Detection of Anti-Nucleocapsid Antibody in COVID-19 Patients in Bangladesh Is not Correlated with Previous Dengue Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Patients
2.3. Specimen Sampling
2.4. Measurement of SARS-CoV-2 RNA
2.5. Serological Testing
2.6. Statistical Analysis
3. Results
3.1. Patient Groups and Clinical Data
3.2. SARS-CoV-2 RNA Levels
3.3. Temporal Profile of Anti-SARS-CoV-2 N-Protein Antibodies
3.4. Anti-SARS-CoV-2 N Protein and Anti-Dengue E Protein Antibodies in COVID-19 Patients and in Pre-Pandemic COVID-19 Dengue Patients
3.5. Correlations of Serum SARS-CoV-2 N-Protein IgG and IgA Levels to Dengue E Protein IgG Levels
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cucinotta, D.; Vanelli, M. WHO Declares COVID-19 a Pandemic. Acta Biomed. 2020, 91, 157–160. [Google Scholar]
- John Hopkins University of Medicine Coronavirus. Available online: https://coronavirus.jhu.edu/(accessed on 21 May 2021).
- Pierson, A.; Diamond, M.S. The continued threat of emerging flaviviruses. Nat. Microbiol. 2020, 5, 796–812. [Google Scholar] [CrossRef] [PubMed]
- Klein, S.; Cortese, M.; Winter, S.L.; Waschsmuth-Melm, M.; Neufeldt, C.J.; Cerikan, B.; Stanifer, M.L.; Boulant, S.; Bartenschlager, R.; Chlanda, P. SARS-CoV-2 structure and replication characterized by in situ cryo-electron tomography. Nat. Comm. 2020, 11, 5885–5895. [Google Scholar] [CrossRef]
- Manjili, R.H.; Zarei, M.; Habibi, M.; Manjili, M.H. COVID-19 as an Acute Inflammatory Disease. J. Immunol. 2020, 205, 12–19. [Google Scholar] [CrossRef]
- Islam, S.; Sobur, A.; Akter, M.; Nazmul Hussain Nazir, K.H.M.; Toniolo, A.; Rahman, T. Coronavirus Disease 2019 (COVID-19) pandemic, lessons to be learned! J. Adv. Vet. Anim. Res. 2020, 7, 260–280. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.J.; Tabassuma, T.; Sharif, M.; Khana, M.A.S.; Bipashaa, A.R.; Basherc, A.; Islam, M.R.; Amin, M.R.; Gozal, D. Clinico-epidemiologic characteristics of the 2019 dengue outbreak in Bangladesh. Trans. R. Soc. Trop. Med. Hyg. 2020. [Google Scholar] [CrossRef]
- Henrina, J.; Putra, I.W.C.; Lawrensia, S.; Handoyono, Q.F.; Cahyadi, A. Coronavirus Disease of 2019: A Mimicker of Dengue Infection? Comp. Clin. Med. 2020, 2, 1109–1119. [Google Scholar] [CrossRef] [PubMed]
- Teotônio, I.M.S.N.; de Carvalho, J.L.; Castro, L.C.; Nitz, N.; Hagström, L.; Rios, G.G.; de Oliveira, M.d.R.; Dallago, B.S.L.; Hecht, M. Clinical and biochemical parameters of COVID-19 patients with prior or active dengue fever. Acta Trop. 2021, 214, 105782. [Google Scholar] [CrossRef]
- Hsan, K.; Hossain, M.M.; Sarwar, M.S.; Wilder-Smith, A.; Gozal, D. Unprecedented rise in dengue outbreaks in Bangladesh. Lancet 2020, 19, 1287. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.; Bodrud-Doza, M.d.; Shammi, M.; Islam, A.R.; Abu Moniruzzaman Khan, S. COVID-19 pandemic, dengue epidemic, and climate change vulnerability in Bangladesh: Scenario assessment for strategic management and policy implications. Environ. Res. 2021, 192, 110303. [Google Scholar] [CrossRef] [PubMed]
