Tick-Borne Pathogens in Ticks Collected from Wild Ungulates in North-Eastern Poland
Abstract
:1. Introduction
2. Results
2.1. Tick Collection
2.2. Prevalence and Diversity of Pathogens
2.2.1. Borrelia spp.
2.2.2. Anaplasma phagocytophilum
2.2.3. Rickettsia spp.
2.2.4. Borrelia spp., Anaplasma phagocytophilum and Rickettsia spp. Co-Infections
2.3. Comparison of Infection in Ticks from Different Hosts
3. Discussion
4. Materials and Methods
4.1. Study Area, Tick Collection and Species Identification
4.2. DNA Extraction
4.3. Pathogens DNA Detection
4.3.1. Borrelia Species
4.3.2. Anaplasma phagocytophilum
4.3.3. Rickettsia Species
4.3.4. PCRs
4.4. DNA Sequencing and Data Analysis
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Viana, M.; Mancy, R.; Biek, R.; Cleaveland, S.; Cross, P.C.; Lloyd-Smith, J.O.; Haydon, D.T. Assembling evidence for identifying reservoirs of infection. Trends Ecol. Evol. 2014, 29, 270–279. [Google Scholar] [CrossRef] [Green Version]
- Chastagner, A.; Pion, A.; Verheyden, H.; Lourtet, B.; Cargnelutti, B.; Picot, D.; Poux, V.; Bard, É.; Plantard, O.; McCoy, K.D.; et al. Host specificity, pathogen exposure, and superinfections impact the distribution of Anaplasma phagocytophilum genotypes in ticks, roe deer, and livestock in a fragmented agricultural landscape. Infect. Genet. Evol. 2017, 55, 31–44. [Google Scholar] [CrossRef]
- Hofmeester, T.R.; Sprong, H.; Jansen, P.A.; Prins, H.H.T.; Van Wieren, S.E. Deer presence rather than abundance determines the population density of the sheep tick, Ixodes ricinus, in Dutch forests. Parasites Vectors 2017, 10, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Jaenson, T.G.T.; Petersson, E.H.; Jaenson, D.G.E.; Kindberg, J.; Pettersson, J.H.O.; Hjertqvist, M.; Medlock, J.M.; Bengtsson, H. The importance of wildlife in the ecology and epidemiology of the TBE virus in Sweden: Incidence of human TBE correlates with abundance of deer and hares. Parasites Vectors 2018, 11, 1–18. [Google Scholar] [CrossRef]
- Tavernier, P.; Sys, S.U.; De Clercq, K.; De Leeuw, I.; Caij, A.B.; De Baere, M.; De Regge, N.; Fretin, D.; Roupie, V.; Govaerts, M.; et al. Serologic screening for 13 infectious agents in roe deer (Capreolus capreolus) in Flanders. Infect. Ecol. Epidemiol. 2015, 5, 29862. [Google Scholar] [CrossRef]
- Seo, M.G.; Kwon, O.D.; Kwak, D. Molecular identification of Borrelia afzelii from ticks parasitizing domestic and wild animals in South Korea. Microorganisms 2020, 8, 649. [Google Scholar] [CrossRef]
- Kim, B.J.; Kim, H.; Won, S.; Kim, H.C.; Chong, S.T.; Klein, T.A.; Kim, K.G.; Seo, H.Y.; Chae, J.S. Ticks collected from wild and domestic animals and natural habitats in the Republic of Korea. Korean J. Parasitol. 2014, 52, 281–285. [Google Scholar] [CrossRef]
