1. Introduction
2. Results
3. Discussion
4. Material and Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Snydman, D.R. Lyme disease. Medicine 2017, 45, 743–746. [Google Scholar] [CrossRef]
- Gern, L.; Estrada-Peña, A.; Frandsen, F.; Gray, J.S.; Jaenson, T.G.T.; Jongejan, F.; Kahl, O.; Korenberg, E.; Mehl, R.; Nuttall, P.A. European reservoir hosts of Borrelia burgdorferi sensu lato. Zbl. Bakter. 1998, 287, 196–204. [Google Scholar] [CrossRef]
- Sharma, N.; Hotta, A.; Yamamoto, Y.; Uda, A.; Fujita, O.; Mizoguchi, T.; Shindo, J.; Park, C.-H.; Kudo, N.; Hatai, H.; et al. Serosurveillance for Francisella tularensis among wild animals in Japan using a newly developed competitive enzyme-linked immunosorbent assay. Vector Borne Zoonotic Dis. 2014, 14, 234–239. [Google Scholar] [CrossRef]
- Żukiewicz-Sobczak, W.; Zwoliński, J.; Chmielewska-Badora, J.; Galińska, E.M.; Cholewa, G.; Krasowska, E.; Zagórski, J.; Wojtyła, A.; Tomasiewicz, K.; Kłapeć, T. Prevalence of antibodies against selected zoonotic agents in forestry workers from eastern and southern Poland. Ann. Agric. Environ. Med. 2014, 21, 767–770. [Google Scholar] [CrossRef] [PubMed]
- Bolaños-Rivero, M.; Carranza-Rodríguez, C.; Rodríguez, N.F.; Gutiérrez, C.; Pérez-Arellano, J.-L. Detection of Coxiella burnetii DNA in peridomestic and wild animals and ticks in an endemic region (Canary Islands, Spain). Vector Borne Zoonotic Dis. 2017, 17, 630–634. [Google Scholar] [CrossRef] [PubMed]
- Pluta, S.; Hartelt, K.; Oehme, R.; Mackenstedt, U.; Kimmig, P. Prevalence of Coxiella burnetii and Rickettsia spp. In ticks and rodents in southern Germany. Ticks Tick Borne Dis. 2010, 1, 145–147. [Google Scholar] [CrossRef]
- Psaroulaki, A.; Hadjichristodoulou, C.; Loukaides, F.; Soteriades, E.; Konstantinidis, A.; Papastergiou, P.; Ioannidou, M.C.; Tselentis, Y. Epidemiological study of Q fever in humans, ruminant animals, and ticks in Cyprus using a geographical information system. Eur. J. Clin. Microbiol. Infect. Dis. 2006, 25, 576–586. [Google Scholar] [CrossRef]
- Maurin, M.; Raoult, D. Q fever. Clin. Microbiol. Rev. 1999, 12, 518–553. [Google Scholar] [CrossRef]
- Baskerville, A.; Hambleton, P. Pathogenesis and pathology of respiratory tularemia in the rabbit. Br. J. Exp. Pathol. 1976, 57, 339–347. [Google Scholar]
- Hennebique, A.; Boisset, S.; Maurin, M. Tularemia as a waterborne disease: A review. Emerg. Microbes Infect. 2019, 8, 1027–1042. [Google Scholar] [CrossRef]
- Vostal, K.; Žákovská, A. Two-year study of examination of blood from wild rodents for the presence of antiborrelian antibodies. Ann. Agric. Environ. Med. 2003, 10, 203–206. [Google Scholar]
- Štefančíková, A.; Bhide, M.; Peťko, B.; Stanko, M.; Mošanský, L.; Fričova, J.; Derdáková, M.; Trávniček, M. Anti-Borrelila antibodies in rodents: Important hosts in ecology of Lyme disease. Ann. Agric. Environ. Med. 2004, 11, 209–213. [Google Scholar]