- Nacher, M.; Douine, I.M.; Gaillet, M.; Flamand, C.; Rousset, D.; Rousseau, C.; Mahdaoui, C.; Carrol, S.; Valdes, A.; Passard, N.; et al. Simultaneous dengue and COVID-19 epidemics: Difficult days ahead? PLoS Negl. Trop. Dis. 2020. [Google Scholar] [CrossRef]
- Hossain, M.S.; Siddiqee, M.H.; Siddiqi, U.R.; Raheem, E.; Akter, R.; Hu, W. Dengue in a crowded megacity: Lessons learnt from 2019 outbreak in Dhaka, Bangladesh. PLoS Neg. Trop. Dis. 2020, 14, e0008349. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, P.B.; Hossain, S.; Biswas, R.K. A combination of COVID-19 and dengue fever in Bangladesh: Preparedness of Bangladesh. J. Glob. Health 2020. [Google Scholar] [CrossRef] [PubMed]
- Rahman, T.; Sobur, A.; Islam, S.; Toniolo, A.; Nazmul Hussain Nazir, K.H.M. Is the COVID-19 pandemic masking dengue epidemic in Bangladesh? J. Adv. Vet. Anim. Res. 2020, 7, 218–219. [Google Scholar] [CrossRef] [PubMed]
- Saddique, A.; Faryal, A.; Massab, U.; Bokhari, H.; Israr, A.; Safiulla, A. Emergence of co-infection of COVID-19 and dengue: A serious public health threat. J. Infect. 2021, 81, e16–e18. [Google Scholar] [CrossRef]
- Hilmy, A.I.; Dey, R.K.; Imad, H.A.; Yoosuf, A.A.; Nazeem, A.; Latheef, A.A. Coronavirus disease 2019 and dengue: Two case reports. J. Med. Case Rep. 2021, 15, 171–177. [Google Scholar] [CrossRef]
- Faccini-Martíneza, A.A.; Riveroa, R.; Garaya, E.; Garcíaa, A.; Mattara, S.; Boteroa, Y.; Galeanoa, K.; Mirandaa, J.; Martíneza, C.; Guzmán, C.; et al. Serological cross-reactivity using a SARS-CoV-2 ELISA test in acute Zika virus infection, Colombia. Int. J. Infect. Dis. 2020, 101, 191–193. [Google Scholar] [CrossRef]
- Yaniv, L.; Keler, S.; Kolodny, R.; Ben-Tal, N.; Atias-Varon, D.; Shlush, E.; Gerlic, M.; Munitz, A.; Doolman, R.; Asraf, K.; et al. Potential antigenic cross-reactivity between SARS-CoV-2 and Dengue viruses. Clin. Infect. Dis. 2020, 10. [Google Scholar] [CrossRef]
- Nath, H.; Mallick, A.; Roy, S.; Sukla, S.; Biswas, S. Computational modelling supports that dengue virus envelope antibodies can bind to SARS-CoV-2 receptor binding sites: Is pre-exposure to dengue virus protective against Covid-19 severity? Comp. Struct. Biotech. J. 2021, 19, 459–466. [Google Scholar] [CrossRef]
- Masyenia, S.; Santosoc, M.S.; Widyaningsiha, P.D.; Asmaraa, W.D.G.; Nainud, F.; Harapane, H.; Sasmonoc, T.R. Serological cross-reaction and coinfection of dengue and COVID-19 in Asia: Experience from Indonesia. Int. J. Infect. Dis. 2021, 102, 152–154. [Google Scholar] [CrossRef]
- Yang, M.; He, S.; Chen, X.; Huang, Z.; Zhou, Z.; Zhou, Z.; Chen, Q.; Chen, S.; Kang, S. Structural Insight Into the SARS-CoV-2 Nucleocapsid Protein C-Terminal Domain Reveals a Novel Recognition Mechanism for Viral Transcriptional Regulatory Sequences. Front. Chem. 2021. [Google Scholar] [CrossRef]