- Skotarczak, B. The role of companion animals in the environmental circulation of tick-borne bacterial pathogens. Ann. Agric. Environ. Med. 2018, 25, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Buczek, W.; Koman-Iżko, A.; Buczek, A.M.; Buczek, A.; Bartosik, K.; Kulina, D.; Ciura, D. Spotted fever group rickettsiae transmitted bydermacentor ticks and determinants of their spread in europe. Ann. Agric. Environ. Med. 2020, 27, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Kubiak, K.; Szczotko, M.; Dmitryjuk, M. Borrelia miyamotoi—An emerging human tick-borne pathogen in europe. Microorganisms 2021, 9, 154. [Google Scholar] [CrossRef]
- Kubiak, K.; Dziekońska-Rynko, J.; Szymańska, H.; Kubiak, D.; Dmitryjuk, M.; Dzika, E. Questing Ixodes ricinus ticks (Acari, Ixodidae) as a vector of Borrelia burgdorferi sensu lato and Borrelia miyamotoi in an urban area of north-eastern Poland. Exp. Appl. Acarol. 2019, 78, 113–126. [Google Scholar] [CrossRef] [Green Version]
- Rizzoli, A.; Hauffe, H.C.; Carpi, G.; Vourc’h, G.I.; Neteler, M.; Rosà, R. Lyme borreliosis in Europe. Eurosurveillance 2011, 16, 1–8. [Google Scholar] [CrossRef]
- Dzięgiel, B.; Adaszek, Ł.; Winiarczyk, S. Wild animals as reservoirs of Anaplasma phagocytophilum for humans. Przegl. Epidemiol. 2016, 70, 428–435. [Google Scholar]
- Teodorowski, O.; Radzki, R.; Kalinowski, M.; Winiarczyk, S.; Bocanegra, I.G.; Winiarczyk, D.; Adaszek, L. Moleculardetection of Anaplasma phagocytophilum in roe deer (Capreolus capreolus) in eastern Poland. Ann. Agric. Environ. Med. 2020, 27, 702–705. [Google Scholar] [CrossRef]
- Skotarczak, B.; Adamska, M.; Sawczuk, M.; Maciejewska, A.; Wodecka, B.; Rymaszewska, A. Coexistence of tick-borne pathogens in game animals and ticks in western Poland. Vet. Med. 2008, 53, 668–675. [Google Scholar] [CrossRef] [Green Version]
- Overzier, E.; Pfister, K.; Herb, I.; Mahling, M.; Böck, G.; Silaghi, C. Detection of tick-borne pathogens in roe deer (Capreolus capreolus), in questing ticks (Ixodes ricinus), and in ticks infesting roe deer in southern Germany. Ticks Tick. Borne. Dis. 2013, 4, 320–328. [Google Scholar] [CrossRef]
- Kauffmann, M.; Rehbein, S.; Hamel, D.; Lutz, W.; Heddergott, M.; Pfister, K.; Silaghi, C. Anaplasma phagocytophilum and Babesia spp. in roe deer (Capreolus capreolus), fallow deer (Dama dama) and mouflon (Ovis musimon) in Germany. Mol. Cell. Probes 2017, 31, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Hornok, S.; Sugár, L.; Fernández de Mera, I.G.; de la Fuente, J.; Horváth, G.; Kovács, T.; Micsutka, A.; Gönczi, E.; Flaisz, B.; Takács, N.; et al. Tick- and fly-borne bacteria in ungulates: The prevalence of Anaplasma phagocytophilum, haemoplasmas and rickettsiae in water buffalo and deer species in Central Europe, Hungary. BMC Vet. Res. 2018, 14, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Kazimírová, M.; Hamšíková, Z.; Špitalská, E.; Minichová, L.; Mahríková, L.; Caban, R.; Sprong, H.; Fonville, M.; Schnittger, L.; Kocianová, E. Diverse tick-borne microorganisms identified in free-living ungulates in Slovakia. Parasites Vectors 2018, 11, 1–18. [Google Scholar] [CrossRef]
- Remesar, S.; Díaz, P.; Prieto, A.; García-Dios, D.; Fernández, G.; López, C.M.; Panadero, R.; Díez-Baños, P.; Morrondo, P. Prevalence and molecular characterization of Anaplasma phagocytophilum in roe deer (Capreolus capreolus) from Spain. Ticks Tick. Borne. Dis. 2020, 11, 101351. [Google Scholar] [CrossRef]
