Seasonal Stability of SARS-CoV-2 in Biological Fluids
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimer
References
- World Health Organization. Transmission of SARSCoV-2: Implications for Infection Prevention Precautions: Scientific Brief. Available online: https://www.who.int/news-room/commentaries/detail/transmission-of-sars-cov-2-implications-for-infection-prevention-precautions (accessed on 9 July 2020).
- Atkinson, J.; Chartier, Y.; Pessoa-Silva, C.L.; Jensen, P.; Li, Y.; Seto, W.H. Natural Ventilation for Infection Control in Health-Care Settings; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Kwon, T.; Gaudreault, N.; Richt, J. Environmental Stability of SARS-CoV-2 on Different Types of Surfaces under Indoor and Seasonal Climate Conditions. Pathogens 2021, 10, 227. [Google Scholar] [CrossRef]
- Van Doremalen, N.; Bushmaker, T.; Lloyd-Smith, J.O.; De Wit, E.; Munster, V.J.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef]
- Colavita, F.; Lapa, D.; Carletti, F.; Lalle, E.; Bordi, L.; Marsella, P.; Nicastri, E.; Bevilacqua, N.; Giancola, M.L.; Corpolongo, A.; et al. SARS-CoV-2 Isolation From Ocular Secretions of a Patient With COVID-19 in Italy With Prolonged Viral RNA Detection. Ann. Intern. Med. 2020, 173, 242–243. [Google Scholar] [CrossRef]
- Sun, J.; Zhu, A.; Li, H.; Zheng, K.; Zhuang, Z.; Chen, Z.; Shi, Y.; Zhang, Z.; Chen, S.-B.; Liu, X.; et al. Isolation of infectious SARS-CoV-2 from urine of a COVID-19 patient. Emerg. Microbes Infect. 2020, 9, 991–993. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Xu, Y.; Gao, R.; Lu, R.; Han, K.; Wu, G.; Tan, W. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA 2020, 323, 1843–1844. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Sun, J.; Xu, Y.; Li, F.; Huang, X.; Li, H.; Zhao, J.; Huang, J.; Zhao, J. Infectious SARS-CoV-2 in Feces of Patient with Severe COVID-19. Emerg. Infect. Dis. 2020, 26, 1920–1922. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, C.; Zhu, S.; Shu, C.; Wang, D.; Song, J.; Song, Y.; Zhen, W.; Feng, Z.; Wu, G.; et al. Isolation of 2019-nCoV from a Stool Specimen of a Laboratory-Confirmed Case of the Coronavirus Disease 2019 (COVID-19). China CDC Wkly. 2020, 2, 123–124. [Google Scholar] [CrossRef]
- Prebensen, C.; Hre, P.L.M.; Jonassen, C.; Rangberg, A.; Blomfeldt, A.; Svensson, M.; Omland, T.; Berdal, J.E. SARS-CoV-2 RNA in plasma is associated with ICU admission and mortality in patients hospitalized with COVID-19. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Pham, T.D.; Huang, C.; Wirz, O.F.; Röltgen, K.; Sahoo, M.K.; Layon, M.A.; Pandey, S.; Foung, S.K.; Boyd, S.D.; Pinsky, B.A. SARS-CoV-2 RNAemia in a Healthy Blood Donor 40 Days After Respiratory Illness Resolution. Ann. Intern. Med. 2020, 173, 853–854. [Google Scholar] [CrossRef] [PubMed]
- Groß, R.; Conzelmann, C.; Müller, A.J.; Stenger, S.; Steinhart, K.; Kirchhoff, F.; Münch, J. Detection of SARS-CoV-2 in human breastmilk. Lancet 2020, 395, 1757–1758. [Google Scholar] [CrossRef]