- Byrnes, J.R.; Zhou, X.X.; Lui, I.; Elledge, S.K.; Glasgow, J.E.; Lim, S.A.; Loudermilk, R.P.; Chiu, C.Y.; Wang, T.T.; Wilson, M.R.; et al. Competitive SARS-CoV-2 Serology Reveals Most Antibodies Targeting the Spike Receptor-Binding Domain Compete for ACE2 Binding. mSphere 2020, 5, e00802-20. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Zhou, Y.; Wu, H.; Kou, Z.; Liu, S.; Jiang, S. Mapping of antigenic sites on the nucleocapsid protein of the severe acute respiratory syndrome coronavirus. J. Clin. Microbiol. 2020, 42, 5309–5314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tozetto-Mendoza, T.R.; Kanunfre, K.A.; Vilas-Boas, L.S.; Espinoza, E.P.S.; Paião, H.G.O.; Rocha, M.C.; de Paula, A.V.; de Oliveira, M.S.; Zampelli, D.B.; Vieira, J.M., Jr.; et al. Nucleoprotein-based ELISA for detection of SARS-COV-2 IgG antibodies: Could an old assay be suitable for serodiagnosis of the new coronavirus? J. Virol. Meth. 2021, 290, 114064. [Google Scholar] [CrossRef] [PubMed]
- Spinicci, M.; Bartoloni, A.; Mantella, A.; Zammarchi, L.; Rossolini, G.M.; Antonelli, A. Low risk of serological cross-reactivity between dengue and COVID-19. Mem. Inst. Oswaldo Cruz 2020, 115, e200225. [Google Scholar] [CrossRef] [PubMed]
- Laua, C.S.; Ohb, H.M.L.; Hooa, S.P.; Lianga, Y.L.; Phuaa, S.K.; Awa, T.C. Performance of an automated chemiluminescence SARS-CoV-2 IG-G assay. Clin. Chim. Acta. 2020, 510, 760–766. [Google Scholar] [CrossRef] [PubMed]
- Poland, G.A.; Ovsyannikova, I.G.; Kennedy, R.B. SARS-CoV-2 immunity: Review and applications to phase 3 vaccine candidates. Lancet 2020, 396, 1595–1606. [Google Scholar] [CrossRef]
- Dey, M.M.; Bose, M.L.; Alam, M.F. Recommendation Domains for Pond Aquaculture: Country Case Study: Development and Status of Freshwater Aquaculture in Bangladesh. World Fish Center 2008. Available online: www.worldfishcenter.org (accessed on 21 May 2021).
- Islam, M.K.; Ali, M.S.; Akanda, S.Z.R.; Rahman S Kamruzzaman, A.H.M.; Sharif, A.; Pavel, K.; Baki, J. COVID-19 Pandemic and Level of Responses in Bangladesh. Int. J. Rare Dis. Disord. 2020, 3, 1–7. [Google Scholar]
- Sarkar, S.K.; Mohiuddin-Ekram, K.; Chandra Das, P. Spatial modeling of COVID-19 transmission in Bangladesh. Spat. Inf. Res. 2020. [Google Scholar] [CrossRef]
- Rahaman Khan, H.; Howlander, T.; Islam, M. Battling the COVID-19 Pandemic: Is Bangladesh Prepared? medRxiv 2020. [Google Scholar] [CrossRef]
- Haddad, N.S.; Nguyen, D.C.; Kuruvilla, M.E.; Morrison-Porter, A.; Anam, F.; Cashman, K.S.; Ramonell, R.P.; Kyu, S.; Saini, A.S.; Cabrera-Mora, M.; et al. Elevated SARS-CoV-2 antibodies distinguish severe disease in early covid-19 infection. bioRxiv 2020. [Google Scholar] [CrossRef]