- Adamska, M. The role of different species of wild ungulates and Ixodes ricinus ticks in the circulation of genetic variants of Anaplasma phagocytophilum in a forest biotope in north-western Poland. Ticks Tick. Borne. Dis. 2020, 11. [Google Scholar] [CrossRef]
- Piotrowski, M.; Rymaszewska, A. Expansion of tick-borne rickettsioses in the world. Microorganisms 2020, 8, 1906. [Google Scholar] [CrossRef]
- Kowalec, M.; Szewczyk, T.; Welc-Falęciak, R.; Siński, E.; Karbowiak, G.; Bajer, A. Rickettsiales occurrence and co-occurrence in Ixodes ricinus ticks in natural and urban Areas. Microb. Ecol. 2019, 77, 890–904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Platonov, A.E.; Karan, L.S.; Kolyasnikova, N.M.; Makhneva, N.A.; Toporkova, M.G.; Maleev, V.V.; Fish, D.; Krause, P.J. Humans infected with relapsing fever spirochete Borrelia miyamotoi, Russia. Emerg. Infect. Dis. 2011, 17, 1816–1823. [Google Scholar] [CrossRef]
- Takano, A.; Toyomane, K.; Konnai, S.; Ohashi, K.; Nakao, M.; Ito, T.; Andoh, M.; Maeda, K.; Watarai, M.; Sato, K.; et al. Tick surveillance for relapsing fever spirochete Borrelia miyamotoi in Hokkaido, Japan. PLoS ONE 2014, 9, e104532. [Google Scholar] [CrossRef]
- Vor, T.; Kiffner, C.; Hagedorn, P.; Niedrig, M.; Rühe, F. Tick burden on European roe deer (Capreolus capreolus). Exp. Appl. Acarol. 2010, 51, 405–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zając, Z.; Woźniak, A.; Kulisz, J. Infestation of dairy cows by ticks Dermacentor reticulatus (Fabricius, 1794) and Ixodes ricinus (Linnaeus, 1758) in eastern Poland. Ann. Parasitol. 2020, 66, 87–96. [Google Scholar] [CrossRef]
- Földvári, G.; Široký, P.; Szekeres, S.; Majoros, G.; Sprong, H. Dermacentor reticulatus: A vector on the rise. Parasites Vectors 2016, 9, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Kubiak, K.; Sielawa, H.; Dziekońska-Rynko, J.; Kubiak, D.; Rydzewska, M.; Dzika, E. Dermacentor reticulatus ticks (Acari: Ixodidae) distribution in north-eastern Poland: An endemic area of tick-borne diseases. Exp. Appl. Acarol. 2018, 75, 289–298. [Google Scholar] [CrossRef] [Green Version]
- Pacilly, F.C.A.; Benning, M.E.; Jacobs, F.; Leidekker, J.; Sprong, H.; Van Wieren, S.E.; Takken, W. Blood feeding on large grazers affects the transmission of Borrelia burgdorferi sensu lato by Ixodes ricinus. Ticks Tick. Borne. Dis. 2014, 5, 810–817. [Google Scholar] [CrossRef] [PubMed]
- Piksa, K.; Stańczak, J.; Biernat, B.; Górz, A.; Nowak-Chmura, M.; Siuda, K. Detection of Borrelia burgdorferi sensu lato and spotted fever group rickettsiae in hard ticks (Acari, Ixodidae) parasitizing bats in Poland. Parasitol. Res. 2016, 115, 1727–1731. [Google Scholar] [CrossRef]
