Sequence Comparison of Vaginolysin from Different Gardnerella Species
Abstract
1. Introduction
2. Results
2.1. Amino Acid Sequence Differences Distinguish Five Vaginolysin Types
2.2. Cytokine Secretion Profiles of VK2 Cells Challenged with Type 1A and Type 2 VLY Are Similar
2.3. Type 1A rVLY Exhibits Greater Cytotoxicity on Cells with Less Membrane CD59
2.4. VaHMP Study Participants Are Simultaneously Colonized by Several Gardnerella Species
2.5. Gardnerella with Type 2 Vly Gene Reach Higher Proportional Abundance
2.6. Vaginal Symptoms May Be Associated with VLY Type
3. Discussion
4. Materials and Methods
4.1. Clade, Species, and VLY Type Assignment to Available Gardnerella Genomes
4.2. VLY Alignment
4.3. Distinction of VLY Types
4.4. Expression and Purification of Recombinant VLY
4.5. Comparison of VLY Monolayer Cytotoxicity
4.6. VK2 Monolayer Cytokine Analysis
4.7. VLY Type Metagenomic Data Analysis
4.8. Gardnerella Spp. Cpn60 Database
4.9. VLY Type Distribution among Study Participants
4.10. Relative Bacterial Abundance in Subjects with Different VLY Types
4.11. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gardner, H.L.; Dukes, C.D. Haemophilus Vaginalis Vaginitis: A Newly Defined Specific Infection Previously Classified Non-Specific Vaginitis. Am. J. Obstet. Gynecol. 1955, 69, 962–976. [Google Scholar] [CrossRef]
- Vaneechoutte, M.; Guschin, A.; Van Simaey, L.; Gansemans, Y.; Van Nieuwerburgh, F.; Cools, P. Emended Description of Gardnerella vaginalis and Description of Gardnerella leopoldii Sp. Nov., Gardnerella piotii Sp. Nov. and Gardnerella swidsinskii sp. Nov., with Delineation of 13 Genomic Species within the Genus Gardnerella. Int. J. Syst. Evol. Microbiol. 2019, 69, 679–687. [Google Scholar] [CrossRef]
- Gelber, S.E.; Aguilar, J.L.; Lewis, K.L.T.; Ratner, A.J. Functional and Phylogenetic Characterization of Vaginolysin, the Human-Specific Cytolysin from Gardnerella vaginalis. J. Bacteriol. 2008, 190, 3896–3903. [Google Scholar] [CrossRef]
- Rottini, G.; Dobrina, A.; Forgiarini, O.; Nardon, E.; Amirante, G.A.; Patriarca, P. Identification and Partial Characterization of a Cytolytic Toxin Produced by Gardnerella vaginalis. Infect. Immun. 1990, 58, 3751–3758. [Google Scholar] [CrossRef]
- Castro, J.; Alves, P.; Sousa, C.; Cereija, T.; França, Â.; Jefferson, K.K.; Cerca, N. Using an In-Vitro Biofilm Model to Assess the Virulence Potential of Bacterial Vaginosis or Non- Bacterial Vaginosis Gardnerella vaginalis Isolates. Sci. Rep. 2015, 5, 11640. [Google Scholar] [CrossRef]
- Pleckaityte, M.; Janulaitiene, M.; Lasickiene, R.; Zvirbliene, A. Genetic and Biochemical Diversity of Gardnerella vaginalis Strains Isolated from Women with Bacterial Vaginosis. FEMS Immunol. Med. Microbiol. 2012, 65, 69–77. [Google Scholar] [CrossRef]
- Janulaitiene, M.; Gegzna, V.; Baranauskiene, L.; Bulavaitė, A.; Simanavicius, M.; Pleckaityte, M. Phenotypic Characterization of Gardnerella vaginalis Subgroups Suggests Differences in Their Virulence Potential. PLoS ONE 2018, 13, e0200625. [Google Scholar] [CrossRef]
- Zilnyte, M.; Venclovas, C.; Zvirbliene, A.; Pleckaityte, M. The Cytolytic Activity of Vaginolysin Strictly Depends on Cholesterol and Is Potentiated by Human CD59. Toxins 2015, 7, 110–128. [Google Scholar] [CrossRef]