- Ren, L.; Zhang, L.; Chang, D.; Wang, J.; Hu, Y.; Chen, H.; Guo, H.; Wu, C.; Wang, C.; Wang, Y.; et al. The kinetics of humoral response and its relationship with the disease severity in COVID-19. Comm. Biol. Nat. 2020, 3, 780–786. [Google Scholar] [CrossRef]
- Huang, A.T.; Garcia-Carreras, B.; Hitchings, M.T.D.; Yang, B.; Katzelnick, L.C.; Rattigan, S.M.; Borgert, B.A.; Moreno, C.A.; Solomon, B.D.; Trimmer-Smith, L.; et al. A systematic review of antibody mediated immunity to coronaviruses: Kinetics, correlates of protection, and association with severity. Nat. Comm. 2020, 11, 4704–4720. [Google Scholar] [CrossRef] [PubMed]
- Lynch, K.L.; Whitman, J.D.; Lacanienta, N.P.; Beckerdite, E.W.; Kastner, S.A.; Shy, B.R.; Goldgof, G.M.; Levine, A.G.; Bapat, S.P.; Stramer, S.L.; et al. Magnitude and kinetics of anti-SARS-CoV-2 antibody responses and their relationship to disease severity. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Marien, J.; Ceulemans, A.; Michiels, J.; Heyndrickx, L.; Kerkhof, K.; Foque, N.; Widdowson, M.-A.; Mortgat, L.; Duysburgh, E.; Desombere, I.; et al. Evaluating SARS-CoV-2 spike and nucleocapsid proteins as targets for antibody detection in severe and mild COVID-19 cases using a Luminex bead-based assay. J. Virol. Meth. 2021, 228, 114025. [Google Scholar] [CrossRef] [PubMed]
- Dogan, M.; Kozhaya, L.; Placek, L.; Gunter, C.L.; Yigit, M.; Hardy, R.; Plassmeyer, M.; Coatney, P.; Lillard, K.; Bukhari, Z.; et al. Novel SARS-CoV-2 specific antibody and neutralization assays reveal 2 wide range of humoral immune response during COVID-19. medRxiv 2020. [Google Scholar] [CrossRef]
- Seow, J.; Graham, C.; Merrick, B.; Acors, S.; Pickering, S.; Steel, K.A.J.; Hemmings, O.; O’Byrne, A.; Kouphou, N.; Galao, R.P.; et al. Longitudinal observation and decline of neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans. Nat. Micriobiol. 2020, 5, 1598–1607. [Google Scholar] [CrossRef]
- Ju, B.; Zhang, Q.; Ge, J.; Wang, R.; Sun, J.; Ge, X.; Yu, J.; Shan, S.; Zhou, B.; Song, S.; et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature 2020, 584, 115–118. [Google Scholar] [CrossRef]
- Zost, S.J.; Gilchuk, P.; Case, J.B.; Binshtein, E.; Chen, R.E.; Nkolola, J.P.; Schäfer, A.; Reidy, J.X.; Trivette, A.; Nargi, R.S.; et al. Potentially neutralizing and protective human antibodies against SARS-CoV-2. Nature 2020, 584, 443–449. [Google Scholar] [CrossRef]
- Kubota, K.; Kitagawa, Y.; Matsuoka, M. Clinical evaluation of the antibody response in patients with COVID-19 using automated high-throughput immunoassays. Diagn. Microbiol. Infect. Dis. 2021, 100, 115370. [Google Scholar] [CrossRef] [PubMed]
- Klasse, P.J.; Nixon, D.F.; Moore, J.P. Immunogenicity of clinically relevant SARS-CoV-2 vaccines in nonhuman primates and humans. Sci. Adv. 2021, 7, eabe8065. [Google Scholar] [CrossRef]
