The Rotavirus Vaccine Landscape, an Update
Abstract
:1. Background
2. HBGAs as Viral Receptors and Their Implications
3. RV Vaccine Pipeline
3.1. Licensed Vaccines
3.1.1. Globally Licensed Vaccines
- Rotarix (RV1—GlaxoSmithKline Biologicals, Rixensart, Belgium)
- RotaTeq (RV5—Merck and Co. Inc., Kenilworth, NJ, USA)
- Rotavac (Bharat Biotec, India)
- Rotasiil (Serum Institute of India, India)
3.1.2. Nationally Licensed Vaccines
- Rotavin-M1 (POLYVAC, Hanoi, Vietnam)
- Lanzhou lamb (Lanzhou Institute of Biological Products, China)
3.2. Vaccines under Development
3.2.1. Oral Vaccines
3.2.2. Parenterally Administered Vaccines
- Subunit Vaccines
- Virus-Like Particles
- Inactivated Rotavirus Vaccines
- Nucleic Acid-Based Vaccines
4. RV Genotypes Included in the Vaccines
5. Microneedle Technology
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Parashar, U.D.; Gibson, C.J.; Bresee, J.S.; Glass, R.I. Rotavirus and severe childhood diarrhea. Emerg. Infect. Dis. 2006, 12, 304–306. [Google Scholar] [CrossRef] [Green Version]
- Campins Martí, M.; Moraga-Llop, F.A. Vacunas antirrotavirus. Un largo y difícil camino. Gastroenterol. Hepatol. 2011, 34, 694–700. [Google Scholar] [CrossRef] [PubMed]
- Bishop, R.F.; Davidson, G.P.; Holmes, I.H.; Ruck, B.J. Virus particles in epithelial cells of duodenal mucosa from children with acute non-bacterial gastroenteritis. Lancet 1973, 2, 1281–1283. [Google Scholar] [CrossRef]
- Aziz, A.B.; Ali, M.; Basunia, A.U.H.; Yunus, M.; Clemens, J.; Zaman, K. Impact of vaccination on the risk factors for acute rotavirus diarrhea: An analysis of the data of a cluster randomized trial conducted in a rural area of Bangladesh. Vaccine 2020, 1–8. [Google Scholar] [CrossRef]
- Tate, J.E.; Burton, A.H.; Boschi-Pinto, C.; Steele, A.D.; Duque, J.; Parashar, U.D. 2008 estimate of worldwide rotavirus-associated mortality in children younger than 5 years before the introduction of universal rotavirus vaccination programmes: A systematic review and meta-analysis. Lancet Infect. Dis. 2012, 12, 136–141. [Google Scholar] [CrossRef] [Green Version]
- Parashar, U.D.; Hummelman, E.G.; Bresee, J.S.; Miller, M.A.; Glass, R.I. Global illness and deaths caused by rotavirus disease in children. Emerg. Infect. Dis. 2003, 9, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Arnold, M.; Patton, J.T.; Mcdonald, S.M. Culturing, storage, and quantification of rotaviruses. Curr. Protoc. Microbiol. 2009, 15, 1–24. [Google Scholar] [CrossRef]
- Burke, R.M.; Tate, J.E.; Kirkwood, C.D.; Steele, A.D.; Parashar, U.D. Current and new rotavirus vaccines. Curr. Opin. Infect. Dis. 2019, 32, 435–444. [Google Scholar] [CrossRef]
- World Health Organization Rotavirus vaccines: An update. Wkly. Epidemiol. Rec. 2009, 84, 533–540. [CrossRef]
- International Vaccine Access Center (IVAC). VIEW-hub: Home. Available online: https://view-hub.org/sites/default/files/2020-05/VIEW-hub_Report_Mar2020.pdf (accesssed on 23 March 2021).
