Establishing Babesia bovis-Free Tick Colony Following Treatment of the Host with Diminazene Aceturate (Berenil)
Abstract
:1. Introduction
2. Results
2.1. Tick Colony #1
2.2. Tick Colony #2
3. Discussion
4. Materials and Methods
4.1. Tick Collection and Laboratory Keeping
4.2. Calves’ Maintenance, Tick Introduction, and Monitoring
4.3. Splenectomy Procedure
4.4. Diminazene Aceturate Treatment
4.5. DNA Extraction and Polymerase Chain Reaction (PCR)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gray, J.S.; Estrada-Pena, A.; Zintl, A. Vectors of Babesiosis. Annu. Rev. Entomol. 2019, 64, 149–165. [Google Scholar] [CrossRef] [PubMed]
- Jacob, S.S.; Sengupta, P.P.; Paramanandham, K.; Suresh, K.P.; Chamuah, J.K.; Rudramurthy, G.R.; Roy, P. Bovine babesiosis: An insight into the global perspective on the disease distribution by systematic review and meta-analysis. Vet. Parasitol. 2020, 283. [Google Scholar] [CrossRef] [PubMed]
- OIE Terrestrial Manual 2008. World Organisation for Animal Health Manual of Diagnostic Tests and Vaccines for Terrestrial Animals (Mammals, Birds and Bees), 6th ed.; OIE: Paris, France, 2008; Volume 2.
- Gohil, S.; Herrmann, S.; Gunther, S.; Cooke, B.M. Bovine babesiosis in the 21st century: Advances in biology and functional genomics. Int. J. Parasitol. 2013, 43, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Howell, J.M.; Ueti, M.W.; Palmer, G.H.; Scoles, G.A.; Knowles, D.P. Persistently infected calves as reservoirs for acquisition and transovarial transmission of Babesia bovis by Rhipicephalus (Boophilus) microplus. J. Clin. Microbiol. 2007, 45, 3155–3159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howell, J.M.; Ueti, M.W.; Palmer, G.H.; Scoles, G.A.; Knowles, D.P. Transovarial transmission efficiency of Babesia bovis tick stages acquired by Rhipicephalus (Boophilus) microplus during acute infection. J. Clin. Microbiol. 2007, 45, 426–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levin, M.L.; Schumacher, L.B.M. Manual for maintenance of multi-host ixodid ticks in the laboratory. Exp. Appl. Acarol. 2016, 70, 343–367. [Google Scholar] [CrossRef]
- Molad, T.; Fleiderovitz, L.; Leibovich, B.; Wolkomirsky, R.; Erster, O.; Roth, A.; Mazuz, M.L.; Markovics, A.; Shkap, V. Genetic polymorphism of Babesia bovis merozoite surface antigens-2 (MSA-2) isolates from bovine blood and Rhipicephalus annulatus ticks in Israel. Vet. Parasitol. 2014, 205, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Ouhelli, H.; Pandey, V.; Aboughal, A. Effect of infection by Babesia spp. on the development and survival of free-living stages of Boophilus annulatus. Vet. Parasitol. 1987, 23, 147–154. [Google Scholar] [CrossRef]
- Davey, R.B.; Garza, J.; Thompson, G.D.; Drummond, R.O. Ovipositional biology of the cattle tick, Boophilus Annulatus (Acari, Ixodidae), in the laboratory. J. Med. Entomol. 1980, 17, 287–289. [Google Scholar] [CrossRef]
- Ouhelli, H.; Pandey, V.S.; Choukri, M. The Effects of Temperature, humidity, photoperiod and weight of the engorged female on oviposition of Boophilus annulatus (Say, 1821). Vet. Parasitol. 1982, 11, 231–239. [Google Scholar] [CrossRef]
- Hill, T.M.; Bateman, H.G.; Suarez-Mena, F.X.; Dennis, T.S.; Schlotterbeck, R.L. Changes in body temperature of calves up to 2 months of age as affected by time of day, age, and ambient temperature. J. Dairy Sci. 2016, 99, 8867–8870. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.D.; Evans, D.E.; Martins, J.R.; Cereser, V.H.; Correa, B.L.; Petraccia, C.; Cardozo, H.; Solari, M.A.; Nari, A. Babesiosis (Babesia bovis) stability in unstable environments. Ann. N. Y. Acad. Sci. 2000, 916, 510–520. [Google Scholar] [CrossRef] [PubMed]
