Impact of the Peptide WMR-K on Dual-Species Biofilm Candida albicans/Klebsiella pneumoniae and on the Untargeted Metabolomic Profile
Abstract
:1. Introduction
2. Results
2.1. Antimicrobial and Antibiofilm Activities
2.2. Metabolomic Analysis
3. Discussion
4. Materials and Methods
4.1. Microbial Strains and Cultural Conditions
4.2. Peptide Synthesis
4.3. Minimum Inhibitory Concentration and MBC/MFC
4.4. Time to Kill Assays
4.5. Biofilm Formation and Quantification
4.6. Quantification of Mixed Biofilm by Colony Forming Units (CFUs)
4.7. Inhibition and Eradication of WMR-K on Mono- and Polymicrobial Biofilms
4.8. Metabolomic Analysis
4.8.1. Sample Preparation
4.8.2. GC-MS Analysis
4.8.3. Data Processing and Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dang, H.; Lovell, C.R. Microbial surface colonization and biofilm development in marine environments. Microbiol. Mol. Biol. Rev. 2016, 80, 91–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giaouris, E.E.; Simões, M.V. Pathogenic biofilm formation in the food industry and alternative control strategies. In Foodborne Diseases, 1st ed.; Grumezescu, A., Holban, A.M., Eds.; Accademic Press: London, UK, 2018; pp. 309–377. [Google Scholar]
- Danhorn, T.; Fuqua, C. Biofilm formation by plant-associated bacteria. Annu. Rev. Microbiol. 2007, 61, 401–422. [Google Scholar] [CrossRef] [PubMed]
- Francolini, I.; Donelli, G. Prevention and control of biofilm-based medical-device-related infections. FEMS Immunol. Med. Microbiol. 2010, 59, 227–238. [Google Scholar] [CrossRef] [Green Version]
- Chang, Z.; Yadav, V.; Lee, S.C.; Heitman, J. Epigenetic mechanisms of drug resistance in fungi. Fungal Genet. Biol. 2019, 132, 103253. [Google Scholar] [CrossRef] [PubMed]
- Billmyre, R.B.; Heitman, J. Genetic and epigenetic engines of diversity in pathogenic microbes. PLoS Pathog. 2017, 13, 1–7. [Google Scholar] [CrossRef] [Green Version]
- O’kane, C.J.; Weild, R.; Hyland, E.M. Chromatin structure and drug resistance in Candida spp. J. Fungi 2020, 6, 121. [Google Scholar] [CrossRef] [PubMed]
- Drenkard, E. Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes Infect. 2003, 5, 1213–1219. [Google Scholar] [CrossRef]
- Lu, M.; Yan, H.; Yu, C.; Yuan, L.; Sun, S. Proton pump inhibitors act synergistically with fluconazole against resistant Candida albicans. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Anderson, G.G.; O’toole, G.A. Innate and induced resistence mechanisms of bacterial biofilms. In Bacterial biofilms; Romeo, T., Ed.; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Peleg, A.Y.; Hogan, D.A.; Mylonakis, E. Medically important bacterialg-fungal interactions. Nat. Rev. Microbiol. 2010, 8, 340–349. [Google Scholar] [CrossRef] [PubMed]
- de Alteriis, E.; Lombardi, L.; Falanga, A.; Napolano, M.; Galdiero, S.; Siciliano, A.; Carotenuto, R.; Guida, M.; Galdiero, E. Polymicrobial antibiofilm activity of the membranotropic peptide gH625 and its analogue. Microb. Pathog. 2018, 125, 189–195. [Google Scholar] [CrossRef]
- Souza, L.C.D.; da Mota, V.B.R.; de Carvalho, A.V.D.S.Z.; da Corrêa, R.G.C.F.; Libério, S.A.; Lopes, F.F. Association between pathogens from tracheal aspirate and oral biofilm of patients on mechanical ventilation. Braz. Oral Res. 2017, 31, e38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singhai, M.; Shahid, M.; Malik, A.; Malik, A.; Rawat, V. Colonization of peripheral intravascular catheters with biofilm producing microbes: Evaluation of risk factors. Niger. Med. J. 2012, 53, 37. [Google Scholar] [CrossRef]