- Soriano-Gabarró, M.; Mrukowicz, J.; Vesikari, T.; Verstraeten, T. Burden of rotavirus disease in European Union countries. Pediatr. Infect. Dis. J. 2006, 25, 7–11. [Google Scholar] [CrossRef]
- Bishop, R.F. Natural history of human rotavirus infection. Arch. Virol. Suppl. 1996, 12, 119–128. [Google Scholar]
- Goyal, S.M.; Cannon, J.L. Viruses in Foods, 2nd ed.; Food Microbiology and Food Safety, Research and Development; Springer: New York, NY, USA, 2006; pp. 59–130. ISBN 978-0-387-28935-9. [Google Scholar]
- Luchs, A.; Timenetsky, M.; do C.S.T. Group. A rotavirus gastroenteritis: Post-vaccine era, genotypes and zoonotic transmission. Einstein 2016, 14, 278–287. [Google Scholar] [CrossRef]
- Li, Z.; Baker, M.L.; Jiang, W.; Estes, M.K.; Prasad, B.V.V. Rotavirus Architecture at Subnanometer Resolution. J. Virol. 2009, 83, 1754–1766. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; McDonald, S.M. Mechanism for coordinated RNA packaging and genome replication by rotavirus polymerase VP1. Bone 2005, 23, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Mattion, N.M.; Estes, M.K. Rotavirus VP3 expressed in insect cells possesses guanylyltransferase activity. Virology 1992, 188, 77–84. [Google Scholar] [CrossRef]
- Esona, M.D.; Gautam, R. Rotavirus. Clin. Lab. Med. 2015, 35, 363–391. [Google Scholar] [CrossRef]
- Feng, N.; Hu, L.; Ding, S.; Sanyal, M.; Zhao, B.; Sankaran, B.; Ramani, S.; McNeal, M.; Yasukawa, L.L.; Song, Y.; et al. Human VP8* mAbs neutralize rotavirus selectively in human intestinal epithelial cells. J. Clin. Invest. 2019, 129, 3839–3851. [Google Scholar] [CrossRef]
- Settembre, E.C.; Chen, J.Z.; Dormitzer, P.R.; Grigorieff, N.; Harrison, S.C. Atomic model of an infectious rotavirus particle. EMBO J. 2011, 30, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Mihalov-Kovács, E.; Gellért, Á.; Marton, S.; Farkas, S.L.; Fehér, E.; Oldal, M.; Jakab, F.; Martella, V.; Bányai, K. Candidate new Rotavirus species in sheltered Dogs, Hungary. Emerg. Infect. Dis. 2015, 21, 660–663. [Google Scholar] [CrossRef] [PubMed]
- Iturriza Gomara, M.; Wong, C.; Blome, S.; Desselberger, U.; Gray, J.; Gomara, M.I.; Cubitt, D.; Iturriza-Gomara, M.; Isherwood, B. Molecular characterization of VP6 genes of human rotavirus isolates: Correlation of genogroups with subgroups and evidence of independent segregation\rAmino acid substitution within the VP7 protein of G2 rotavirus strains associated with failure to seroty. J. Virol. 2002, 76, 6596–6601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bányai, K.; Kemenesi, G.; Budinski, I.; Földes, F.; Zana, B.; Marton, S.; Varga-Kugler, R.; Oldal, M.; Kurucz, K.; Jakab, F. Candidate new rotavirus species in Schreiber’s bats, Serbia. Infect. Genet. Evol. 2017, 48, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Sadiq, A.; Bostan, N.; Bokhari, H.; Matthijnssens, J.; Yinda, K.C.; Raza, S.; Nawaz, T. Molecular characterization of human group A rotavirus genotypes circulating in Rawalpindi, Islamabad, Pakistan during 2015–2016. PLoS ONE 2019, 14, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Matthijnssens, J.; Ciarlet, M.; Rahman, M.; Attoui, H.; Bányai, K.; Estes, M.K.; Gentsch, J.R.; Iturriza-Gómara, M.; Kirkwood, C.D.; Martella, V.; et al. Recommendations for the classification of group A rotaviruses using all 11 genomic RNA segments. Arch. Virol. 2008, 153, 1621–1629. [Google Scholar] [CrossRef] [Green Version]
- Hungerford, D.; Allen, D.J.; Nawaz, S.; Collins, S.; Ladhani, S.; Vivancos, R.; Iturriza-Gómara, M. Impact of rotavirus vaccination on rotavirus genotype distribution and diversity in England, september 2006 to august 2016. Eurosurveillance 2019, 24. [Google Scholar] [CrossRef]