- Štefančíková, A.; Derdáková, M.; Škardová, I.; Szestáková, E.; Čisláková, L.; Kováčová, D.; Stanko, M.; Peťko, B. Some epidemiological and epizootiological aspects of Lyme borreliosis in Slovakia with the emphasis on the problems of serological diagnostics. Biologia 2008, 63, 1135–1142. [Google Scholar] [CrossRef]
- Pawelczyk, A.; Sinski, E. Prevalence of IGG antibodies response to Borrelia burgdorferi s.l. in populations of wild rodents from Mazury Lakes District region of Poland. Ann. Agric. Environ. Med. 2000, 7, 79–83. [Google Scholar]
- Pascucci, I.; Di Domenico, M.; Dall’Acqua, F.; Sozio, G.; Camma, C. Detection of Lyme Disease and Q Fever agents in wild rodents in central Italy. Vector Borne Zoonotic Dis. 2015, 15, 404–411. [Google Scholar] [CrossRef]
- Meredith, A.L.; Cleaveland, S.C.; Denwood, M.J.; Brown, J.K.; Shaw, D.J. Coxiella burnetii (Q fever) seroprevalence in prey and predators in the United Kingdom: Evaluation of infection in wild rodents, foxes and domestic cats using a modified ELISA. Transbound Emerg. Dis. 2015, 62, 639–649. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, S.; Essbauer, S.S.; Mayer-Scholl, A.; Poppert, S.; Schmidt-Chanasit, J.; Klempa, B.; Henning, K.; Schares, G.; Groschup, M.H.; Spitzenberger, F.; et al. Multiple infections of rodents with zoonotic pathogens in Austria. Vector Borne Zoonotic Dis. 2014, 14. [Google Scholar] [CrossRef]
- Christova, I.; Gladnishka, T. Prevalence of infection with Francisella tularensis, Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum in rodents from an endemic focus of tularemia in Bulgaria. Ann. Agric. Environ. Med. 2004, 12, 149–152. [Google Scholar]
- Mostafavi, E.; Shahraki, A.H.; Japoni-Nejad, A.; Esmaeili, S.; Darvish, J.; Sedaghat, M.M.; Mohammadi, A.; Mohammadi, Z.; Mahmoudi, A.; Pourhossein, B.; et al. A field study of plague and tularaemia in rodents, Western Iran. Vector Borne Zoonotic Dis. 2017, 17, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Liu, W.; Chu, M.C.; He, J.; Duan, Q.; Wu, X.-M.; Zhang, P.-H.; Zhao, Q.-M.; Yang, H.; Xin, Z.-T.; et al. Francisella tularensis in rodents, China. Emerg. Infect. Dis. 2006, 12, 994–996. [Google Scholar] [CrossRef] [PubMed]
- Sunagar, R.; Kumar, S.; Franz, B.J.; Gosselin, E.J. Vaccination evokes gender-dependent protection against tularemia infection in C57BL/6Tac mice. Vaccine 2016. [Google Scholar] [CrossRef]
- Výrosteková, V.; Khanakah, G.; Kocianová, E.; Gurycová, D.; Stanek, G. Prevalence of coinfection with Francisella tularensis in reservoir animals of Borrelia burgdorferi sensu lato. Wien. Klin. Wochenschr. 2002, 114, 482–488. [Google Scholar]
- Regier, Y.; Komma, K.; Weigel, W.; Kraiczy, P.; Laisi, A.; Pulliainen, A.T.; Hain, T.; Kempf, V.A.J. Combination of microbiome analysis and serodiagnostics to assess the risk of pathogen transmission by ticks to humans and animals in central Germany. Parasit. Vectors 2019, 12, 11. [Google Scholar] [CrossRef]
- Bielawska-Drózd, A.; Cieślik, P.; Żakowska, D.; Głowacka, P.; Wlizło-Skowronek, B.; Zięba, P.; Zdun, A. Detection of Coxiella burnetii and Francisella tularensis in tissues of wild-living animals and in ticks of North-west Poland. Pol. J. Microbiol. 2018, 67, 529–534. [Google Scholar] [CrossRef] [PubMed]
