
pathogens

Article

Insights into Temperature and Hypoxia Tolerance in Cowpea
Weevil via HIF-1

Qin Liu 1, Zhichao Liu 2, Zhipeng Gao 1, Guanjun Chen 1, Changyan Liu 3, Zhenghuang Wan 3, Chanyou Chen 1,
Chen Zeng 4 , Yunjie Zhao 5,* and Lei Pan 1,*

����������
�������

Citation: Liu, Q.; Liu, Z.; Gao, Z.;

Chen, G.; Liu, C.; Wan, Z.; Chen, C.;

Zeng, C.; Zhao, Y.; Pan, L. Insights

into Temperature and Hypoxia

Tolerance in Cowpea Weevil via

HIF-1. Pathogens 2021, 10, 704.

https://doi.org/10.3390/

pathogens10060704

Academic Editors: Lin Li and Yi He

Received: 25 April 2021

Accepted: 1 June 2021

Published: 5 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Life Sciences, Jianghan University, Wuhan 430056, China; lliuqin0316@jhun.edu.cn (Q.L.);
gaozhipen@webmail.hzau.edu.cn (Z.G.); 201911110711121@stu.hubu.edu.cn (G.C.); ccy@jhun.edu.cn (C.C.)

2 School of Biological Information, Chongqing University of Posts and Telecommunications,
Chongqing 400065, China; liuzc@cqupt.edu.cn

3 Institute of Food Crop, Hubei Academy of Agricultural Sciences, Wuhan 430064, China;
Liucy0602@163.com (C.L.); Zhwan168@163.com (Z.W.)

4 Department of Physics, The George Washington University, Washington, DC 20052, USA; chenz@gwu.edu
5 Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
* Correspondence: yjzhaowh@mail.ccnu.edu.cn (Y.Z.); leipan@jhun.edu.cn (L.P.)

Abstract: Cowpea weevil (Callosobruchus maculatus) is a major pest that leads to severe damage of the
stored leguminous grains. Several management approaches, including physical barriers, biological
or chemical methods, are used for controlling bruchid in cowpea. These methods usually target
the metabolically active state of weevil. However, it becomes less effective at early stages as egg,
larva, or pupa under low temperature and oxygen conditions. Since hypoxia-inducible factor-1
(HIF-1) is known to coordinate multiple gene responses to low oxygen or low temperature signals,
we examined the HIF-1α gene expression under low temperature and hypoxic treatments. At −20 ◦C,
it took 4 h to reduce the survival rate for eggs, larvae, and pupae down to 10%, while at 4 ◦C and
15 ◦C, the survival rate remained higher than 50% even after 128 h as HIF-1α gene expression peaked
at 15 ◦C. Moreover, HIF-1 protein offers a valuable target for early stage pest control complementary
to traditional methods. In particular, HIF-1 inhibitor camptothecin (CPT), one of the five HIF-1
inhibitors examined, achieved a very significant reduction of 96.2% and 95.5% relative to the control
in weevil survival rate into adult at 4 ◦C and 30 ◦C, respectively. Our study can be used as one model
system for drug development in virus infections and human cancer.
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1. Introduction

Cowpea weevil is a major pest of stored leguminous grains. The growth of cowpea
weevil leads to severe damage to stored leguminous grains, such as cowpea, lentil, green
gram, black gram, and other legumes [1–3]. Generally, storage losses due to cowpea weevil
vary from 4% to 90% [4] and reduce the supply of major vegetable protein resources for
humans in Asia and Africa [5]. Thus, it is essential to develop effective and safe methods
to protect stored pulse grains against cowpea weevil.

The life cycle of cowpea weevil contains four stages: egg, four larval instars, pupa,
and adult [6–8]. The adult lays eggs on the seed coat. Its larvae feed inside the grain seeds
by eating the grain endosperm. These actions damage the seed viability and nutritional
quality, making it unsuitable for replanting [1,9,10]. The physical barriers and chemical
controls are widely used for controlling bruchid in cowpea (Callosobruchus maculatus) [3].
However, most current methods cannot kill the egg, four larval instars, and pupa [11].