- Thanh, H.D.; Tran, V.T.; Lim, I.; Kim, W. Emergence of Human G2P[4] Rotaviruses in the Post-vaccination Era in South Korea: Footprints of Multiple Interspecies Re-assortment Events. Sci. Rep. 2018, 8, 2–11. [Google Scholar] [CrossRef] [Green Version]
- Buesa, J.; Martínez-Costa, C. Rotavirus infections, vaccines and virus variability Infecciones por rotavirus, vacunas y variabilidad vírica. Enferm. Infecc. y Microbiol. Clin. Monogr. 2014, 32, 277–279. [Google Scholar] [CrossRef]
- Delogu, R.; Ianiro, G.; Camilloni, B.; Fiore, L.; Ruggeri, F.M. Unexpected Spreading of G12P[8] Rotavirus Strains Among Young Children in a Small Area of Central Italy. J. Med. Virol. 2006, 55, 52–55. [Google Scholar] [CrossRef] [PubMed]
- Gozalbo-Rovira, R.; Ciges-Tomas, J.R.; Vila-Vicent, S.; Buesa, J.; Santiso-Bellón, C.; Monedero, V.; Yebra, M.J.; Marina, A.; Rodríguez-Díaz, J. Unraveling the role of the secretor antigen in human rotavirus attachment to histo-blood group antigens. PLoS Pathog. 2019, 15, e1007865. [Google Scholar] [CrossRef] [PubMed]
- Arista, S.; Giammanco, G.M.; De Grazia, S.; Ramirez, S.; Lo Biundo, C.; Colomba, C.; Cascio, A.; Martella, V. Heterogeneity and Temporal Dynamics of Evolution of G1 Human Rotaviruses in a Settled Population. J. Virol. 2006, 80, 10724–10733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunliffe, N.A.; Gondwe, J.S.; Graham, S.M.; Thindwa, B.D.M.; Dove, W.; Broadhead, R.L.; Molyneux, M.E.; Hart, C.A. Rotavirus Strain Diversity in Blantyre, Malawi, from 1997 to 1999. Society 2001, 39, 836–843. [Google Scholar] [CrossRef] [Green Version]
- Nagashima, S.; Kobayashi, N.; Paul, S.K.; Alam, M.M.; Chawla-Sarkar, M.; Krishnan, T. Characterization of full-length VP4 genes of OP354-like P[8] human rotavirus strains detected in Bangladesh representing a novel P[8] subtype. Arch. Virol. 2009, 154, 1223–1231. [Google Scholar] [CrossRef]
- Rodríguez-Díaz, J.; Rubilar-Abreu, E.; Spitzner, M.; Hedlund, K.O.; Liprandi, F.; Svensson, L. Design of a multiplex nested PCR for genotyping of the NSP4 from group A rotavirus. J. Virol. Methods 2008, 149, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Matthijnssens, J.; Ciarlet, M.; McDonald, S.M.; Attoui, H.; Bányai, K.; Brister, J.R.; Buesa, J.; Esona, M.D.; Estes, M.K.; Gentsch, J.R.; et al. Uniformity of rotavirus strain nomenclature proposed by the Rotavirus Classification Working Group (RCWG). Arch. Virol. 2011. [Google Scholar] [CrossRef] [Green Version]
- Matthijnssens, J.; Van Ranst, M. Genotype constellation and evolution of group A rotaviruses infecting humans. Curr. Opin. Virol. 2012, 2, 426–433. [Google Scholar] [CrossRef]
- Komoto, S.; Tacharoenmuang, R.; Guntapong, R.; Ide, T.; Tsuji, T.; Yoshikawa, T.; Tharmaphornpilas, P.; Sangkitporn, S.; Taniguchi, K. Reassortment of human and animal rotavirus gene segments in emerging DS-1-like G1P[8] rotavirus strains. PLoS ONE 2016, 11. [Google Scholar] [CrossRef]
- Rodríguez-Díaz, J.; García-Mantrana, I.; Vila-Vicent, S.; Gozalbo-Rovira, R.; Buesa, J.; Monedero, V.; Collado, M.C. Relevance of secretor status genotype and microbiota composition in susceptibility to rotavirus and norovirus infections in humans. Sci. Rep. 2017, 7, 45559. [Google Scholar] [CrossRef] [Green Version]
- Nordgren, J.; Svensson, L. Genetic susceptibility to human norovirus infection: An update. Viruses 2019, 11, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Gozalbo-Rovira, R.; Rubio-Del-Campo, A.; Santiso-Bellón, C.; Vila-Vicent, S.; Buesa, J.; Delgado, S.; Molinero, N.; Margolles, A.; Yebra, M.J.; Collado, M.C.; et al. Interaction of Intestinal Bacteria with Human Rotavirus during Infection in Children. Int. J. Mol. Sci. 2021, 22, 1010. [Google Scholar] [CrossRef] [PubMed]
- Vila-Vicent, S.; Gozalbo-Rovira, R.; Rubio-Del-Campo, A.; Santiso-Bellón, C.; Navarro-Lleó, N.; Muñoz, C.; Buesa, J.; Rodríguez-Díaz, J. Sero-epidemiological study of the rotavirus VP8* protein from different P genotypes in Valencia, Spain. Sci. Rep. 2020, 10, 7753. [Google Scholar] [CrossRef]