- Otto, P.; Chaignat, V.; Klimpel, D.; Diller, R.; Melzer, F.; Müller, W.; Tomaso, H. Serological investigation of wild boars (Sus scrofa) and red foxes (Vulpes vulpes) as indicator animals for circulation of Francisella tularensis in Germany. Vector Borne Zoonotic Dis. 2014, 14, 46–51. [Google Scholar] [CrossRef]
- Taylor, L.H.; Latham, S.; Mark, E.J. Woolhouse Risk factors for human disease emergence. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2001, 356, 983–989. [Google Scholar] [CrossRef] [PubMed]
- Szymańska-Czerwińska, M.; Galińska, E.M.; Niemczuk, K.; Knap, J.P. Prevalence of Coxiella burnetii infection in humans occupationally exposed to animals in Poland. Vector Borne Zoonotic Dis. 2015, 15, 261–267. [Google Scholar] [CrossRef]
- Daszak, P.; Cunningham, A.A.; Hyatt, A.D. Emerging infectious diseases of wildlife-threats to biodiversity and human Health. Science. Science 2000, 287, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Dahmana, H.; Granjon, L.; Diagne, C.; Davoust, B.; Fenollar, F.; Mediannikov, O. Rodents as hosts of pathogens and related zoonotic disease risk. Pathogens 2020, 9, 202. [Google Scholar] [CrossRef]
- Žákovská, A.; Rusňáková, H.; Vostal, K. Host response to Borrelia afzelii in BALB/c mice tested by immunoblotting. Ann. Agric. Environ. Med. 2013, 20, 823–825. [Google Scholar] [PubMed]
- Statsoft Inc. STATISTICA (Data Analysis Software System), Version 12. 2013. Available online: www.statsoft.com (accessed on 29 March 2021).
Characteristics | Animals Tested | Positive (%) | ||||
---|---|---|---|---|---|---|
B. burgdorferi | C. burnetii | F. tularensis | At Least One Infection | Antibodies to 2–3 Pathogens | ||
Species | ||||||
Apodemus flavicollis | 168 | 25 (15%) | 34 (20%) | 34 (20%) | 47 (28%) | 28 (17%) |
Apodemus sylvaticus | 9 | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
Myodes glareous | 28 | 4 (14%) | 6 (21%) | 7 (25%) | 8 (29%) | 7 (25%) |
Sorex araneus | 6 | 2 (33%) | 1 (17%) | 1 (17%) | 2 (33%) | 1 (17%) |
Statistical significance | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 | |
Sex | ||||||
Female | 104 | 19 (18%) | 25 (24%) | 27 (26%) | 33 (32%) | 24 (23%) |
Male | 107 | 12 (11%) | 16 (15%) | 15 (14%) | 24 (22%) | 12 (11%) |
Statistical significance | p > 0.05 | p > 0.05 | p = 0.0298 * | p > 0.05 | p = 0.022 * | |
Power of the test | 1 − β = 0.59 | 1 − β = 0.63 | ||||
Odds ratio, 95% CI for OR | OR = 2.15, 1.1–4.3 | OR = 2.38, 1.12–5.05 | ||||
Locality | ||||||
Moravian Karst | 177 | 31 (18%) | 37 (20%) | 40 (23%) | 52 (29%) | 35 (20%) |
Poodří | 34 | 0 (0%) | 4 (12%) | 2 (6%) | 5 (15%) | 1 (3%) |
Statistical significance | p = 0.0082 * | p > 0.05 | p = 0.0254 * | p > 0.05 | p = 0.0169 * | |
Power of the test | 1 − β = 0.94 | 1 − β = 0.68 | 1 − β = 1 | 1 − β = 0.77 | ||
Odds ratio, 95% CI for OR | NT | OR = 4.67, 1.1–20.3 | OR = 10.31, 4.3–26.7 | OR = 8.13, 1.08–61.5 | ||
Total | 211 | 31 (15%) | 41 (19%) | 42 (20%) | 57 (27%) | 36 (17%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).