Temperature management is one rational approach for pest control [12–15]. On the
one hand, thermal stress has well-known detrimental effects on male fertility, affecting
sperm competitiveness in cowpea weevil [16]. On the other hand, cowpea weevil has a
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different cold tolerance at different stages. The order of cold tolerance for cowpea weevil is
eggs < adults < larvae < pupae at 0 ◦C. The developmental stages (eggs, larvae, pupae, and
adults) of cowpea weevil could be controlled at −15 ◦C for 3 h [14].

Insects’ oxygen consumption offers another opportunity for pest control [17]. The
low oxygen (hypoxia) manipulation has been applied in practice for the cowpea weevil
control [18]. The average oxygen consumption is 8.3 mL per weevil from egg to adult in its
life cycle [17]. Hypoxia stress can increase insect mortality, delay insect development, and
disrupt metabolism [19].

HIF-1 protein can trigger and coordinate multiple gene regulation responses to low
oxygen or low temperature signals [20–22]. HIF-1 protein is a heterodimeric DNA-binding
complex, composed of two subunits: HIF-1α (an O2-labile α subunit, 120 kDa) and HIF-1β
(a stable β subunit, 90 kDa) [21,23,24]. The mechanism underlying hypoxic response by
HIF-1 protein has been widely investigated in mammals, birds, amphibians, fishes, and
invertebrates [25–30]. A recent report on the hypoxic treatments of the cowpea weevil led
to enhanced HIF-1 gene expressions, metabolic repression, and heat shock protein regula-
tion [31]. To provide further evidence if HIF-1 protein can be targeted for pest control, we
examined the HIF-1 gene expression under different temperature and hypoxia treatments.
We analyzed the insecticidal activity of five HIF-1 inhibitors against cowpea weevil.

2. Results
2.1. Three Sub-Phases of Egg Development

We first examined the egg development of cowpea weevil under the stereomicroscope.
The egg stage could be further divided into three distinctive sub-phases. In the early phase,
the fertilized egg laid on a mung bean surface has an elliptical shape of size 0.6 × 0.4 mm2

with one end slightly squished and a shiny eggshell (Figure S1A). In the middle phase, the
ovum begins to shrink from both sides to form a small vacuole. A black spot becomes visible
as the contraction ended. The black area will develop into the larva head (Figure S1B). In
the late phase, the blackhead of the larva is wholly formed (Figure S1C), and the eggshell
finally becomes opaque with a cream white color from the frass deposits (Figure S1D),
indicating the end of the late phase when the larva has burrowed into the bean.

2.2. The Survival Rate Effect upon Low-Temperature Treatment

We examined the survival rate of weevils under different development stages upon
exposure to three different temperatures of −20 ◦C, 4 ◦C, and 15 ◦C for different durations
(Figure 1) [11]. The survival rate of the control group at 30 ◦C is 89%. More than 80% of
pupae, 20% of eggs, and 7% of larvae were killed if exposed to −20 ◦C for 0.5 h (Figure 1A).
It is noted that nearly 98% of eggs, larvae, and pupae were killed when the exposure time
was extended to 8 h. The survival rates of eggs, larvae, and pupae stayed at a relatively
high level at 4 ◦C (Figure 1B). About 50% of eggs, 25% of larvae, and 10% of pupae were
killed when the exposure time was extended to 128 h. In contrast, the higher temperature
of 15 ◦C had little effect on the cowpea weevils at any stage of development. Less than 10%
of eggs, 15% of larvae, and none of the pupae were killed even when the exposure time
was extended to 128 h (Figure 1C). These results showed that exposure to the temperature
of −20 ◦C significantly diminished the survival rate of cowpea weevils, while exposure
to low temperatures of 4 ◦C and 15 ◦C had little impact. To gain insights into these
observations, we measured the expression level of hypoxia-inducible factor-1α (HIF-1α)
since it is expected that HIF-1 protein can coordinate a multiple-gene response to counter
exposures to mild low temperature or low oxygen.
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Figure 1. Effects of different low temperatures (from −20 °C to 15 °C) and different exposure times 
(from 0.5 h to 128 h) on the survival rates of eggs, larvae, and pupae. The subfigures A, B and C 
represent the treatment at −20 °C, 4 °C, and 15 °C, respectively. 