- Sharma, S.; Hagbom, M.; Svensson, L.; Nordgren, J. The Impact of Human Genetic Polymorphisms on Rotavirus Susceptibility, Epidemiology, and Vaccine Take. Viruses 2020, 12, 324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, P.; Xia, M.; Tan, M.; Zhong, W.; Wei, C.; Wang, L.; Morrow, A.; Jiang, X. Spike protein VP8* of human rotavirus recognizes histo-blood group antigens in a type-specific manner. J. Virol. 2012, 86, 4833–4843. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Xu, S.; Woodruff, A.L.; Xia, M.; Tan, M.; Kennedy, M.A.; Jiang, X. Structural basis of glycan specificity of P[19] VP8*: Implications for rotavirus zoonosis and evolution. PLoS Pathog. 2017, 13, e1006707. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.; Crawford, S.E.; Czako, R.; Cortes-Penfield, N.W.; Smith, D.F.; Le Pendu, J.; Estes, M.K.; Prasad, B. V Cell attachment protein VP8* of a human rotavirus specifically interacts with A-type histo-blood group antigen. Nature 2012, 485, 256–259. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Huang, P.; Tan, M.; Biesiada, J.; Meller, J.; Castello, A.A.; Jiang, B.; Jiang, X. Rotavirus VP8*: Phylogeny, host range, and interaction with histo-blood group antigens. J. Virol. 2012. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Jiang, X.; Huang, P.; Jiang, B.; Tan, M.; Morrow, A.L. Poly-LacNAc as an Age-Specific Ligand for Rotavirus P[11] in Neonates and Infants. PLoS ONE 2013, 8, e78113. [Google Scholar] [CrossRef] [Green Version]
- Nordgren, J.; Sharma, S.; Bucardo, F.; Nasir, W.; Günaydin, G.; Ouermi, D.; Nitiema, L.W.; Becker-Dreps, S.; Simpore, J.; Hammarström, L.; et al. Both lewis and secretor status mediate susceptibility to rotavirus infections in a rotavirus genotype-dependent manner. Clin. Infect. Dis. 2014, 59, 1567–1573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Resch, T.; Esona, M.D.; Moon, S.S.; Jiang, B. A DS-1 like G9P[6] human strain CDC-6 as a new rotavirus vaccine candidate. Vaccine 2018, 36, 6844–6849. [Google Scholar] [CrossRef] [PubMed]
- Heylen, E.; Zeller, M.; Ciarlet, M.; Lawrence, J.; Steele, D.; Van Ranst, M.; Matthijnssens, J. Human P[6] Rotaviruses From Sub-Saharan Africa and Southeast Asia Are Closely Related to Those of Human P[4] and P[8] Rotaviruses Circulating Worldwide. J. Infect. Dis. 2016, 214, 1039–1049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeller, M.; Patton, J.T.; Heylen, E.; De Coster, S.; Ciarlet, M.; Van Ranst, M.; Matthijnssens, J. Genetic analyses reveal differences in the VP7 and VP4 antigenic epitopes between human rotaviruses circulating in Belgium and rotaviruses in rotarix and RotaTeq. J. Clin. Microbiol. 2012, 50, 966–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bishop, R.F.; Barnes, G.L.; Cipriani, E.; Lund, J.S. Clinical Immunity after Neonatal Rotavirus Infection. N. Engl. J. Med. 1983, 309, 72–76. [Google Scholar] [CrossRef]
- Offit, P.A. Challenges to Developing a Rotavirus Vaccine. Viral Immunol. 2018, 31, 104–108. [Google Scholar] [CrossRef]
- Simonsen, L.; Viboud, C.; Elixhauser, A.; Taylor, R.J.; Kapikian, A.Z. More on RotaShield and Intussusception: The Role of Age at the Time of Vaccination. J. Infect. Dis. 2005, 192, S36–S43. [Google Scholar] [CrossRef] [PubMed]
- Sartorio, M.U.A.; Folgori, L.; Zuccotti, G.; Mameli, C. Rotavirus vaccines in clinical development: Current pipeline and state-of-the-art. Pediatr. Allergy Immunol. 2020, 31, 58–60. [Google Scholar] [CrossRef]
- VIEW-hub. VIEW-hub Report: Global Vaccine Introduction and Implementation. 2020. Available online: https://view-hub.org/sites/default/files/2020-08/VIEW-hub_Report_Jun2020_1.pdf (accessed on 11 November 2020).