- Nobile, C.J.; Johnson, A.D. Candida albicans biofilms and human disease. Annu. Rev. Microbiol. 2015, 69, 71–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galdiero, E.; de Alteriis, E.; De Natale, A.; D’Alterio, A.; Siciliano, A.; Guida, M.; Lombardi, L.; Falanga, A.; Galdiero, S. Eradication of Candida albicans persister cell biofilm by the membranotropic peptide gH625. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Martins, N.; Rodrigues, C.F. Biomaterial-related Infections. J. Clin. Med. 2020, 9, 722. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.M.; Dong, W.L.; Odah, K.A.; Kong, L.C.; Ma, H.X. Transcriptome analysis reveals AI-2 relevant genes of multi-drug resistant Klebsiella pneumoniae in response to eugenol at sub-MIC. Front. Microbiol. 2019, 10, 1159. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Khan, S.N.; Akhtar, F.; Misba, L.; Meena, R.; Khan, A.U. Inhibition of multi-drug resistant Klebsiella pneumoniae: Nanoparticles induced photoinactivation in presence of efflux pump inhibitor. Eur. J. Pharm. Biopharm. 2020, 157, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Foroohimanjili, F.; Mirzaie, A.; Hamdi, S.M.M.; Noorbazargan, H.; Hedayati Ch, M.; Dolatabadi, A.; Rezaie, H.; Bishak, F.M. Antibacterial, antibiofilm, and antiquorum sensing activities of phytosynthesized silver nanoparticles fabricated from Mespilus germanica extract against multidrug resistance of Klebsiella pneumoniae clinical strains. J. Basic Microbiol. 2020, 60, 216–230. [Google Scholar] [CrossRef] [PubMed]
- Sousa, F.; Ferreira, D.; Reis, S.; Costa, P. Current insights on antifungal therapy: Novel nanotechnology approaches for drug delivery systems and new drugs from natural sources. Pharmaceuticals 2020, 13, 248. [Google Scholar] [CrossRef] [PubMed]
- Kundukad, B.; Udayakumar, G.; Grela, E.; Kaur, D.; Rice, S.A.; Kjelleberg, S.; Doyle, P.S. Weak acids as an alternative anti-microbial therapy. Biofilm 2020, 2, 100019. [Google Scholar] [CrossRef]
- Falanga, A.; Lombardi, L.; Franci, G.; Vitiello, M.; Iovene, M.R.; Morelli, G.; Galdiero, M.; Galdiero, S. Marine antimicrobial peptides: Nature provides templates for the design of novel compounds against pathogenic bacteria. Int. J. Mol. Sci. 2016, 17, 785. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.K.; Kim, C.; Seo, C.H.; Park, Y. The therapeutic applications of antimicrobial peptides (AMPs): A patent review. J. Microbiol. 2017, 55, 1–12. [Google Scholar] [CrossRef]
- Cantisani, M.; Leone, M.; Mignogna, E.; Kampanaraki, K.; Falanga, A.; Morelli, G.; Galdiero, M.; Galdiero, S. Structure-activity relations of myxinidin, an antibacterial peptide derived from the epidermal mucus of hagfish. Antimicrob. Agents Chemother. 2013, 57, 5665–5673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantisani, M.; Finamore, E.; Mignogna, E.; Falanga, A.; Nicoletti, G.F.; Pedone, C.; Morelli, G.; Leone, M.; Galdiero, M.; Galdiero, S. Structural insights into and activity analysis of the antimicrobial peptide myxinidin. Antimicrob. Agents Chemother. 2014, 58, 5280–5290. [Google Scholar] [CrossRef] [Green Version]
- Lombardi, L.; Stellato, M.I.; Oliva, R.; Falanga, A.; Galdiero, M.; Petraccone, L.; D’Errico, G.; De Santis, A.; Galdiero, S.; Del Vecchio, P. Antimicrobial peptides at work: Interaction of myxinidin and its mutant WMR with lipid bilayers mimicking the P. aeruginosa and E. coli membranes. Sci. Rep. 2017, 7, 44425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lombardi, L.; Shi, Y.; Falanga, A.; Galdiero, E.; De Alteriis, E.; Franci, G.; Chourpa, I.; Azevedo, H.S.; Galdiero, S. Enhancing the potency of antimicrobial peptides through molecular engineering and self-assembly. Biomacromolecules 2019, 20, 1362–1374. [Google Scholar] [CrossRef]