- Ramachandran, R.; Heuck, A.P.; Tweten, R.K.; Johnson, A.E. Structural Insights into the Membrane-Anchoring Mechanism of a Cholesterol-Dependent Cytolysin. Nat. Struct. Biol. 2002, 9, 823–827. [Google Scholar] [CrossRef]
- Hughes, T.R.; Ross, K.S.; Cowan, G.J.M.; Sivasankar, B.; Harris, C.L.; Mitchell, T.J.; Morgan, B.P. Identification of the High Affinity Binding Site in the Streptococcus intermedius Toxin Intermedilysin for Its Membrane Receptor, the Human Complement Regulator CD59. Mol. Immunol. 2009, 46, 1561–1567. [Google Scholar] [CrossRef]
- Lawrence, S.L.; Gorman, M.A.; Feil, S.C.; Mulhern, T.D.; Kuiper, M.J.; Ratner, A.J.; Tweten, R.K.; Morton, C.J.; Parker, M.W. Structural Basis for Receptor Recognition by the Human CD59-Responsive Cholesterol-Dependent Cytolysins. Structure 2016, 24, 1488–1498. [Google Scholar] [CrossRef]
- Kretzschmar, U.M.; Hammann, R.; Kutzner, H.J. Purification and Characterization of Gardnerella vaginalis Hemolysin. Curr. Microbiol. 1991, 23, 7–132. [Google Scholar] [CrossRef]
- Garcia, E.M.; Kraskauskiene, V.; Koblinski, J.E.; Jefferson, K.K. Interaction of Gardnerella vaginalis and Vaginolysin with the Apical versus Basolateral Face of a Three-Dimensional Model of Vaginal Epithelium. Infect. Immun. 2019, 87. [Google Scholar] [CrossRef]
- Nowak, R.G.; Randis, T.M.; Desai, P.; He, X.; Robinson, C.K.; Rath, J.; Glover, E.D.; Ratner, A.J.; Ravel, J.; Brotman, R.M. Higher Levels of a Cytotoxic Protein, Vaginolysin, in Lactobacillus-Deficient Community State Types at the Vaginal Mucosa. Sex. Transm. Dis. 2018, 45, e14–e17. [Google Scholar] [CrossRef]
- Hedges, S.R.; Barrientes, F.; Desmond, R.A.; Schwebke, J.R. Local and Systemic Cytokine Levels in Relation to Changes in Vaginal Flora. J. Infect. Dis. 2006, 193, 556–562. [Google Scholar] [CrossRef]
- Cauci, S.; Driussi, S.; Guaschino, S.; Isola, M.; Quadrifoglio, F. Correlation of Local Interleukin-1β Levels with Specific IgA Response Against Gardnerella vaginalis Cytolysin in Women with Bacterial Vaginosis. Am. J. Reprod. Immunol. 2002, 47, 257–264. [Google Scholar] [CrossRef]
- Cauci, S.; Scrimin, F.; Driussi, S.; Ceccone, S.; Monte, R.; Fant, L.; Quadrifoglio, F. Specific Immune Response against Gardnerella vaginalis Hemolysin in Patients with Bacterial Vaginosis. Am. J. Obstet. Gynecol. 1996, 175, 1601–1605. [Google Scholar] [CrossRef]
- Cauci, S.; Thorsen, P.; Schendel, D.E.; Bremmelgaard, A.; Quadrifoglio, F.; Guaschino, S. Determination of Immunoglobulin A against Gardnerella vaginalis Hemolysin, Sialidase, and Prolidase Activities in Vaginal Fluid: Implications for Adverse Pregnancy Outcomes. J. Clin. Microbiol. 2003, 41, 435–438. [Google Scholar] [CrossRef]
- Harwich, M.D., Jr.; Alves, J.M.; Buck, G.A.; Strauss Iii, J.F.; Patterson, J.L.; Oki, A.T.; Girerd, P.H.; Jefferson, K.K. Drawing the Line between Commensal and Pathogenic Gardnerella vaginalis through Genome Analysis and Virulence Studies. BMC Genom. 2010, 11, 375. [Google Scholar] [CrossRef]