- Díaz, P.; Remesar, S.; Venzal, J.M.; Vázquez-López, M.E.; Fernández, G.; López, C.; Díez-Baños, P.; Morrondo, P.; Panadero, R. Occurrence of Borrelia and Borreliella species in Ixodes ricinus collected from roe deer in northwestern Spain. Med. Vet. Entomol. 2019, 33, 427–430. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, S.; Kobayashi, T.; Nakamura, A.; Yoshitomi, H.; Song, Y.; Ashizuka, Y. Detection of Borrelia DNA in tick species collected from vegetation and wild animals in Fukuoka, Japan. Jpn. J. Infect. Dis. 2020, 73, 61–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michalski, M.M.; Kubiak, K.; Szczotko, M.; Chajęcka, M.; Dmitryjuk, M. Molecular detection of Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum in ticks collected from dogs in urban areas of North-Eastern Poland. Pathogens 2020, 9, 455. [Google Scholar] [CrossRef] [PubMed]
- Wodecka, B.; Leońska, A.; Skotarczak, B. A comparative analysis of molecular markers for the detection and identification of Borrelia spirochaetes in Ixodes ricinus. J. Med. Microbiol. 2010, 59, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Kiewra, D.; Stańczak, J.; Richter, M. Ixodes ricinus ticks (Acari, Ixodidae) as a vector of Borrelia burgdorferi sensu lato and Borrelia miyamotoi in Lower Silesia, Poland—Preliminary study. Ticks Tick. Borne. Dis. 2014, 5, 892–897. [Google Scholar] [CrossRef] [PubMed]
- Kowalec, M.; Szewczyk, T.; Welc-Falȩciak, R.; Siński, E.; Karbowiak, G.; Bajer, A. Ticks and the city—Are there any differences between city parks and natural forests in terms of tick abundance and prevalence of spirochaetes? Parasites Vectors 2017, 10, 1–19. [Google Scholar] [CrossRef]
- Chrudimská, T.; Chrudimský, T.; Golovchenko, M.; Rudenko, N.; Grubhoffer, L. New defensins from hard and soft ticks: Similarities, differences, and phylogenetic analyses. Vet. Parasitol. 2010, 167, 298–303. [Google Scholar] [CrossRef]
- Michalik, J.; Stańczak, J.; Racewicz, M.; Cieniuch, S.; Sikora, B.; Szubert-Kruszyńska, A.; Grochowalska, R. Molecular evidence of Anaplasma phagocytophilum infection in wild cervids and feeding Ixodes ricinus ticks from west-central Poland. Clin. Microbiol. Infect. 2009, 15, 81–83. [Google Scholar] [CrossRef] [Green Version]
- Adamska, M.; Skotarczak, B. Wild game as a reservoir of Anaplasma phagocytophilum in north-western Poland. Wiadomości Parazytol. 2007, 53, 103–107. [Google Scholar]
- Levytska, V.A.; Mushinsky, A.B.; Zubrikova, D.; Blanarova, L.; Długosz, E.; Vichova, B.; Slivinska, K.A.; Gajewski, Z.; Gizinski, S.; Liu, S.; et al. Detection of pathogens in Ixodid ticks collected from animals and vegetation in five regions of Ukraine. Ticks Tick. Borne. Dis. 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Veronesi, F.; Galuppi, R.; Tampieri, M.P.; Bonoli, C.; Mammoli, R.; Fioretti, D.P. Prevalence of Anaplasma phagocytophilum in fallow deer (Dama dama) and feeding ticks from an Italy preserve. Res. Vet. Sci. 2011, 90, 40–43. [Google Scholar] [CrossRef] [PubMed]
- Di Domenico, M.; Pascucci, I.; Curini, V.; Cocco, A.; Dall’Acqua, F.; Pompilii, C.; Cammà, C. Detection of Anaplasma phagocytophilum genotypes that are potentially virulent for human in wild ruminants and Ixodes ricinus in Central Italy. Ticks Tick. Borne. Dis. 2016, 7, 782–787. [Google Scholar] [CrossRef] [Green Version]