- Salvatore, M.M.; Alves, A.; Andolfi, A. Secondary metabolites of Lasiodiplodia theobromae: Distribution, chemical diversity, bioactivity, and implications of their occurrence. Toxins 2020, 12, 457. [Google Scholar] [CrossRef]
- Barzkar, N.; Jahromi, S.T.; Poorsaheli, H.B.; Vianello, F. Metabolites from marine microorganisms, micro, and macroalgae: Immense scope for pharmacology. Mar. Drugs 2019, 17, 464. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Kumar, M.; Mittal, A.; Mehta, P.K. Microbial metabolites in nutrition, healthcare and agriculture. 3 Biotech 2017, 7, 15. [Google Scholar] [CrossRef] [Green Version]
- Félix, C.; Salvatore, M.M.; DellaGreca, M.; Ferreira, V.; Duarte, A.S.; Salvatore, F.; Naviglio, D.; Gallo, M.; Alves, A.; Esteves, A.C.; et al. Secondary metabolites produced by grapevine strains of Lasiodiplodia theobromae grown at two different temperatures. Mycologia 2019, 111, 466–476. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, S.; Demain, A.L. Metabolic regulation and overproduction of primary metabolites. Microb. Biotechnol. 2008, 1, 283–319. [Google Scholar] [CrossRef]
- Baran, R.; Bowen, B.P.; Northen, T.R. Untargeted metabolic footprinting reveals a surprising breadth of metabolite uptake and release by Synechococcus sp. PCC 7002. Mol. Biosyst. 2011, 7, 3200–3206. [Google Scholar] [CrossRef] [Green Version]
- Chumnanpuen, P.; Hansen, M.A.E.; Smedsgaard, J.; Nielsen, J. Dynamic metabolic footprinting reveals the key components of metabolic network in yeast Saccharomyces cerevisiae. Int. J. Genomics 2014, 2014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, C.; Viana, T.; Petersen, M.A.; Larsen, F.H.; Arneborg, N. Metabolic footprint analysis of metabolites that discriminate single and mixed yeast cultures at two key time-points during mixed culture alcoholic fermentations. Metabolomics 2018, 14, 93. [Google Scholar] [CrossRef] [PubMed]
- Patejko, M.; Jacyna, J.; Markuszewski, M.J. Sample preparation procedures utilized in microbial metabolomics: An overview. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1043, 150–157. [Google Scholar] [CrossRef]
- Stepanović, S.; Vuković, D.; Dakić, I.; Savić, B.; Švabić-Vlahović, M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J. Microbiol. Methods 2000, 40, 175–179. [Google Scholar] [CrossRef]
- AMDIS NET. Available online: www.amdis.net (accessed on 1 December 2020).
- Styczynski, M.P.; Moxley, J.F.; Tong, L.V.; Walther, J.L.; Jensen, K.L.; Stephanopoulos, G.N. Systematic identification of conserved metabolites in GC/MS data for metabolomics and biomarker discovery. Anal. Chem. 2007, 79, 966–973. [Google Scholar] [CrossRef] [PubMed]
- Salvatore, M.M.; Nicoletti, R.; Salvatore, F.; Naviglio, D.; Andolfi, A. GC–MS approaches for the screening of metabolites produced by marine-derived Aspergillus. Mar. Chem. 2018, 206, 19–33. [Google Scholar] [CrossRef]
- Doggett, S.L.; Dwyer, D.E.; Peñas, P.F.; Russell, R.C. Bed bugs: Clinical relevance and control options. Clin. Microbiol. Rev. 2012, 25, 164–192. [Google Scholar] [CrossRef] [Green Version]
- Kart, D.; Yabanoglu Ciftci, S.; Nemutlu, E. Altered metabolomic profile of dual-species biofilm: Interactions between Proteus mirabilis and Candida albicans. Microbiol. Res. 2020, 230, 126346. [Google Scholar] [CrossRef]
- Nett, J.E.; Lepak, A.J.; Marchillo, K.; Andes, D.R. Time course global gene expression analysis of an in vivo Candida biofilm. J. Infect. Dis. 2009, 200, 307–313. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Wang, H.; Shang, Q.; Jiang, Y.; Cao, Y.; Chai, Y. Time course analysis of Candida albicans metabolites during biofilm development. J. Proteome Res. 2013, 12, 2375–2385. [Google Scholar] [CrossRef] [PubMed]
- Cabiscol, E.; Tamarit, J.; Ros, J. Oxidative stress in bacteria and protein damage by reactive oxygen species. Int. Microbiol. 2000, 3, 3–8. [Google Scholar] [PubMed]