- Brown, W.C.; Norimine, J.; Knowles, D.P.; Goff, W.L. Immune control of Babesia bovis infection. Vet. Parasitol. 2006, 138, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Tuvshintulga, B.; Sivakumar, T.; Yokoyama, N.; Igarashi, I. Development of unstable resistance to diminazene aceturate in Babesia bovis. Int. J. Parasitol. Drug 2019, 9, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Shkap, V.; Leibovitz, B.; Krigel, Y.; Hammerschlag, J.; Marcovics, A.; Fish, L.; Molad, T.; Savitsky, I.; Mazuz, M. Vaccination of older Bos taurus bulls against bovine babesiosis. Vet. Parasitol. 2005, 129, 235–242. [Google Scholar] [CrossRef] [PubMed]
Calf | Day | Treatment/Clinical Signs |
---|---|---|
| | R. annulatus from field cattle → 0.5 g eggs → larvae |
#883 | −3 | Diminazene aceturate |
−1 | Diminazene aceturate | |
0 | Larvae deposition on calf #883 | |
3 | Diminazene aceturate | |
17 | B. bovis detected in blood-smear, Diminazene aceturate | |
18 | Diminazene aceturate | |
20 | Diminazene aceturate | |
21−24 | Engorged females drop-off | |
| | R. annulatus from #883 → 0.3 g eggs → larvae |
#901 | 0 | Larvae deposition on calf #901 |
8−18 | No CS | |
19 | Diminazene aceturate | |
21 | Diminazene aceturate | |
22−24 | Engorged females drop-off | |
| | R. annulatus from #901 → 0.3 g eggs → larvae |
#903 | 0 | Larvae deposition on calf #903, splenectomized |
10 | Fever 40.1, no parasitemia | |
No CS |
Calf | Day | Treatment/Clinical Signs |
---|---|---|
| | R. annulatus from field cattle → eggs → larvae |
#183 | 0 | Larvae deposition on calf #183 |
8 | Fever, anemia, B. bovis detected in blood-smear, blood collection | |
8 | Diminazene aceturate | |
10 | Diminazene aceturate | |
15 | Diminazene aceturate | |
17 | Diminazene aceturate | |
20 | Diminazene aceturate | |
21−24 | Engorged females drop-off | |
| | Infection with 12 mL infected blood from #183 |
#181 | 0 | Larvae deposition on calf #181 |
12−15 | Fever, anemia, B. bovis detected in blood-smear | |
16 | Recovered | |
30 | Splenectomy | |
33- | B. bovis in blood-smear intermittently | |
| | R. annulatus from #183 → 0.3 g eggs → larvae |
#187 | Eggs → Neg PCR | |
0 | Larvae deposition on calf #187, splenectomized | |
No CS | ||
21−24 | Engorged females drop-off |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tirosh-Levy, S.; Roth, A.; Leibovich, B.; Fleiderovitz, L.; Frid, O.; Yasur-Landau, D.; Wolkomirskyi, R.; Mazuz, M.L. Establishing Babesia bovis-Free Tick Colony Following Treatment of the Host with Diminazene Aceturate (Berenil). Pathogens 2021, 10, 554. https://doi.org/10.3390/pathogens10050554
Tirosh-Levy S, Roth A, Leibovich B, Fleiderovitz L, Frid O, Yasur-Landau D, Wolkomirskyi R, Mazuz ML. Establishing Babesia bovis-Free Tick Colony Following Treatment of the Host with Diminazene Aceturate (Berenil). Pathogens. 2021; 10(5):554. https://doi.org/10.3390/pathogens10050554
Chicago/Turabian StyleTirosh-Levy, Sharon, Asael Roth, Binyamin Leibovich, Ludmila Fleiderovitz, Ohad Frid, Daniel Yasur-Landau, Ricardo Wolkomirskyi, and Monica L. Mazuz. 2021. "Establishing Babesia bovis-Free Tick Colony Following Treatment of the Host with Diminazene Aceturate (Berenil)" Pathogens 10, no. 5: 554. https://doi.org/10.3390/pathogens10050554
APA StyleTirosh-Levy, S., Roth, A., Leibovich, B., Fleiderovitz, L., Frid, O., Yasur-Landau, D., Wolkomirskyi, R., & Mazuz, M. L. (2021). Establishing Babesia bovis-Free Tick Colony Following Treatment of the Host with Diminazene Aceturate (Berenil). Pathogens, 10(5), 554. https://doi.org/10.3390/pathogens10050554