2.3. Sequencing of Cowpea Weevil HIF-1α cDNA 
It is known that many hypoxia-sensitive mammalian organs activate multiple genes 

to restore energy and oxygen homeostasis at low temperature or low oxygen levels [32]. 
Such an adaptation utilizes the HIF-1 protein in the glycolytic pathway for energy pro-
duction and stimulates angiogenesis and erythropoiesis to increase tissue oxygenation. 
To probe the changes in HIF-1α gene expression under different temperature conditions, 
the insects were exposed to various temperatures (4 °C, 15 °C, 30 °C, and 37 °C) in our 
study. One specific amplification band (~100 bps) was obtained in the RT-PCR experi-
ment (Figure 2A, Lane 2) using primers 1α-R and 1α-F designed to amplify a 96-bp 
fragment of Cm HIF-1α cDNA. Indeed, the sequence measured for this product shared a 

Figure 1. Effects of different low temperatures (from −20 ◦C to 15 ◦C) and different exposure times
(from 0.5 h to 128 h) on the survival rates of eggs, larvae, and pupae. The subfigures (A), (B) and (C)
represent the treatment at −20 ◦C, 4 ◦C, and 15 ◦C, respectively.

2.3. Sequencing of Cowpea Weevil HIF-1α cDNA

It is known that many hypoxia-sensitive mammalian organs activate multiple genes to
restore energy and oxygen homeostasis at low temperature or low oxygen levels [32]. Such
an adaptation utilizes the HIF-1 protein in the glycolytic pathway for energy production
and stimulates angiogenesis and erythropoiesis to increase tissue oxygenation. To probe the
changes in HIF-1α gene expression under different temperature conditions, the insects were
exposed to various temperatures (4 ◦C, 15 ◦C, 30 ◦C, and 37 ◦C) in our study. One specific
amplification band (~100 bps) was obtained in the RT-PCR experiment (Figure 2A, Lane 2)
using primers 1α-R and 1α-F designed to amplify a 96-bp fragment of Cm HIF-1α cDNA.
Indeed, the sequence measured for this product shared a very high sequence similarity of
99% to the Cm HIF-1α cDNA sequence (GenBank accession number JN228344) and a lower
sequence similarity of 60% to Hs HIF-1α gene in Homo sapiens (GeneID: 3091).
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room temperatures of 30 °C and 37 °C for 24 h. The Rec stands for the treatment of 4 °C 
for 24 h followed by a recovery of 24 h at 30 °C. The HIF-1α gene shows an elevated ex-
pression of about 1.5 folds at low temperatures compared to room temperatures. The 
considerably large fluctuation in expression for biological replicates observed at 15 °C is 
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protein oscillates between on and off. 

We also measured the relative expression level of the HIF-1α gene in the 4th instar 
larvae of cowpea weevils under 30 °C when they were taken out of the beans to be ex-
posed to ambient air mimicking presumed reoxygenation for different durations (Figure 
4). The significant decreases in HIF-1α expression once exposed to oxygen-rich air 
strongly suggest a hypoxia condition typically encountered by larvae inside the bean 
where HIF-1 gene regulation is required and activated even at these early stages. To-
gether, these results offer an opportunity to use HIF-1 inhibitors to shut down the early 
life cycle of cowpea weevils. 

Figure 2. (A) RT-PCR products amplified by different primers. Lane M: DL 2000 DNA marker; Lane 1: the fragment product
with primers 18S-F and 18S-R for 18S rRNA as control; Lane 2: the fragment product with primers 1α-F and 1α-R designed
to amplify a 96-bp fragment of Cm HIF-1α gene; (B) The actual query nucleotide produced in Lane 2 of (A) above was
sequenced. It showed a very high sequence similarity to Cm HIF-1α gene as expected (GenBank accession number JN228344)
and a low sequence similarity to Hs HIF-1α in Homo sapiens (GeneID:3091). Nucleotides different from the reference Cm
HIF-1α DNA sequence are shaded black.

