-1{alpha} in breast cancer. Arch. Dermatol. 2007, 140, 979–983. [Google Scholar]
- Flamant, L.; Notte, A.; Ninane, N.; Raes, M.; Michiels, C. Anti-apoptotic role of HIF-1 and AP-1 in paclitaxel exposed breast cancer cells under hypoxia. Mol. Cancer 2010, 9, 191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chi, Y.H.; Ahn, J.; Yun, D.; Lee, S.Y.; Liu, T.; Zhu-Salzman, K. Changes in oxygen and carbon dioxide environment alter gene expression of cowpea bruchids. J. Insect Physiol. 2011, 57, 220–230. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Liu, Z.; Gao, Z.; Chen, G.; Liu, C.; Wan, Z.; Chen, C.; Zeng, C.; Zhao, Y.; Pan, L. Insights into Temperature and Hypoxia Tolerance in Cowpea Weevil via HIF-1. Pathogens 2021, 10, 704. https://doi.org/10.3390/pathogens10060704
Liu Q, Liu Z, Gao Z, Chen G, Liu C, Wan Z, Chen C, Zeng C, Zhao Y, Pan L. Insights into Temperature and Hypoxia Tolerance in Cowpea Weevil via HIF-1. Pathogens. 2021; 10(6):704. https://doi.org/10.3390/pathogens10060704
Chicago/Turabian StyleLiu, Qin, Zhichao Liu, Zhipeng Gao, Guanjun Chen, Changyan Liu, Zhenghuang Wan, Chanyou Chen, Chen Zeng, Yunjie Zhao, and Lei Pan. 2021. "Insights into Temperature and Hypoxia Tolerance in Cowpea Weevil via HIF-1" Pathogens 10, no. 6: 704. https://doi.org/10.3390/pathogens10060704