- Ramasamy, M.N.; Minassian, A.M.; Ewer, K.J. Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): A single-blind, randomised, controlled, phase 2/3 trial. Lancet 2020, 396, 1979–1993. [Google Scholar] [CrossRef]
- Tehrani, Z.R.; Saadat, S.; Saleh, E.; Ouyang, X.; Constantine, N.; DeVico, A.L.; Harris, A.D.; Lewis, G.K.; Kottilil, S.; Sajadi, M.M.; et al. Performance of nucleocapsid and spike-based SARS-CoV-2 serologic assays. PLoS ONE 2020, 15, e0237828. [Google Scholar]
- Schnurraa, C.; Reinersa, N.; Biemannc, R.; Kaiserc, T.; Trawinskib, H.; Jassoy, C. Comparison of the diagnostic sensitivity of SARS-CoV-2 nucleoprotein and glycoprotein-based antibody tests. J. Clin. Virol. 2020, 129, 10544. [Google Scholar] [CrossRef] [PubMed]
- Yassine, H.M.; Al-Jighefee, H.; Al-Sadeq, D.W.; Dargham, S.R.; Younes, S.N.; Shurrab, F.; Marei, R.M.; Hssain, A.A.; Taleb, S.; Alhussain, H.; et al. Performance evaluation of five ELISA kits for detecting anti-SARS-COV-2 IgG antibodies. Int. J. Infect. Dis. 2021, 102, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Al-Jighefee, H.T.; Yassine, H.M.; Al-Nesf, M.A.; Hssain, A.A.; Taleb, S.; Mohamed, A.S.; Maatoug, H.; Mohamedali, M.; Nasrallah, G.K. Evaluation of antibody response in symptomatic and asymptomatic COVID-19 patients and diagnostic assessment of new IgM/IgG ELISA kits. Pathogens 2021, 10, 161. [Google Scholar] [CrossRef] [PubMed]
- Nilssona, A.C.; Holma, D.K.; Justesen, U.S.; Gorm-Jensen, T.; Andersen, N.S.; Øvrehus, A.; Johansen, I.S.; Michelsen, J.; Sprogøe, U.; Lillevang, S.T. Comparison of six commercially available SARS-CoV-2 antibody assays-Choice of assay depends on intended use. Int. J. Infect. Dis. 2021, 103, 381–388. [Google Scholar] [CrossRef]
- Tré-Hardy, M.; Wilmet, A.; Beukinga, I.; Favresse, J.; Dogné, J.M.; Douxfils, J.; Blairon, L. Analytical clinical validation of an ELISA for specific SARS-CoV-2 IgG, IgA, and IgM antibodies. J. Med. Virol. 2020, 10, 1002. [Google Scholar] [CrossRef] [PubMed]
- Infantino, M.; Manfredi, M.; Gross, V.; Lari, B.; Fabbri, S.; Benucci, M.; Fortini, A.; Damiani, A.; Mobilia, E.M.; Panciroli, M.; et al. Closing the serological gap in the diagnostic testing for COVID-19: The value of anti-SARS-CoV-2 IgA antibodies. J. Med. Virol. 2021, 93, 1436–1442. [Google Scholar] [CrossRef]
- Stout, R.L.; Rigatti, S.J. Seroprevalence of SARS-CoV-2 Antibodies in the US Adult Asymptomatic Population as of September 30, 2020. JAMA Netw. Open 2021, 4, e211552. [Google Scholar] [CrossRef]
- Long, Q.X.; Liu, B.Z.; Deng, H.J.; Wu, G.C.; Deng, K.; Chen, Y.K.; Liao, P.; Qiu, J.F.; Lin, Y.; Cai, X.F.; et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat. Med. 2020, 26, 845–848. [Google Scholar] [CrossRef]
- Li, K.; Huang, B.; Wu, M.; Zhong, A.; Li, L.; Cai, Y.; Wang, Z.; Wu, L.; Zhu, L.; Li, J.; et al. Dynamic changes in anti-SARS-CoV-2 antibodies during SARS-CoV-2 infection and recovery from COVID-19. Nat. Comm. 2020, 11, 6044–6055. [Google Scholar] [CrossRef]