2.4. Relative Expression of HIF-1 Gene under Temperature and Oxygen Treatment

Using the RT-PCR technique, we further measured the differential expression of
HIF-1α mRNA transcript in the 4th instar larval stage of cowpea weevils under different
temperature and oxygen treatments. Figure 3 shows the relative expression level of the
HIF-1α gene when the larvae were exposed to low temperatures of 4 ◦C and 15 ◦C, and
room temperatures of 30 ◦C and 37 ◦C for 24 h. The Rec stands for the treatment of 4 ◦C for
24 h followed by a recovery of 24 h at 30 ◦C. The HIF-1α gene shows an elevated expression
of about 1.5 folds at low temperatures compared to room temperatures. The considerably
large fluctuation in expression for biological replicates observed at 15 ◦C is suggestive that
15 ◦C may be a transition point for HIF-1 protein adaptation where HIF-1 protein oscillates
between on and off.
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Figure 3. The relative expression level of HIF-1α gene in 4th instar larvae of cowpea weevils under
different temperature treatments. The larvae incubated at the 30 ◦C were subjected to different
temperatures indicated above for 24 h before RNA extraction. Rec here denotes a procedure where
the 24 h exposure to 4 ◦C was followed by another 24 h recovery under 30 ◦C before RNA extraction.

We also measured the relative expression level of the HIF-1α gene in the 4th instar
larvae of cowpea weevils under 30 ◦C when they were taken out of the beans to be exposed
to ambient air mimicking presumed reoxygenation for different durations (Figure 4). The
significant decreases in HIF-1α expression once exposed to oxygen-rich air strongly suggest
a hypoxia condition typically encountered by larvae inside the bean where HIF-1 gene
regulation is required and activated even at these early stages. Together, these results offer
an opportunity to use HIF-1 inhibitors to shut down the early life cycle of cowpea weevils.
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Figure 4. The relative expression level of HIF-1α gene in 4th instar larvae of cowpea weevils under
presumably different oxygen levels. Control here denotes the procedure where RNA extraction
was immediately performed when live larvae were taken out from the beans. Other treatments are
marked by the duration of hours that the live larvae taken out from the beans were further exposed
to the ambient air before RNA extraction.

2.5. Reduction in Survival Rate of Cowpea Weevils upon HIF-1 Inhibitor Treatments

To examine whether HIF-1 protein can be a viable target for pest control, in particular,
at the early stages of weevil’s life cycle where the development takes place without exposure
to the ambient air and presumably in a hypoxia environment, we screened five HIF-1
inhibitors (2ME2, CPT, TPT, VCR, and PTX) for their effects on cowpea weevil’s life cycle
under two different temperature settings (see Section 4.7 for experiment procedures). The
experimental results on the survival rate of cowpea weevils, which is defined as the fraction
of emerging adults, are summarized in Table S1.

Compared to the survival rate of 84.0% for the control (242/288), 2ME2 and TPT led
to comparable survival rates of 73.3% and 67.6%, respectively, representing only 12.0%
and 19.5% reductions, on the other hand, PTX, VCR, and CPT led to much lower survival
rates of 20.8%, 17.7%, and 3.5%, respectively. In particular, the lowest survival rate of 3.5%,
i.e., a 95.5% reduction relative to the control (1–3.5%/84.0% = 95.5%), demonstrates the
remarkable efficacy of CPT to stop weevils from completing the life cycle into the final
adult stage. Interestingly, as shown in Figure 5, the two less effective inhibitors (2ME2 and
TPT) as well as the control showed a clearly peaked distribution with a typical hatching
time centered at 22–24 d. In contrast, the more effective inhibitors (PTX, VCR, and CPT)
all led to a conspicuously broad and flat distribution without a clearly defined peak on
hatching time, suggesting that these inhibitors completely alter the normal development
process with a chaotic biological clock instead of a delayed clock with a shifted peak. While
the detailed mechanism remains to be elucidated, it is suggestive that such a disorderly
clock of development could have a more detrimental effect on the adult weevils than the
low survival rate of 3.5% would already suggest.

Since HIF-1 protein coordinates the response to both low oxygen and low temperature
signals, we also examined the potential benefits of HIF-1 inhibition in further reducing
the survival rate of weevils at a lower temperature. To do so, we modified the above
experiment by lowering the incubation temperature of 30 ◦C to 4 ◦C for only 24 h between
the 15th and 16th day. The results are shown in Table S1 and Figure 5. Indeed, the survival
rate for the two most effective inhibitors of VCR and CPT was slightly further reduced
to 15.6% and 2.7%, respectively. Here, 2.7% represents a 96.2% reduction from that of the
control, which had a survival rate of 70.8% (1–2.7%/70.8% = 96.2%).

Taken together, our results demonstrated that HIF-1 inhibitor CPT could achieve a
significant reduction of about 95% in weevil’s survival rate of the controls at either room
temperature or storage room temperature.
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2-methoxyoestradiol (2ME2), vincristine (VCR), camptothecin (CPT), topotecan (TPT), and paclitaxel (PTX).