- Costa, S.; Posteraro, B.; Marchetti, S.; Tamburrini, E.; Carducci, B.; Lanzone, A.; Valentini, P.; Buonsenso, D.; Sanguinetti, M.; Vento, G.; et al. Excretion of SARS-CoV-2 in human breast milk. Clin. Microbiol. Infect. 2020, 26, 1430–1432. [Google Scholar] [CrossRef]
- Li, D.; Jin, M.; Bao, P.; Zhao, W.; Zhang, S. Clinical Characteristics and Results of Semen Tests Among Men with Coronavirus Disease 2019. JAMA Netw. Open 2020, 3, e208292. [Google Scholar] [CrossRef] [PubMed]
- Chin, A.W.H.; Chu, J.T.S.; Perera, A.M.R.; Hui, K.P.Y.; Yen, H.-L.; Chan, M.C.W.; Peiris, M.; Poon, L.L.M. Stability of SARS-CoV-2 in different environmental conditions. Lancet Microbe 2020, 1, e10. [Google Scholar] [CrossRef]
- Pastorino, B.; Touret, F.; Gilles, M.; De Lamballerie, X.; Charrel, R.N. Prolonged Infectivity of SARS-CoV-2 in Fomites. Emerg. Infect. Dis. 2020, 26, 2256–2257. [Google Scholar] [CrossRef] [PubMed]
- Riddell, S.; Goldie, S.; Hill, A.; Eagles, D.; Drew, T.W. The effect of temperature on persistence of SARS-CoV-2 on common surfaces. Virol. J. 2020, 17, 1–7. [Google Scholar] [CrossRef]
- Matson, M.J.; Yinda, C.K.; Seifert, S.N.; Bushmaker, T.; Fischer, R.J.; Van Doremalen, N.; Lloyd-Smith, J.O.; Munster, V.J. Effect of Environmental Conditions on SARS-CoV-2 Stability in Human Nasal Mucus and Sputum. Emerg. Infect. Dis. 2020, 26, 2276–2278. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, T.; Deng, Y.; Liu, S.; Zhang, D.; Li, H.; Wang, X.; Jia, L.; Han, J.; Bei, Z.; et al. Stability of SARS-CoV-2 on envi-ronmental surfaces and in human excreta. J. Hosp. Infect. 2020. [Google Scholar] [CrossRef]
- Hui, K.P.Y.; Cheung, M.-C.; Perera, R.A.P.M.; Ng, K.-C.; Bui, C.H.T.; Ho, J.C.W.; Ng, M.M.T.; Kuok, D.I.T.; Shih, K.C.; Tsao, S.-W.; et al. Tropism, replication competence, and innate immune responses of the coronavirus SARS-CoV-2 in human respiratory tract and conjunctiva: An analysis in ex-vivo and in-vitro cultures. Lancet Respir. Med. 2020, 8, 687–695. [Google Scholar] [CrossRef]
- Guemes-Villahoz, N.; Burgos-Blasco, B.; Arribi-Vilela, A.; Arriola-Villalobos, P.; Rico-Luna, C.M.; Cuina-Sardina, R.; Delga-do-Iribarren, A.; Garcia-Feijoo, J. Detecting SARS-CoV-2 RNA in conjunctival secretions: Is it a valuable diagnostic method of COVID-19? J. Med. Virol. 2020. [Google Scholar] [CrossRef]
- Xia, J.; Tong, J.; Liu, M.; Shen, Y.; Guo, D. Evaluation of coronavirus in tears and conjunctival secretions of patients with SARS-CoV-2 infection. J. Med. Virol. 2020, 92, 589–594. [Google Scholar] [CrossRef]
- McDermott, A.M. Antimicrobial compounds in tears. Exp. Eye Res. 2013, 117, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Lang, J.; Yang, N.; Deng, J.; Liu, K.; Yang, P.; Zhang, G.; Jiang, C. Inhibition of SARS Pseudovirus Cell Entry by Lactoferrin Binding to Heparan Sulfate Proteoglycans. PLoS ONE 2011, 6, e23710. [Google Scholar] [CrossRef] [PubMed]