- Fenwick, A.; Croxatto, A.; Coste, A.T.; Pojer, F. Changes in sars-cov-2 spike versus nucleoprotein antibody responses impact the estimates of infections in population based seroprevalence studies. J. Virol. 2021, 95, e01828-20. [Google Scholar] [PubMed]
- Shirin, T.; Bhuiyan, T.R.; Charles, R.C.; Amin, S.; Bhuiyan, I.; Kawser, Z.; Rahat, A.; Alam, A.N.; Sultana, S.; Aleem, M.A.; et al. Antibody responses after COVID-19 infection in patients who are mildly symptomatic or asymptomatic in Bangladesh. Int. J. Infect. Dis. 2020, 101, 220–225. [Google Scholar] [CrossRef]
- Rahman, M.; Kader, S.B.; Shahriar Rizvi, S.S. Molecular characterization of SARS-CoV-2 from Bangladesh: Implications in genetic diversity, possible origin of the virus, and functional significance of the mutations. bioRxiv 2020. [Google Scholar] [CrossRef]
- Akter, S.; Banu, T.; Goswami, B.; Osman, E.; Uzzaman, M.S.; Habib, M.A.; Jahan, I.; Mahmud, A.; Sarker, M.; Hossain, M.S.; et al. Coding-Complete Genome Sequences of Three SARS-CoV-2 Strains from Bangladesh. Microbiol. Res. Ann. 2020, 9, e00764-20. [Google Scholar]
- Anwar, S.; Nasrullah, M.; Hosen, M.J. COVID-19 and Bangladesh: Challenges and How to Address Them. Front. Public Health 2020, 8, 154. [Google Scholar] [CrossRef] [PubMed]
- Islam, D.U.I.; Bodrud-Doza, M.; Khan, R.; Haque, M.A.; Mamun, M.A.; Khan, R.M.; Haque, A.; Mamun, M.A. Exploring COVID-19 stress and its factors in Bangladesh: A perception-based study. Heliyon 2020, 6, e04399. [Google Scholar] [CrossRef]
Characteristics | SARS-CoV-2 rtpcr POS Group 1 | SARS-CoV-2 rtpcr NEG Group 2 | Dengue 2019 Group 3 | Bangladeshi Controls Group 4 | p-Value (1) | p-Value (2) |
---|---|---|---|---|---|---|
Number of cases enrolled | N = 48 | N = 67 | N = 30 | N = 9 | ||
Age Median (Range) years | 33 (10–72) | 48 (4–72) | 32 (16–70) | 29 (22–50) | 0.001 | 0.78 |
Gender M/F | 35/13 | 41/26 | 23/7 | 8/1 | 0.197 | 0.46 |
COVID-19 | ||||||
Severe n (%) | 6 (12.5) | 0 (0) | NA | NA | 0.003 | NA |
Mild or Moderate n (%) | 42 (87.5) | 67 (100) | NA | NA | 0.003 | NA |
Hospitalized n (%) | 6 (12.5) | NA | NA | NA | NA | NA |
Oxygen support n (%) | 6 (12.5) | NA | NA | NA | NA | NA |
Days fever mean (95% CI) | 4.7 (4–5.3) | NA | NA | NA | NA | NA |
Days after onset COVID-19 symptoms median (range) | 2 (1–7) | 2 (1–8) | NA | NA | 0.9 | NA |
COVID-19 symptoms n (%) | ||||||
No symptoms | 8 (17) | 5 (7) | NA | NA | 0.09 | NA |
Difficulty breathing | 5 (10) | 0 (0) | NA | NA | 0.008 | NA |
Fever | 31 (65) | 52 (78) | NA | NA | 0.13 | NA |
Cough | 33 (69) | 23 (34) | NA | NA | 0.0002 | NA |
Malaise | 5 (10) | 4 (6) | NA | NA | 0.43 | NA |
Muscle or body pain or headache | 6 (13) | 19 (28) | NA | NA | 0.06 | NA |
Loss of smell and/ or taste | 10 (21) | 9 (13) | NA | NA | 0.25 | NA |
Acute watery diarrhea | 1 (2) | 5 (7) | NA | NA | 0.22 | NA |