- Soares-Weiser, K.; Bergman, H.; Henschke, N.; Pitan, F.; Cunliffe, N. Vaccines for preventing rotavirus diarrhoea: Vaccines in use. Cochrane Database Syst. Rev. 2019, 2019. [Google Scholar] [CrossRef]
- Anh, D.D.; Van Trang, N.; Thiem, V.D.; Anh, N.T.H.; Mao, N.D.; Wang, Y.; Jiang, B.; Hien, N.D.; Luan, L.T. A dose-escalation safety and immunogenicity study of a new live attenuated human rotavirus vaccine (Rotavin-M1) in Vietnamese children. Vaccine 2012, 30, 114–121. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Yang, Y.; Liang, Z.; Tian, Y.; Liu, B.; Gao, Z.; Jia, L.; Chen, L.; Wang, Q. Effectiveness of Lanzhou lamb rotavirus vaccine in preventing gastroenteritis among children younger than 5years of age. Vaccine 2019, 37, 3611–3616. [Google Scholar] [CrossRef] [PubMed]
- Patriarca, P.A.; Wright, P.F.; John, T.J. Factors Affecting the Immunogenicity of Oral Poliovirus Vaccine in Developing Countries: Review. Rev. Infect. Dis. 1991, 13, 926–939. [Google Scholar] [CrossRef]
- Levine, M.M. Immunogenicity and efficacy of oral vaccines in developing countries: Lessons from a live cholera vaccine. BMC Biol. 2010, 8, 2–11. [Google Scholar] [CrossRef] [Green Version]
- Patel, M.; Shane, A.L.; Parashar, U.D.; Jiang, B.; Gentsch, J.R.; Glass, R.I. Oral Rotavirus Vaccines: How Well Will They Work Where They Are Needed Most? J. Infect. Dis. 2009, 200, S39–S48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, X.; Cao, D.; Jones, R.W.; Li, J.; Szu, S.; Hoshino, Y. Construction and characterization of human rotavirus recombinant VP8* subunit parenteral vaccine candidates. Vaccine 2012, 30, 6121–6126. [Google Scholar] [CrossRef] [Green Version]
- McClenahan, S.D.; Krause, P.R.; Uhlenhaut, C. Molecular and infectivity studies of porcine circovirus in vaccines. Vaccine 2011, 29, 4745–4753. [Google Scholar] [CrossRef]
- Victoria, J.G.; Wang, C.; Jones, M.S.; Jaing, C.; McLoughlin, K.; Gardner, S.; Delwart, E.L. Viral nucleic acids in live-attenuated vaccines: Detection of minority variants and an adventitious virus. J. Virol. 2010, 84, 6033–6040. [Google Scholar] [CrossRef] [Green Version]
- Clark, A.; Van Zandvoort, K.; Flasche, S.; Sanderson, C.; Bines, J.; Tate, J.; Parashar, U.; Jit, M. Efficacy of live oral rotavirus vaccines by duration of follow-up: A meta-regression of randomised controlled trials. Lancet Infect. Dis. 2019, 19. [Google Scholar] [CrossRef] [Green Version]
- Santiso-Bellón, C.; Randazzo, W.; Pérez-Cataluña, A.; Vila-Vicent, S.; Gozalbo-Rovira, R.; Muñoz, C.; Buesa, J.; Sanchez, G.; Rodríguez Díaz, J. Epidemiological Surveillance of Norovirus and Rotavirus in Sewage (2016–2017) in Valencia (Spain). Microorganisms 2020, 8, 458. [Google Scholar] [CrossRef] [Green Version]
- Moresco, V.; Damazo, N.A.; Barardi, C.R.M. Rotavirus vaccine stability in the aquatic environment. J. Appl. Microbiol. 2016, 120, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Bravo, L.; Chitkara, A.; Liu, A.; Choudhury, J.; Kumar, K.; Berezo, L.R.; Cimafranca, L.R.; Chatterjee, P.; Garg, P.; Siriwardena, P.; et al. Reactogenicity and safety of the human rotavirus vaccine, RotarixTM in the Philippines, Sri Lanka, and India: A post-marketing surveillance study. Hum. Vaccines Immunother. 2014, 10, 2276–2283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawrence, J.; He, S.; Martin, J.; Schödel, F.; Ciarlet, M.; Murray, A.V. Safety and immunogenicity of pentavalent rotavirus vaccine in a randomized, double-blind, placebo-controlled study in healthy elderly subjects. Hum. Vaccines Immunother. 2014, 10, 2247–2254. [Google Scholar] [CrossRef] [Green Version]