- Grassi, L.; Franzo, G.; Martini, M.; Mondin, A.; Cassini, R.; Drigo, M.; Pasotto, D.; Vidorin, E.; Menandro, M.L. Ecotyping of Anaplasma Phagocytophilum from wild ungulates and ticks shows circulation of zoonotic strains in northeastern Italy. Animals 2021, 11, 310. [Google Scholar] [CrossRef] [PubMed]
- Chmielewski, T.; Podsiadly, E.; Karbowiak, G.; Tylewska-Wierzbanowska, S. Rickettsia spp. in ticks, Poland. Emerg. Infect. Dis. 2009, 15, 486–488. [Google Scholar] [CrossRef]
- Biernat, B.; Stańczak, J.; Michalik, J.; Sikora, B.; Wierzbicka, A. Prevalence of infection with Rickettsia helvetica in Ixodes ricinus ticks feeding on non-rickettsiemic rodent hosts in sylvatic habitats of west-central Poland. Ticks Tick. Borne. Dis. 2016, 7, 135–141. [Google Scholar] [CrossRef]
- Skotarczak, B.; Wodecka, B.; Rymaszewska, A.; Adamska, M. Molecular evidence for bacterial pathogens in Ixodes ricinus ticks infesting Shetland ponies. Exp. Appl. Acarol. 2016, 69, 179–189. [Google Scholar] [CrossRef] [Green Version]
- Wójcik-Fatla, A.; Cisak, E.; Zajac, V.; Sroka, J.; Sawczyn, A.; Dutkiewicz, J. Study on tick-borne rickettsiae in eastern Poland. I. prevalence in Dermacentor reticulatus (Acari: Amblyommidae). Ann. Agric. Environ. Med. 2013, 20, 276–279. [Google Scholar]
- Mierzejewska, E.J.; Pawełczyk, A.; Radkowski, M.; Welc-Falęciak, R.; Bajer, A. Pathogens vectored by the tick, Dermacentor reticulatus, in endemic regions and zones of expansion in Poland. Parasites Vectors 2015, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zając, V.; Wójcik-Fatla, A.; Sawczyn, A.; Cisak, E.; Sroka, J.; Kloc, A.; Zając, Z.; Buczek, A.; Dutkiewicz, J.; Bartosik, K. Prevalence of infections and co-infections with 6 pathogens in Dermacentor reticulatus ticks collected in eastern Poland. Ann. Agric. Environ. Med. 2017, 24, 26–32. [Google Scholar] [CrossRef]
- Stańczak, J.; Biernat, B.; Racewicz, M.; Zalewska, M.; Matyjasek, A. Prevalence of different Rickettsia spp. in Ixodes ricinus and Dermacentor reticulatus ticks (Acari: Ixodidae) in north-eastern Poland. Ticks Tick. Borne. Dis. 2018, 9, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Dwużnik, D.; Mierzejewska, E.J.; Drabik, P.; Kloch, A.; Alsarraf, M.; Behnke, J.M.; Bajer, A. The role of juvenile Dermacentor reticulatus ticks as vectors of microorganisms and the problem of ‘meal contamination’. Exp. Appl. Acarol. 2019, 78, 181–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zając, V.; Sroka, J.; Sawczyn-Domańska, A.; Kloc, A.; Wójcik-Fatla, A. Prevalence of spotted fever group rickettsiae in Poland. Environ. Med. 2019, 22, 13–19. [Google Scholar] [CrossRef]
- Stańczak, J. Detection of spotted fever group (SFG) rickettsiae in Dermacentor reticulatus (Acari: Ixodidae) in Poland. Int. J. Med. Microbiol. 2006, 296, 144–148. [Google Scholar] [CrossRef]
- Stańczak, J.; Racewicz, M.; Michalik, J.; Cieniuch, S.; Sikora, B.; Skoracki, M. Prevalence of infection with Rickettsia helvetica in feeding ticks and their hosts in western Poland. Clin. Microbiol. Infect. 2009, 15, 328–329. [Google Scholar] [CrossRef] [Green Version]