- Alvarez-Peral, F.J.; Zaragoza, O.; Pedreño, Y.; Argüelles, J.C. Protective role of trehalose during severe oxidative stress caused by hydrogen peroxide and the adaptive oxidative stress response in Candida albicans. Microbiology 2002, 148, 2599–2606. [Google Scholar] [CrossRef] [Green Version]
- Richards, A.B.; Krakowka, S.; Dexter, L.B.; Schmid, H.; Wolterbeek, A.P.M.; Waalkens-Berendsen, D.H.; Shigoyuki, A.; Kurimoto, M. Trehalose: A review of properties, history of use and human tolerance, and results of multiple safety studies. Food Chem. Toxicol. 2002, 40, 871–898. [Google Scholar] [CrossRef]
- Sánchez-Fresneda, R.; Guirao-Abad, J.P.; Argüelles, A.; González-Párraga, P.; Valentín, E.; Argüelles, J.C. Specific stress-induced storage of trehalose, glycerol and d-arabitol in response to oxidative and osmotic stress in Candida albicans. Biochem. Biophys. Res. Commun. 2013, 430, 1334–1339. [Google Scholar] [CrossRef]
- Mooney, S.; Leuendorf, J.E.; Hendrickson, C.; Hellmann, H. Vitamin B6: A long known compound of surprising complexity. Molecules 2009, 14, 329–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Liao, Z.B.; Yang, Y.; Lv, L.; Cao, Y.Y.; Zhu, Z.Y. Metabolomic profiling for the identification of potential biomarkers involved in a laboratory azole resistance in Candida albicans. PLoS ONE 2018, 13, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Zhu, Z.; Chen, X.; Yao, X.; Zhao, L.; Wang, H.; Yan, L.; Wu, H.; Chai, Y.; Jiang, Y. Effect of amphotericin B on the metabolic profiles of Candida albicans. J. Proteome Res. 2013, 12, 2921–2932. [Google Scholar] [CrossRef]
- Miao, Q.; Zhao, L.; Wang, Y.; Hao, F.; Sun, P.; He, P.; Liu, Y.; Huang, J.; Liu, X.; Liu, X.; et al. Microbial metabolomics and network analysis reveal fungistatic effect of basil (Ocimum basilicum) oil on Candida albicans. J. Ethnopharmacol. 2020, 260, 113002. [Google Scholar] [CrossRef]
- Salvatore, M.M.; Félix, C.; Lima, F.; Ferreira, V.; Duarte, A.S.; Salvatore, F.; Alves, A.; Esteves, A.C.; Andolfi, A. Effect of γ-aminobutyric acid (GABA) on the metabolome of two strains of Lasiodiplodia theobromae isolated from grapevine. Molecules 2020, 25, 3833. [Google Scholar] [CrossRef]
- Kim, K.; Kim, N.J.; Kim, S.Y.; Kim, I.H.; Kim, K.S.; Lee, G.R. Cyclo(Phe-Pro) produced by the human pathogen Vibrio vulnificus inhibits host innate immune responses through the NF-κB pathway. Infect. Immun. 2015, 83, 1150–1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, 4th ed.; Wayne, P.A., Ed.; Clinical and Laboratory Standards Institute: Annapolis Junction, MD, USA, 2017. [Google Scholar]
- De Alteriis, E.; Galdiero, S.; Di Lella, F.M.; Gesuele, R.; Guida, M.; Galdiero, E. Efficiency of gold nanoparticles coated with the antimicrobial peptide indolicidin against biofilm formation and development of Candida spp. clinical isolates. Infect. Drug Resist. 2018, 11, 915–925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vilela, S.F.G.; Barbosa, J.O.; Rossoni, R.D.; Santos, J.D.; Prata, M.C.A.; Anbinder, A.L.; Jorge, A.O.C.; Junqueira, J.C. Lactobacillus acidophilus ATCC 4356 inhibits biofilm formation by C. Albicans and attenuates the experimental candidiasis in Galleria mellonella. Virulence 2015, 6, 29–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guida, M.; Salvatore, M.M.; Salvatore, F. A strategy for GC/MS quantification of polar compounds via their silylated surrogates: Silylation and quantification of biological amino acids. J. Anal. Bioanal. Tech. 2015, 6. [Google Scholar] [CrossRef] [Green Version]
- MATLAB. Available online: https://www.mathworks.com (accessed on 1 December 2020).