- Anderson, E.J. Rotavirus vaccines: Viral shedding and risk of transmission. Lancet Infect. Dis. 2008, 8, 642–649. [Google Scholar] [CrossRef]
- Shearer, W.T.; Fleisher, T.A.; Buckley, R.H.; Ballas, Z.; Ballow, M.; Blaese, R.M.; Bonilla, F.A.; Conley, M.E.; Cunningham-Rundles, C.; Filipovich, A.H.; et al. Recommendations for live viral and bacterial vaccines in immunodeficient patients and their close contacts: Medical Advisory Committee of the Immune Deficiency Foundation. J. Allergy Clin. Immunol. 2014, 133, 961–966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vetter, V.; Denizer, G.; Friedland, L.R.; Krishnan, J.; Shapiro, M. Understanding modern-day vaccines: What you need to know. Ann. Med. 2018, 50, 110–120. [Google Scholar] [CrossRef]
- Dadonaite, B.; Ritchie, H. Rotavirus Vaccine—An Effective Tool That Prevents Children Dying from Diarrhea—Our World in Data. Available online: https://ourworldindata.org/rotavirus-vaccine (accessed on 28 March 2021).
- Bines, J.E.; Kotloff, K.L. Comment Next-generation rotavirus vaccines: Important progress but work still to be done. Lancet Infect. Dis. 2020, 3099, 1–2. [Google Scholar] [CrossRef]
- Glass, R.I.; Jiang, B.; Parashar, U. The future control of rotavirus disease: Can live oral vaccines alone solve the rotavirus problem? Vaccine 2018, 36, 2233–2236. [Google Scholar] [CrossRef] [PubMed]
- GBD 2016 Diarrhoeal Disease Collaborators G. 2016 D.D. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of diarrhoea in 195 countries: A systematic analysis for the Global Burden of Disease Study 2016. Lancet. Infect. Dis. 2018, 18, 1211–1228. [Google Scholar] [CrossRef] [Green Version]
- Fix, A.; Kirkwood, C.D.; Steele, D.; Flores, J. Next-generation rotavirus vaccine developers meeting: Summary of a meeting sponsored by PATH and the bill & melinda gates foundation (19–20 June 2019, Geneva). Vaccine 2020, 38, 8247–8254. [Google Scholar] [CrossRef]
- Underdown, B.J.; Strober, W. Parenteral Immunization and Protection from Mucosal Infection. In Mucosal Immunology, 4th ed.; Mestecky, J., Strober, W., Russell, M., Cheroutre, H., Lambrecht, B.N., Kelsall, B., Eds.; Academic Press: Cambridge, MS, USA, 2015; pp. 1391–1399. ISBN 9780124159754. [Google Scholar] [CrossRef]
- Resch, T.K.; Wang, Y.; Moon, S.S.; Joyce, J.; Li, S.; Prausnitz, M.; Jiang, B. Inactivated rotavirus vaccine by parenteral administration induces mucosal immunity in mice. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clements, J.D.; Freytag, L.C. Parenteral vaccination can be an effective means of inducing protective mucosal responses. Clin. Vaccine Immunol. 2016, 23, 438–441. [Google Scholar] [CrossRef] [Green Version]
- Feng, H.; Li, X.; Song, W.; Duan, M.; Chen, H.; Wang, T.; Dong, J. Oral Administration of a Seed-based Bivalent Rotavirus Vaccine Containing VP6 and NSP4 Induces Specific Immune Responses in Mice. Front. Plant Sci. 2017, 8, 910. [Google Scholar] [CrossRef] [Green Version]
- Curtis, R.; Cardineau, G.; Oral immunization by transgenic plants. World patent application. USA Washingt. Univ. 1990. Available online: https://patents.google.com/patent/US5679880A/en (accesssed on 11 November 2020).