- Król, N.; Obiegala, A.; Pfeffer, M.; Lonc, E.; Kiewra, D. Detection of selected pathogens in ticks collected from cats and dogs in the Wrocław Agglomeration, South-West Poland. Parasites Vectors 2016, 9, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Dautel, H.; Dippel, C.; Oehme, R.; Hartelt, K.; Schettler, E. Evidence for an increased geographical distribution of Dermacentor reticulatus in Germany and detection of Rickettsia sp. RpA4. Int. J. Med. Microbiol. 2006, 296, 149–156. [Google Scholar] [CrossRef]
- Nowak-Chmura, M. Fauna kleszczy (Ixodida) Europy Środkowej; Wydawnictwo Naukowe Uniwersytetu Pedagogicznego: Kraków, Poland, 2013. [Google Scholar]
- Wodecka, B. flaB gene as a molecular marker for distinct identification of Borrelia species in environmental samples by the PCR-restriction fragment length polymorphism method. Appl. Environ. Microbiol. 2011, 77, 7088–7092. [Google Scholar] [CrossRef] [Green Version]
- Pancholi, P.; Kolbert, C.P.; Mitchell, P.D.; Reed, K.D.; Dumler, J.S.; Bakken, J.S.; Telford, S.R., III; Persing, D.H. Ixodes dammini as a potential vector of human granulocytic ehrlichiosis. J. Infect. Dis. 1995, 172, 1007–1012. [Google Scholar] [CrossRef]
- Roux, V.; Rydkina, E.; Eremeeva, M.; Raoult, D. Citrate synthase gene comparison, a new tool for phylogenetic analysis, and its application for the rickettsiae. Int. J. Syst. Bacteriol. 1997, 47, 252–261. [Google Scholar] [CrossRef] [Green Version]
- Hall, T.A. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NTe. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
Subregion | Hosts | Tick Species and Sex 1 | Borrelia spp. No. %, (95% CI) | Anaplasma spp. No. %, (95% CI) | Rickettsia spp. No. %, (95% CI) | |
---|---|---|---|---|---|---|
West | Cervids | I. ricinus | F | 1/63 1.6 (0.04–8.5) | 9/63 14.3 (6.7–25.4) | 12/63 19.0 (10.2–30.9) |
M | 0/11 0.0 (0.0–28.5) | 2/11 18.2 (2.3–51.7) | 5/11 45.5 (16.7–76.6) | |||
Subtotal | 1/74 1.4 (0.03–7.3) | 11/74 14.9 (7.6–25.0) | 17/74 23.0 (14.0–34.2) | |||
Central | Cervids | I. ricinus | F | 8/56 14.3 (6.4–26.2) | 17/56 30.4 (18.8–44.1) | 11/56 19.7 (10.2–32.4) |
D. reticulatus | F | 0/1 0.0 (0.0–97.5) | 0/1 0.0 (0.0–97.5) | 0/1 0.0 (0.0–97.5) | ||
Wild Boar | I. ricinus | F | 0/1 0.0 (0.0–97.5) | 0/1 0.0 (0.0–97.5) | 0/1 0.0 (0.0–97.5) | |
Subtotal | 8/58 13.8 (6.1–25.4) | 17/58 29.3 (18.1–42.7) | 11/58 19.0 (9.9–31.4) | |||
East | Cervids | I. ricinus | F | 4/80 5.0 (1.4–12.3) | 21/80 26.3 (17.0–37.3) | 24/80 30.0 (20.2–41.3) |
M | 0/10 0.0 (0.0–30.8) | 1/10 10.0 (0.25–44.5) | 2/10 20.0 (2.5–55.6) | |||
D. reticulatus | F | 0/45 0.0 (0.0–7.8) | 2/45 4.4 (0.5–15.1) | 9/45 20.0 (9.6–34.6) | ||
M | 3/173 1.7 (0.3–5.0) | 35/173 20.2 (14.5–27.0) | 56/173 32.4 (25.4–40.0) | |||
Wild Boar | I. ricinus | F | 0/15 0.0 (0.0–21.8) | 4/15 26.7 (7.8–55.1) | 3/15 20.0 (4.3–48.1) | |
M | 0/5 0.0 (0.0–52.2) | 2/5 40.0 (5.2–85.3) | 2/5 40.0 (5.2–85.3.0) | |||
N | 0/1 0.0 (0.0–97.5) | 0/1 10.0 (0.0–97.5) | 1/1 100.0 (2.5–100) | |||
D. reticulatus | F | 0/4 0.0 (0.0–60.2) | 0/4 0.0 (0.0–60.2) | 3/4 75.0 (19.4–99.3) | ||