3. Discussion and Conclusions

Insects have a certain degree of adaptability to the low temperature stress. The
insects can synthesis the antifreeze protein to prevent the growth of ice crystals and avoid
permanent damage to cells and organs [33]. The previous investigation indicated that
the C. maculatus eggs showed the cold-tolerant among five store-product insects. The
LD50 values of the C. maculatus eggs were 2.7, 1.3, and 0.3 h at −10 ◦C, −15 ◦C, and
−20 ◦C, respectively [34]. Among the different developmental stages of C. maculatus,
pupae showed the best tolerance under and cold treatment of 0 ◦C [35].

The standard chemical methods of controlling storage pests concentrate on developing
effective fumigation and aeration protocols [32]. However, it is difficult for these methods
to stop the larvae of cowpea weevils residing inside the beans [14]. The chemical residues
retained on the fumigated beans could also promote chemical resistance [36,37]. Other
physical methods utilizing low temperature and/or low oxygen conditions have also been
explored to disrupt the life cycle of cowpea weevils [7,14]. For example, cold air can
be blown into the warehouse to slow the growth or kill the insects [14]. However, the
cowpea weevils can adapt to environmental stress, for example, by activating such a master
regulator as HIF-1 protein and recover back at normal conditions [31,38].

ATP is the primary source of metabolic energy for insects. The cold temperature or
hypoxia conditions affect the insect’s metabolic energy. Thus, the insects have developed
the HIF-1 to respond to the temperature and hypoxic [39,40]. Interestingly, for the cowpea
weevils we studied, the HIF-1 response was already activated even with the temperature
of 15 ◦C or presumably mild hypoxia interior of the mung bean [32,41,42]. This makes
HIF-1 an attractive target without maintaining a cold storage room and the associated
energy consumption. Here, we investigated the survival rate and developmental duration
of cowpea weevils upon HIF-1 inhibitors [43–47]. One specific HIF-1 inhibitor CPT was
found to reduce the survival rate of cowpea weevils by a remarkable 95.5% even at room
temperature (30 ◦C). This HIF-1 inhibitor approach will be particularly useful in the
industry where fumigation with methyl bromide has become almost one standard tool for
the dried beans protection [41].

There is a noticeable positive correlation between the low survival rate and the broad
and uniform distribution of hatching time. This is strongly suggestive that weevil’s biolog-
ical clock of its development cycle was not merely delayed but disrupted. It remains to
be investigated if such a disruption becomes detrimental to the survived adults or their
offspring, making the inhibitor more effective than it already is. The diverse effects of
these putative HIF-1 inhibitors targeting different stages of HIF-1 activation remain elusive.
Further studies are needed to elucidate the molecular mechanism of inhibition on weevil’s
life cycle and search for more potent compounds.
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Regardless of the detailed mechanism, the high efficacy of CPT in reducing survival
rate by 95.5% and 96.2% at 30 ◦C and 4 ◦C, respectively, with a simple application scheme
of mixing the compound powder with mung beans serves as a proof-of-concept in targeting
HIF-1 for weevil control. Quantitative and systematic examinations on the scheme and/or
schedule of applying these inhibitor compounds to the beans will further optimize their
efficacy. The HIF-1 can also trigger and coordinate multiple genes’ up-regulation in virus
infections and human cancer. Our study can be used as one model system for drug
development in HIF-1 related human diseases.

4. Materials and Methods
4.1. Insect Source and Feeding Method

Samples of C. maculatus were provided by the Institute of Food Crops, Hubei Academy
of Agricultural Sciences, China. All cowpea weevils were reared in a smart chamber
(HP1000GS-B, Shanghai Jingsheng Scientific Instruments Co., Ltd., Shanghai city, China).
Adult weevils were released into a weevil-free chamber containing sterilized and dried
mung beans to lay eggs on the beans. These inoculated beans were then placed in a glass
dish covered with a perforated plastic wrap at an incubation temperature of 30 ± 0.5 ◦C
and relative humidity of 70 ± 5% with photoperiod 12L:12D [38]. Weevils at different
stages of development were harvested from these beans for various tests as described
below. Active adults were selected to repeat the procedure to maintain a continuous colony.