- Gómez, E.; Zoth, S.C.; Berinstein, A. Plant-based vaccines for potential human application: A review. Hum. Vaccin. 2009, 5, 738–744. [Google Scholar] [CrossRef]
- Juárez, P.; Presa, S.; Espí, J.; Pineda, B.; Antón, M.T.; Moreno, V.; Buesa, J.; Granell, A.; Orzaez, D. Neutralizing antibodies against rotavirus produced in transgenically labelled purple tomatoes. Plant Biotechnol. J. 2012, 10, 341–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-Diaz, J.; Montava, R.; Viana, R.; Buesa, J.; Perez-Martinez, G.; Monedero, V. Oral immunization of mice with Lactococcus lactis expressing the rotavirus VP8*protein. Biotechnol. Lett. 2011. [Google Scholar] [CrossRef]
- Andres, I.; Rodriguez-Diaz, J.; Buesa, J.; Zueco, J. Yeast expression of the VP8*fragment of the rotavirus spike protein and its use as immunogen in mice. Biotechnol. Bioeng. 2006. [Google Scholar] [CrossRef]
- Groome, M.J.; Koen, A.; Fix, A.; Page, N.; Jose, L.; Madhi, S.A.; McNeal, M.; Dally, L.; Cho, I.; Power, M.; et al. Safety and immunogenicity of a parenteral P2-VP8-P[8] subunit rotavirus vaccine in toddlers and infants in South Africa: A randomised, double-blind, placebo-controlled trial. Lancet Infect. Dis. 2017, 17, 843–853. [Google Scholar] [CrossRef] [Green Version]
- Blazevic, V.; Lappalainen, S.; Nurminen, K.; Huhti, L.; Vesikari, T. Norovirus VLPs and rotavirus VP6 protein as combined vaccine for childhood gastroenteritis. Vaccine 2011, 29, 8126–8133. [Google Scholar] [CrossRef]
- Xia, M.; Huang, P.; Jiang, X.; Tan, M. Immune response and protective efficacy of the S particle presented rotavirus VP8* vaccine in mice. Vaccine 2019, 37, 4103–4110. [Google Scholar] [CrossRef]
- Bertolotti-Ciarlet, A.; Ciarlet, M.; Crawford, S.E.; Conner, M.E.; Estes, M.K. Immunogenicity and protective efficacy of rotavirus 2/6-virus-like particles produced by a dual baculovirus expression vector and administered intramuscularly, intranasally, or orally to mice. Vaccine 2003, 21, 3885–3900. [Google Scholar] [CrossRef]
- Yuan, L.; Iosef, C.; Azevedo, M.S.; Kim, Y.; Qian, Y.; Geyer, A.; Nguyen, T.V.; Chang, K.O.; Saif, L.J. Protective immunity and antibody-secreting cell responses elicited by combined oral attenuated Wa human rotavirus and intranasal Wa 2/6-VLPs with mutant Escherichia coli heat-labile toxin in gnotobiotic pigs. J. Virol. 2001, 75, 9229–9238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciarlet, M.; Crawford, S.E.; Barone, C.; Bertolotti-Ciarlet, A.; Ramig, R.F.; Estes, M.K.; Conner, M.E. Subunit rotavirus vaccine administered parenterally to rabbits induces active protective immunity. J. Virol. 1998, 72, 9233–9246. [Google Scholar] [CrossRef]
- Lakatos, K.; McAdams, D.; White, J.A.; Chen, D. Formulation and preclinical studies with a trivalent rotavirus P2-VP8 subunit vaccine. Hum. Vaccin. Immunother. 2020, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Diaz, A.; Lopez-Andujar, P.; Diaz, J.R.; Montava, R.; Barcelo, C.T.; Ribes, J.M.; Buesa, J. Nasal immunization of mice with a rotavirus DNA vaccine that induces protective intestinal IgA antibodies. Vaccine 2004. [Google Scholar] [CrossRef]
- Rauch, S.; Roier, S.; Petsch, B. Rotavirus mRNA Vaccine 2020. Available online: https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2020254535 (accessed on 23 March 2021).