M | 0/19 0.0 (0.0–17.6) | 0/19 0.0 (0.0–17.6) | 2/19 10.5 (1.3–33.1) | |||
Subtotal | 7/352 2.0 (0.8–4.0) | 65/352 18.5 (14.5–22.9) | 102/352 29.0 (24.3–34.0) | |||
Subtotal Sex | I. ricinus | F | 13/215 6.0 (3.2–10.1) | 51/215 23.7 (18.2–30.0) | 50/215 23.3 (17.8–29.5) | |
M | 0/26 0.0 (0.0–13.2) | 5/26 19.2 (6.5–39.3) | 9/26 34.6 (17.2–55.60 | |||
N | 0/1 0.0 (0.0–97.5) | 0/1 10.0 (0.0–97.5) | 1/1 100.0 (2.5–100) | |||
D. reticulatus | F | 0/50 0.0 (0.0–7.1) | 2/50 4.0 (0.5–13.7) | 12/50 24.0 (13.0–38.1) | ||
M | 3/192 1.6 (0.3–4.5) | 35/192 18.2 (13.0–24.4) | 58/192 30.2 (23.8–37.2) | |||
Total Species and Sex | 16/484 3.3 (1.9–5.3) | 93/484 19.2 (15.8–23.0) | 130/484 26.9 (22.9–31.0) |
Subregion | Host 1 | Tick Species 2 | Double Co-Infections No. Pearson’s Correlation for Subregions | Triple Co-Infections No. | ||||
---|---|---|---|---|---|---|---|---|
Ap/R | Ba/Ap | Ba/R | Bm/Ap | Ba/Ap/R | Ba/Bg/Bl | |||
West | C | Ir | 7/74 r = 0.4, p < 0.01 3 | 0/74 | 0/74 | 0/74 | 0/74 | 0/74 |
Central | C | Ir | 4/56 | 0/56 | 2/56 | 1/56 | 2/56 | 1/56 |
Dr | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 | ||
WB | Ir | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 | |
Subtotal Central | 4/58 r = 0.08, p = 0.58 | 0/58 | 2/58 r = 0.06, p = 0.65 | 1/58 r = 0.21, p = 0.12 | 2/58 | 1/58 | ||
East | C | Ir | 7/90 | 2/90 | 1/90 | 0/90 | 0/90 | 0/90 |
Dr | 9/218 | 2/218 | 1/218 | 0/218 | 0/218 | 0/218 | ||
WB | Ir | 1/21 | 0/21 | 0/21 | 0/21 | 0/21 | 0/21 | |
Dr | 0/23 | 0/23 | 0/23 | 0/23 | 0/23 | 0/23 | ||
Subtotal East | 17/352 r = 0.01, p = 0.91 | 4/352 r = 0.14, p < 0.01 | 2/352 r = –0.0004, p = 1 | 0/352 | 0/352 | 0/352 |
Primer Name | Primer Sequence 5’—3’ | Product Size [bp] | Species Gene | References |
---|---|---|---|---|
132f | TGGTATGGGAGTTCTGG | 774 | Borrelia spp. flaB 1 | [35] |
905r | TCTGTCATTGTAGCATCTTT | |||
220f | CAGACAACAGAGGGAAAT | 604 | ||
823r | TCAAGTCTATTTTGGAAAGCACC | |||
EHR521 | TGTAGGCGGTTCGGTAAGTTAAAG | 247 | A. phagocytophilum 16S rRNA | [60] |
EHR747 | GCACTCATCGTTTACAGCGTG | |||
CS409 | CCTATGGCTATTATGCTTGC | 769 | Rickettsia spp. gltA 2 | [61] |
Rp1258 | ATTGCAAAAAGTACAGTGAACA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michalski, M.M.; Kubiak, K.; Szczotko, M.; Dmitryjuk, M. Tick-Borne Pathogens in Ticks Collected from Wild Ungulates in North-Eastern Poland. Pathogens 2021, 10, 587. https://doi.org/10.3390/pathogens10050587
Michalski MM, Kubiak K, Szczotko M, Dmitryjuk M. Tick-Borne Pathogens in Ticks Collected from Wild Ungulates in North-Eastern Poland. Pathogens. 2021; 10(5):587. https://doi.org/10.3390/pathogens10050587
Chicago/Turabian StyleMichalski, Mirosław M., Katarzyna Kubiak, Magdalena Szczotko, and Małgorzata Dmitryjuk. 2021. "Tick-Borne Pathogens in Ticks Collected from Wild Ungulates in North-Eastern Poland" Pathogens 10, no. 5: 587. https://doi.org/10.3390/pathogens10050587
APA StyleMichalski, M. M., Kubiak, K., Szczotko, M., & Dmitryjuk, M. (2021). Tick-Borne Pathogens in Ticks Collected from Wild Ungulates in North-Eastern Poland. Pathogens, 10(5), 587. https://doi.org/10.3390/pathogens10050587