- Yeoman, C.J.; Yildirim, S.; Thomas, S.M.; Durkin, A.S.; Torralba, M.; Buhay, C.J.; Ding, Y.; Dugan-rocha, S.P.; Muzny, D.M.; Qin, X.; et al. Comparative Genomics of Gardnerella vaginalis Strains Reveals Substantial Differences in Metabolic and Virulence Potential. PLoS ONE 2010, 5, e12411. [Google Scholar] [CrossRef]
- Cornejo, O.E.; Hickey, R.J.; Suzuki, H.; Forney, L.J. Focusing the Diversity of Gardnerella vaginalis through the Lens of Ecotypes. Evol. Appl. 2018, 11, 312–324. [Google Scholar] [CrossRef]
- Fredricks, D.N.; Fiedler, T.L.; Thomas, K.K.; Oakley, B.B.; Marrazzo, J.M. Targeted PCR for Detection of Vaginal Bacteria Associated with Bacterial Vaginosis. J. Clin. Microbiol. 2007, 45, 3270–3276. [Google Scholar] [CrossRef]
- Callahan, B.J.; DiGiulio, D.B.; Goltsman, D.S.A.; Sun, C.L.; Costello, E.K.; Jeganathan, P.; Biggio, J.R.; Wong, R.J.; Druzin, M.L.; Shaw, G.M.; et al. Replication and Refinement of a Vaginal Microbial Signature of Preterm Birth in Two Racially Distinct Cohorts of US Women. Proc. Natl. Acad. Sci. USA 2017, 114, 9966–9971. [Google Scholar] [CrossRef]
- Ma, B.; France, M.T.; Crabtree, J.; Holm, J.B.; Humphrys, M.S.; Brotman, R.M.; Ravel, J. A Comprehensive Non-Redundant Gene Catalog Reveals Extensive within-Community Intraspecies Diversity in the Human Vagina. Nat. Commun. 2020, 11, 940. [Google Scholar] [CrossRef]
- Fettweis, J.; Alves, J.; Borzelleca, J.; Brooks, J.; Friedline, C.; Gao, Y.; Gao, X.; Girerd, P.; Harwich, M.; Hendricks, S.; et al. The Vaginal Microbiome: Disease, Genetics and the Environment. Nat. Preced. 2010. [Google Scholar] [CrossRef]
- Macklaim, J.M.; Gloor, G.B.; Anukam, K.C.; Cribby, S.; Reid, G. At the Crossroads of Vaginal Health and Disease, the Genome Sequence of Lactobacillus iners AB-1. Proc. Natl. Acad. Sci. USA 2011, 108, 4688–4695. [Google Scholar] [CrossRef]
- Rampersaud, R.; Planet, P.J.; Randis, T.M.; Kulkarni, R.; Aguilar, J.L.; Lehrer, R.I.; Ratner, A.J. Inerolysin, a Cholesterol-Dependent Cytolysin Produced by Lactobacillus iners. J. Bacteriol. 2011, 193, 1034–1041. [Google Scholar] [CrossRef]
- Ahmed, A.; Earl, J.; Retchless, A.; Hillier, S.L.; Rabe, L.K.; Cherpes, T.L.; Powell, E.; Janto, B.; Eutsey, R.; Luisa Hiller, N.; et al. Comparative Genomic Analyses of 17 Clinical Isolates of Gardnerella vaginalis Provide Evidence of Multiple Genetically Isolated Clades Consistent with Subspeciation into Genovars. J. Bacteriol. 2012, 194, 3922–3937. [Google Scholar] [CrossRef]
- Hill, J.E.; Albert, A.Y.K. Resolution and Co-Occurrence Patterns of Gardnerella leopoldii, Gardnerella swidsinskii, Gardnerella piotii and Gardnerella vaginalis within the Vaginal Microbiome. Infect. Immun. 2019. [Google Scholar] [CrossRef]
- Ounit, R.; Wanamaker, S.; Close, T.J.; Lonardi, S. CLARK: Fast and Accurate Classification of Metagenomic and Genomic Sequences Using Discriminative k-Mers. BMC Genom. 2015, 16, 1–13. [Google Scholar] [CrossRef]
- Janulaitiene, M.; Paliulyte, V.; Grinceviciene, S.; Zakareviciene, J.; Vladisauskiene, A.; Marcinkute, A.; Pleckaityte, M. Prevalence and Distribution of Gardnerella vaginalis Subgroups in Women with and without Bacterial Vaginosis. BMC Infect. Dis. 2017, 17, 394. [Google Scholar] [CrossRef]