- Velasquez, D.E.; Jiang, B. Evolution of P[8], P[4], and P[6] VP8* genes of human rotaviruses globally reported during 1974 and 2017: Possible implications for rotavirus vaccines in development. Hum. Vaccines Immunother. 2019, 15, 3003–3008. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, R.; Arora, R.; Arora, R.; Chitambar, S.D. Sequence analysis of VP7 and VP4 genes of G1P[8] rotaviruses circulating among diarrhoeic children in Pune, India: A comparison with Rotarix and RotaTeq vaccine strains. Vaccine 2014, 32. [Google Scholar] [CrossRef] [Green Version]
- Morozova, O.V.; Sashina, T.A.; Fomina, S.G.; Novikova, N.A. Comparative characteristics of the VP7 and VP4 antigenic epitopes of the rotaviruses circulating in Russia (Nizhny Novgorod) and the Rotarix and RotaTeq vaccines. Arch. Virol. 2015, 160, 1693–1703. [Google Scholar] [CrossRef]
- Hoque, S.A.; Khandoker, N.; Thongprachum, A.; Khamrin, P.; Takanashi, S.; Okitsu, S.; Nishimura, S.; Kikuta, H.; Yamamoto, A.; Sugita, K.; et al. Distribution of rotavirus genotypes in Japan from 2015 to 2018: Diversity in genotypes before and after introduction of rotavirus vaccines. Vaccine 2020, 38, 3980–3986. [Google Scholar] [CrossRef]
- Arya, J.; Prausnitz, M.R. Microneedle patches for vaccination in developing countries Graphical abstract HHS Public Access. J. Control Release 2016, 240, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Vrdoljak, A.; Allen, E.A.; Ferrara, F.; Temperton, N.J.; Crean, A.M.; Moore, A.C. Induction of broad immunity by thermostabilised vaccines incorporated in dissolvable microneedles using novel fabrication methods. J. Control. Release 2016, 225, 192–204. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.J.; Yoo, D.G.; Bondy, B.J.; Quan, F.S.; Compans, R.W.; Kang, S.M.; Prausnitz, M.R. Stability of influenza vaccine coated onto microneedles. Bone 2008, 23, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.C.; Quan, F.S.; Compans, R.W.; Kang, S.M.; Prausnitz, M.R. Stability kinetics of influenza vaccine coated onto microneedles during drying and storage. Pharm. Res. 2011, 28, 135–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Fernando, G.J.P.; Crichton, M.L.; Flaim, C.; Yukiko, S.R.; Fairmaid, E.J.; Corbett, H.J.; Primiero, C.A.; Ansaldo, A.B.; Frazer, I.H.; et al. Improving the reach of vaccines to low-resource regions, with a needle-free vaccine delivery device and long-term thermostabilization. J. Control. Release 2011, 152, 349–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moon, S.; Wang, Y.; Edens, C.; Gentsch, J.R.; Prausnitz, M.R.; Jiang, B. Dose sparing and enhanced immunogenicity of inactivated rotavirus vaccine administered by skin vaccination using a microneedle patch. Vaccine 2013, 31, 3396–3402. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cárcamo-Calvo, R.; Muñoz, C.; Buesa, J.; Rodríguez-Díaz, J.; Gozalbo-Rovira, R. The Rotavirus Vaccine Landscape, an Update. Pathogens 2021, 10, 520. https://doi.org/10.3390/pathogens10050520
Cárcamo-Calvo R, Muñoz C, Buesa J, Rodríguez-Díaz J, Gozalbo-Rovira R. The Rotavirus Vaccine Landscape, an Update. Pathogens. 2021; 10(5):520. https://doi.org/10.3390/pathogens10050520
Chicago/Turabian StyleCárcamo-Calvo, Roberto, Carlos Muñoz, Javier Buesa, Jesús Rodríguez-Díaz, and Roberto Gozalbo-Rovira. 2021. "The Rotavirus Vaccine Landscape, an Update" Pathogens 10, no. 5: 520. https://doi.org/10.3390/pathogens10050520
APA StyleCárcamo-Calvo, R., Muñoz, C., Buesa, J., Rodríguez-Díaz, J., & Gozalbo-Rovira, R. (2021). The Rotavirus Vaccine Landscape, an Update. Pathogens, 10(5), 520. https://doi.org/10.3390/pathogens10050520