According to the previous reports [38] and our trial runs, the three main stages in
the life cycle of a cowpea weevil were observed as the following: the egg stage from first
day (d) to 5th d, the larval stage from 6th d to 15th d, and the pupal stage from 16th d
to 21th d. Adults within 24 h of emergence were used to inoculate beans for 24 h for
well-formed eggs.

To obtain full eggs of cowpea weevil consistently, sub-phases of the egg stage were
carefully inspected under microscope. For this study, the weevils between first d and
second d, 10th d and 11th d, and 17th d and 18th d, were selected as the experimental
materials to represent egg, larval, and pupal stage, respectively, for subsequent tests
and analyses.

As a control to study the effect of low temperature on cowpea weevil’s development,
the entire developmental cycle of cowpea weevil was first investigated at 30 ◦C and relative
humidity of 70 ± 5%.

4.2. Observation of Egg Morphology

Since the whole larval stage of the cowpea weevil happens inside the bean seed, the
transition from the egg stage to the larval stage was studied. The single-grain eggs (egged
mung beans) produced in the first 24 h by emerging adult female weevils were incubated
in a 30 ◦C climate chamber, and the morphology of the eggs was observed and recorded by
a stereomicroscope every 12 h. When a hatched larva completely entered the bean, it was
considered that the larva successfully completed the egg stage.

4.3. The Effect of Low Temperature on the Survival of Cowpea Weevils at Different Stages
of Development

96 egg-attached mung beans of the first day were treated in a 96-well plate at three
different temperatures (−20 ◦C, 4 ◦C, and 15 ◦C) for 9 different durations (0.5, 1, 2, 4, 8, 16,
32, 64, and 128 h). The group maintained at temperature 30 ◦C was used as the control.
Three biological replicates were performed for both the control and low temperature treated
groups. To define the end of the larval stage, a clear circular spot on the husk is visible
under the stereomicroscope [32]. The biting of a mature larva causes this thin circular hole
cover of about 2 mm in diameter before the onset of its pupation.

At the larval stage, 50 egg-attached mung beans were chosen that were between
10 d to 11 d after the eggs were laid. The color of eggshells at this stage became cream
white under microscope indicating normal development of larvae inside the bean. These
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larvae were similarly treated in a 96-well plate at three different temperatures for eight
different durations as in 4.3.1 followed by incubation afterwards at 30 ◦C until pupation.
The percentage of completed pupations under different treatments were recorded and
compared with that of the control group maintained constantly at 30 ◦C. Three biological
replicates were performed.

At the pupal stage, 50 egg-attached mung beans between the 17th d to 18th d were
selected for the low-temperature treatment. They were treated in a 96-well plate at three
different temperatures for eight different durations followed by incubation at 30 ◦C to
record the successful rate of adult weevils emerged from the beans and compare the rate
with that of control group at constant 30 ◦C. Three biological replicates were used.

4.4. Extraction of Total RNA under Different Temperature and Oxygen Treatments

First, the mung beans with eggs were incubated at 30 ◦C for 14 days. The 14th day
eggs correspond to the 4th period of larval stage [41]. We divided mung beans with eggs
into two parts. Then, the mung beans with larvae were subjected to different temperature
and oxygen treatments.

For the temperature treatments, the mung beans with larvae were further exposed to
4 ◦C, 15 ◦C, 30 ◦C (as control since no temperature change), and 37 ◦C for 24 h before RNA
extraction. Rec here denotes a procedure where the 24 h exposure to 4 ◦C was followed
by another 24 h recovery under 30 ◦C before RNA extraction. For different reoxygenation
treatments, live larvae in the beans were carefully taken out and exposed to normal oxygen
condition for 1 h, 2 h, 4 h, and 8 h before RNA extraction. Control here denotes the
procedure where RNA extraction was immediately performed when live larvae were taken
out from the beans.

As for total RNA extraction, the larvae in the beans were carefully removed with
tweezers and frozen with liquid nitrogen either immediately or after a specified duration
of exposure to the ambient air. The total RNA was extracted following the instructions of
the Trizol-based method (Invitrogen, USA). The purity and concentration of the total RNA
were estimated with Qubit 2.0 Fluorometer (Life Technologies).