- Clausen, T.M.; Sandoval, D.R.; Spliid, C.B.; Pihl, J.; Perrett, H.R.; Painter, C.D.; Narayanan, A.; Majowicz, S.A.; Kwong, E.M.; McVicar, R.N.; et al. SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2. Cell 2020, 183, 1043–1057.e15. [Google Scholar] [CrossRef] [PubMed]
- Bivins, A.; Greaves, J.; Fischer, R.; Yinda, K.C.; Ahmed, W.; Kitajima, M.; Munster, V.J.; Bibby, K. Persistence of SARS-CoV-2 in Water and Wastewater. Environ. Sci. Technol. Lett. 2020, 7, 937–942. [Google Scholar] [CrossRef]
- Hogan, C.A.; Stevens, B.A.; Sahoo, M.K.; Huang, C.; Garamani, N.; Gombar, S.; Yamamoto, F.; Murugesan, K.; Kurzer, J.; Zehnder, J.; et al. High Frequency of SARS-CoV-2 RNAemia and Association With Severe Disease. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Bermejo-Martin, J.F.; González-Rivera, M.; Almansa, R.; Micheloud, D.; Tedim, A.P.; Domínguez-Gil, M.; Resino, S.; Martín-Fernández, M.; Murua, P.R.; Pérez-García, F.; et al. Viral RNA load in plasma is associated with critical illness and a dysregulated host response in COVID-19. Crit. Care 2020, 24, 1–13. [Google Scholar] [CrossRef]
- Cho, H.J.; Koo, J.W.; Roh, S.K.; Kim, Y.K.; Suh, J.S.; Moon, J.H.; Sohn, S.K.; Baek, D.W. COVID-19 transmission and blood transfusion: A case report. J. Infect. Public Health 2020, 13, 1678–1679. [Google Scholar] [CrossRef]
- Owen, D.H. A Review of the Physical and Chemical Properties of Human Semen and the Formulation of a Semen Simulant. J. Androl. 2005, 26, 459–469. [Google Scholar] [CrossRef]
- Klebanoff, S.J.; Kazazi, F. Inactivation of human immunodeficiency virus type 1 by the amine oxidase-peroxidase system. J. Clin. Microbiol. 1995, 33, 2054–2057. [Google Scholar] [CrossRef]
- Martellini, J.A.; Cole, A.L.; Venkataraman, N.; Quinn, G.A.; Svoboda, P.; Gangrade, B.K.; Pohl, J.; Sørensen, O.E.; Cole, A.M. Cationic polypeptides contribute to the anti-HIV-1 activity of human seminal plasma. FASEB J. 2009, 23, 3609–3618. [Google Scholar] [CrossRef]
- Bertino, E.; Moro, G.E.; De Renzi, G.; Viberti, G.; Cavallo, R.; Coscia, A.; Rubino, C.; Tonetto, P.; Sottemano, S.; Campagnoli, M.F.; et al. Detection of SARS-CoV-2 in Milk From COVID-19 Positive Mothers and Follow-Up of Their Infants. Front. Pediatr. 2020, 8, 597699. [Google Scholar] [CrossRef] [PubMed]
- Chambers, C.; Krogstad, P.; Bertrand, K.; Contreras, D.; Tobin, N.H.; Bode, L.; Aldrovandi, G. Evaluation for SARS-CoV-2 in Breast Milk From 18 Infected Women. JAMA 2020, 324, 1347. [Google Scholar] [CrossRef] [PubMed]
- Conzelmann, C.; Zou, M.; Groß, R.; Harms, M.; Röcker, A.; Riedel, C.U.; Münch, J.; Müller, J.A. Storage-Dependent Generation of Potent Anti-ZIKV Activity in Human Breast Milk. Viruses 2019, 11, 591. [Google Scholar] [CrossRef] [PubMed]
- Pfaender, S.; Heyden, J.; Friesland, M.; Ciesek, S.; Ejaz, A.; Steinmann, J.; Steinmann, J.; Malarski, A.; Stoiber, H.; Tsiavaliaris, G.; et al. Inactivation of Hepatitis C Virus Infectivity by Human Breast Milk. J. Infect. Dis. 2013, 208, 1943–1952. [Google Scholar] [CrossRef] [PubMed]