- Bohr, L.L.; Mortimer, T.D.; Pepperell, C.S. Lateral Gene Transfer Shapes Diversity of Gardnerella spp. Front. Cell. Infect. Microbiol. 2020, 10, 293. [Google Scholar] [CrossRef]
- Shewell, L.K.; Day, C.J.; Jen, F.E.-C.; Haselhorst, T.; Atack, J.M.; Reijneveld, J.F.; Everest-Dass, A.; James, D.B.A.; Boguslawski, K.M.; Brouwer, S.; et al. All Major Cholesterol-Dependent Cytolysins Use Glycans as Cellular Receptors. Sci. Adv. 2020, 6, eaaz4926. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: A Multiple Sequence Alignment Method with Reduced Time and Space Complexity. BMC Bioinform. 2004, 5, 113. [Google Scholar] [CrossRef]
- Dereeper, A.; Guignon, V.; Blanc, G.; Audic, S.; Buffet, S.; Chevenet, F.; Dufayard, J.; Guindon, S.; Lefort, V.; Lescot, M.; et al. Phylogeny.Fr: Robust Phylogenetic Analysis for the Non-Specialist | Nucleic Acids Research | Oxford Academic. Nucleic Acids Res. 2008, 36, W465–W469. [Google Scholar] [CrossRef]
- Dereeper, A.; Audic, S.; Claverie, J.M.; Blanc, G. BLAST-EXPLORER Helps You Building Datasets for Phylogenetic Analysis. BMC Evol. Biol. 2010, 10, 8. [Google Scholar] [CrossRef]
- Madeira, F.; mi Park, Y.; Lee, J.; Buso, N.; Gur, T.; Madhusoodanan, N.; Basutkar, P.; Tivey, A.R.N.; Potter, S.C.; Finn, R.D.; et al. The EMBL-EBI Search and Sequence Analysis Tools APIs in 2019. Nucleic Acids Res. 2019, 47, W636–W641. [Google Scholar] [CrossRef]
- Abdelmaksoud, A.A.; Girerd, P.H.; Garcia, E.M.; Brooks, J.P.; Leftwich, L.M.; Sheth, N.U.; Bradley, S.P.; Serrano, M.G.; Fettweis, J.M.; Huang, B.; et al. Association between Statin Use, the Vaginal Microbiome, and Gardnerella vaginalis Vaginolysin-Mediated Cytotoxicity. PLoS ONE 2017, 12, e0183765. [Google Scholar] [CrossRef]
- Fichorova, R.N.; Rheinwald, J.G.; Anderson, D.J. Generation of Papillomavirus-Immortalized Cell Lines from Normal Human Ectocervical, Endocervical, and Vaginal Epithelium That Maintain Expression of Tissue-Specific Differentiation Proteins. Biol. Reprod. 1997, 57, 847–855. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput. Biol. J. Comput. Mol. Cell Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid Prokaryotic Genome Annotation. Bioinform. Oxf. Engl. 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia, E.M.; Serrano, M.G.; Edupuganti, L.; Edwards, D.J.; Buck, G.A.; Jefferson, K.K. Sequence Comparison of Vaginolysin from Different Gardnerella Species. Pathogens 2021, 10, 86. https://doi.org/10.3390/pathogens10020086
Garcia EM, Serrano MG, Edupuganti L, Edwards DJ, Buck GA, Jefferson KK. Sequence Comparison of Vaginolysin from Different Gardnerella Species. Pathogens. 2021; 10(2):86. https://doi.org/10.3390/pathogens10020086
Chicago/Turabian StyleGarcia, Erin M., Myrna G. Serrano, Laahirie Edupuganti, David J. Edwards, Gregory A. Buck, and Kimberly K. Jefferson. 2021. "Sequence Comparison of Vaginolysin from Different Gardnerella Species" Pathogens 10, no. 2: 86. https://doi.org/10.3390/pathogens10020086
APA StyleGarcia, E. M., Serrano, M. G., Edupuganti, L., Edwards, D. J., Buck, G. A., & Jefferson, K. K. (2021). Sequence Comparison of Vaginolysin from Different Gardnerella Species. Pathogens, 10(2), 86. https://doi.org/10.3390/pathogens10020086