Dengue status | ||||||
Primary infection % | NA | NA | 0 | NA | NA | NA |
Secondary infection % | NA | NA | 100 | NA | NA | NA |
Platelet count × 103/µL Mean (95% CI) | NA | NA | 50 (40–61) | NA | NA | NA |
Days 1st Dengue fever Mean (95% CI) | NA | NA | 4.2 (3–5) | NA | NA | NA |
Dengue symptoms n (%) | ||||||
Fever | NA | NA | 30 (100) | NA | NA | NA |
Muscle or body pain or headache | NA | NA | 15 (50) | NA | NA | NA |
Dengue warning signs n (%) | ||||||
Plasma leakage | NA | NA | 2 (7) | NA | NA | NA |
Ascites | NA | NA | 4 (13) | NA | NA | NA |
Gum bleeding | NA | NA | 6 (20) | NA | NA | NA |
Nasal bleeding | NA | NA | 3 (10) | NA | NA | NA |
Nausea vomiting | NA | NA | 5 (17) | NA | NA | NA |
Antibody Positivity | SARS-CoV-2 rtpcr POS Cohort 1 N = 48 | SARS-CoV-2 rtpcr NEG Cohort 2 N = 67 | Dengue 2019 Cohort 3 N = 30 | Controls Cohort 4 | p-Value (1) | p-Value (2) |
---|---|---|---|---|---|---|
SARS-CoV-2 NP IgA n (%) | 27/96 (28) | 0/30 (0) | 9 (0) | <0.0001 | ||
1–8 days | 5/29 (18) | 22/67 (33) | NA | NA | NA | NA |
15–28 days | 5/16 (31) | NA | NA | NA | NA | NA |
42–62 days | 1/3 (33) | NA | NA | NA | NA | NA |
65–177 days | 0/19 (0) | |||||
SARS-CoV-2 NP IgG n (%) | 35/95 (37) | 30 (0) | 9 (0) | <0.0001 | ||
1–8 days | 8/28 (29) | 27/67 (40) | NA | NA | NA | NA |
15–28 days | 6/16 (37) | NA | NA | NA | NA | NA |
42–62 days | 3/3 (100) | NA | NA | NA | NA | NA |
65–177 days | 7/19 (37) | |||||
DENV IgM positive n, % | 3/36 (8) | 2/67 (3) | 13/30 (43) | 0 (0) | 0.25 | 0.67 |
DENV IgG positive n, % | 33/36 (92) | 54/67 (81) | 30/30 (100) | 4 (44) | 0.8 | 0.11 |
IgM/IgG ratio mean (95% CI) | 0.32 (0.23–0.42) | 0.34 (0.24–0.45) | 0.6 (0.3–0.9) | 0.82 * | ||
NS1 mean (95% CI) | 2 (1.8–2.3) | 68 (28–108) | NA | <0.0001 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lytton, S.D.; Yeasmin, M.; Ghosh, A.K.; Bulbul, M.R.H.; Molla, M.M.A.; Herr, M.; Duchmann, H.; Sharif, M.M.; Nafisa, T.; Amin, M.R.; et al. Detection of Anti-Nucleocapsid Antibody in COVID-19 Patients in Bangladesh Is not Correlated with Previous Dengue Infection. Pathogens 2021, 10, 637. https://doi.org/10.3390/pathogens10060637
Lytton SD, Yeasmin M, Ghosh AK, Bulbul MRH, Molla MMA, Herr M, Duchmann H, Sharif MM, Nafisa T, Amin MR, et al. Detection of Anti-Nucleocapsid Antibody in COVID-19 Patients in Bangladesh Is not Correlated with Previous Dengue Infection. Pathogens. 2021; 10(6):637. https://doi.org/10.3390/pathogens10060637
Chicago/Turabian StyleLytton, Simon D., Mahmuda Yeasmin, Asish Kumar Ghosh, Md. Rakibul Hassan Bulbul, Md. Maruf Ahmed Molla, Martha Herr, Helmut Duchmann, Md. Mohiuddin Sharif, Tasnim Nafisa, Md. Robed Amin, and et al. 2021. "Detection of Anti-Nucleocapsid Antibody in COVID-19 Patients in Bangladesh Is not Correlated with Previous Dengue Infection" Pathogens 10, no. 6: 637. https://doi.org/10.3390/pathogens10060637