Environmental Condition | 21 °C/60% RH Indoor | 25 °C/70% RH Summer | 13 °C/66% RH Spring/Fall | 5 °C/75% RH Winter | ||||
---|---|---|---|---|---|---|---|---|
Setting | Liquid | Surface | Liquid | Surface | Liquid | Surface | Liquid | Surface |
Nasal mucus | 5.23 (4.03, 7.47) 1 | 6.77 (4.57, 13.01) | 4.59 2 (3.66, 6.17) | 2.58 2 (2.02, 3.59) | 21.74 (15.61, 35.76) | 18.15 (14.66, 23.83) | 53.94 (44.82, 67.71) | 38.55 (30.42, 52.62) |
Sputum | 8.69 2 (7.11, 11.17) | 14.9 2 (10.72, 24.37) | 3.68 (2.59, 6.37) | 5.55 (4.42, 7.45) | 21.94 2 (16.05, 34.66) | 37.03 2 (27.74, 55.67) | 33.37 2 (22.75, 62.56) | 76.4 2 (60.48, 103.7) |
Saliva | 7.89 2 (6.38, 10.37) | 12.69 2 (10.36, 16.38) | 6.98 (5.19, 10.65) | 6.44 (4.87, 9.5) | 15.98 2 (12.51, 22.12) | 34.17 2 (27.05, 46.28) | 55.16 (44.28, 73.15) | 69.25 (61.3, 79.57) |
Tears | 15.1 2 (12.29, 19.56) | 8.3 2 (7.09, 10) | 11.06 2 (8.91, 14.58) | 3.53 2 (2.93, 4.45) | 29.34 (25.75, 34.07) | 24.22 (20.14, 30.38) | 121.83 (91.19, 183.44) | 106.82 (84.44, 145.43) |
Urine | 11.41 (9.69, 13.88) | N/A 3 | 7.89 (6.74, 9.5) | N/A 3 | 54.34 (36.76, 103.8) | N/A 3 | 57.73 (49.06, 70.15) | N/A 3 |
Blood | 16.74 (11.64, 29.83) | 16.57 (13.1, 22.53) | 12.57 (9.58, 18.3) | 10.75 (9.16, 13) | 39.25 (28.03, 65.26) | 48.4 (35.79, 74.6) | 102.04 2 (71.93, 175.63) | 235.18 2 (144.52, 631.75) |
Semen | 7.48 (5.76, 10.65) | 9.51 (7.46, 13.1) | 2.3 2 (1.75, 3.33) | 5.9 2 (4.75, 7.78) | 17.69 2 (13.96, 24.14) | 41.24 2 (29.31, 69.31) | 57.81 2 (47.77, 73.23) | 91.64 2 (75.24, 117.22) |
Positive control | 15.85 2 (11.81, 24.12) | 7.88 2 (6.48, 10.05) | 7.48 2 (6.7, 8.46) | 2.57 2 (2.21, 3.08) | 48.95 2 (35.25, 80) | 21.5 2 (17.25, 28.56) | 176.66 2 (109.78, 451.39) | 79.64 2 (63.6, 106.48) |
Environmental Condition | 21 °C/60% RH/Indoor, 25 °C/70% RH/Summer | 13 °C/66% RH/Spring/Fall | 5 °C/75% RH/Winter |
---|---|---|---|
Liquid setting | 1 h post-contamination (hpc), 7 hpc, 1 day post-contamination (dpc), 2 dpc, and 3 dpc | 1 hpc, 1 dpc, 3 dpc, 5 dpc, and 7 dpc | 1 hpc, 1 dpc, 3 dpc, 6 dpc, 10 dpc, 15 dpc, and 21 dpc |
Surface setting | 4 hpc, 8 hpc, 1 dpc, 2 dpc, and 3 dpc | 4 hpc, 1 dpc, 3 dpc, 5 dpc, and 7 dpc | 4 hpc, 1 dpc, 3 dpc, 6 dpc, 10 dpc, 15 dpc, and 21 dpc |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, T.; Gaudreault, N.N.; Richt, J.A. Seasonal Stability of SARS-CoV-2 in Biological Fluids. Pathogens 2021, 10, 540. https://doi.org/10.3390/pathogens10050540
Kwon T, Gaudreault NN, Richt JA. Seasonal Stability of SARS-CoV-2 in Biological Fluids. Pathogens. 2021; 10(5):540. https://doi.org/10.3390/pathogens10050540
Chicago/Turabian StyleKwon, Taeyong, Natasha N. Gaudreault, and Juergen A. Richt. 2021. "Seasonal Stability of SARS-CoV-2 in Biological Fluids" Pathogens 10, no. 5: 540. https://doi.org/10.3390/pathogens10050540
APA StyleKwon, T., Gaudreault, N. N., & Richt, J. A. (2021). Seasonal Stability of SARS-CoV-2 in Biological Fluids. Pathogens, 10(5), 540. https://doi.org/10.3390/pathogens10050540