4.5. Design and Synthesis of Primers and Gene Sequencing

HIF-1α is respond to trigger and coordinate multiple gene regulation under low
oxygen or low temperature signals. To identify the target gene HIF-1α, the PCR ampli-
fication and sequencing were carried out as the following steps. After total RNA was
treated with DNase I (Promega, Madison, USA), cDNA was synthesized by reverse tran-
scription according to the instructions of PrimeScriptTM 1st Strand cDNA Synthesis Kit
(Takara, Takara Biomedical Technology (Dalian) Co., Ltd., Dalian city, China) and stored
at −20 ◦C. Primers for the target gene HIF-1α were designed using the online software
OligoArchitectTM Online (http://www.oligoarchitect.com/, accessed on April 2020) that
resulted in forward primer 5′-GGCGATACAGATAACAACAA-3’(1α-F) and reverse primer
5′-TCTCCTTCTCCTTCACTTG-3′ (1α-R). The amplified fragment size was of 96 bps for
the target gene.

18S rRNA was used as an internal reference gene in RT-PCR [31]. The sequences of
the forward and reverse primers were 5′-ATCACGGTGCTCTTTACT-3′ (18S-F) and 5′-
CGAGATCCTATTCCATTATTCC-3′ (18S-R), respectively. The amplified product fragment
was of 124 bps by the two 18S rRNA primers. Both primer synthesis and gene sequencing
measurement were performed by Wuhan Qingke Innovation Biotechnology Co., Ltd.

4.6. Standard Curve, RT-qPCR, and Data Analysis

Expression analysis of the target gene HIF-1α in cowpea weevil was carried out by
semi-quantitative RT-PCR, using 18s rRNA as an internal control. HIF-1α gene was selected
to evaluate the transcript response to different temperatures and oxygen treatments.

Five concentration gradients of cDNA templates were prepared by diluting with
bi-distilling water at 1:2 (v/v). A standard curve was obtained using each concentration

http://www.oligoarchitect.com/
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gradient of cDNA as template. Three biological repeats were applied for each concentration
gradient of cDNA.

The RT-PCR reaction was performed using the ABI 7900 HT system (Applied Biosys-
tems). A total of 20 µL-reaction volume included 1 µL cDNA template, 1 µL forward and
reverse primers (2 µM), 10 µL 2 × SYBR Green Master Mix (Bio-Rad), and 8 µL sterilized
water. The amplification reaction conditions were as follows: pre-denaturation at 95 ◦C
for 5 min, denaturation at 95 ◦C for 10 s, annealing at 59 ◦C for 30 s, extension at 72 ◦C
for 20 s, 40 cycles in total, and dissolution curve at 54–95 ◦C for amplification products.
The amplified fragments were separated in 2% agarose by gel electrophoresis. The relative
expression of the target gene HIF-1α was calculated using the 2-∆∆Ct method [48]. The first
three stages of the cowpea weevil are too small. Here, we used the 4th instar larval stage to
extract and analyze the HIF-1 gene expression.

4.7. Monitoring Eclosion of Cowpea Weevils from Beans Treated with HIF-1 Inhibitors

Five different small-molecule compounds classified as HIF-1 inhibitors were ordered
from Solarbio Life Sciences. They are 2-methoxyoestradiol (2ME2), vincristine (VCR),
camptothecin (CPT), topotecan (TPT), and paclitaxel (PTX). For each compound, 800 mung
beans were mixed thoroughly with 100 mg of the compound in powder form for surface
coating. In total, 10 female and 10 male young adult weevils within 24 h of their hatching
were then introduced to inoculate these compound-treated beans. 288 beans with a single
egg laid on each bean were selected and placed in 96-well plates to be incubated at constant
30 ◦C for consecutive 45 days with daily recording on the number of adults with successful
hatching. The observation duration of 45 days was chosen to accommodate the possibility
of a severely delayed development cycle. Same procedure was repeated to study the effect
induced by hypothermia where the incubation temperature was lowered from 30 ◦C to
4 ◦C only for 24 h between the 15th and 16th day and back to 30 ◦C afterwards. Control
experiments, i.e., without compound treatment for beans, were also performed in parallel
with the same protocol outlined above.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pathogens10060704/s1, Table S1. Survival rate of cowpea weevils under different inhibitor
treatments; Table S2. Developmental duration of cowpea weevil under low-temperature treatment;
Figure S1. Morphological characteristics of three different subphases of egg development of cow-
pea weevil.
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