- NIST 14. Available online: https://www.nist.gov/srd/nist-standard-reference-database-1a (accessed on 9 December 2020).
- Golm Metabolome Database. Available online: http://gmd.mpimp-golm.mpg.de/ (accessed on 9 December 2020).
- Hummel, J.; Strehmel, N.; Selbig, J.; Walther, D.; Kopka, J. Decision tree supported substructure prediction of metabolites from GC-MS profiles. Metabolomics 2010, 6, 322–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Metabolite | VIP Score | t Test ‘p-Value’ | Trend | Fold Change | Functional Category | |
---|---|---|---|---|---|---|
1 | Serine, 3TMS (RI: 1375) | 1.627 | 1.94 × 10−12 | ↑ | 8.54 | Amino acid metab. |
2 | 2-Isopropyl-3-ketobutyrate, 2TMS (RI: 1463) | 1.625 | 2.40 × 10−12 | ↑ | 17.34 | − |
3 | Adenine, 2TMS (RI: 1890) | 1.623 | 6.20 × 10−11 | ↓ | 25.75 | Nucleotide and energy metab. |
4 | Tyrosine, 3TMS (RI: 1962) | 1.572 | 7.26 × 10−8 | ↓ | 1.48 | Amino acid metab. |
5 | Lysine, 3TMS (RI: 1722) | 1.557 | 1.48 × 10−7 | ↓ | 2.91 | Amino acid metab. |
6 | Ornithine, 3TMS (RI: 1632) | 1.547 | 3.40 × 10−7 | ↓ | 9.54 | Amino acid metab. |
7 | 2-Methylglutaconic acid, 3TMS (RI: 1149) | 1.562 | 4.88 × 10−7 | ↑ | 6.32 | − |
8 | Trehalose, 8TMS (RI: 2810) | 1.540 | 5.99 × 10−7 | ↑ | 41.65 | Stress response |
9 | Pyruvic acid, 2TMS (RI: 1108) | 1.530 | 1.18 × 10−6 | ↑ | 3.35 | Glycolysis/ gluconeogenesis |
10 | Tryptophan, 3TMS (RI: 2253) | 1.499 | 3.70 × 10−6 | ↓ | 3.04 | Amino acid metab. |
11 | Methionine, 2TMS (RI: 1536) | 1.491 | 6.41 × 10−6 | ↓ | 1.65 | Amino acid metab. |
12 | Asparagine [-H2O], 2TMS (RI: 15616) | 1.440 | 3.06 × 10−5 | ↓ | 1.53 | Amino acid metab. |
13 | Butanoic acid, 3TMS (RI: 1425) | 1.431 | 4.40 × 10−5 | ↑ | 1.38 | Lipid metab.- |
14 | Glutamic acid, 3TMS (RI: 1638) | 1.361 | 2.42 × 10−4 | ↓ | 1.26 | Amino acid metab. |
15 | Glycerol, 3TMS (RI: 1290) | 1.352 | 2.55 × 10−4 | ↑ | 1.52 | Stress response, lipid metab. |
16 | Phenylalanine, 2TMS (RI: 1647) | 1.326 | 4.74 × 10−4 | ↓ | 1.22 | Amino acid metab. |
17 | Threonine, 3TMS (RI: 1400) | 1.298 | 1.46 × 10−3 | ↓ | 1.16 | Amino acid metab. |
18 | Beta-lactic acid, 2TMS (RI: 1156) | 1.208 | 1.50 × 10−3 | ↑ | 1.82 | Stress response |
19 | Uridine, 3TMS (RI: 2594) | 1.302 | 1.58 × 10−3 | ↑ | 6.71 | Nucleotide metab. |
20 | Glyceric acid, 3TMS (RI: 1346) | 1.146 | 3.22 × 10−3 | ↑ | 1.66 | Lipid metab. |
21 | 3-Deoxy-D-arabino-hexonic acid γ-lactone, 3TMS (RI: 1797) | 1.188 | 3.74 × 10−3 | ↑ | 26.13 | - |
22 | Acetamide, N,N-diethyl- (RI: 1045) | 1.136 | 5.98 × 10−3 | ↓ | 1.53 | - |
23 | Vitamin B6, 3TMS (RI: 1924) | 1.055 | 1.29 × 10−2 | ↑ | 3.29 | Stress response |
24 | Cyclo-(Phe-Pro) (RI: 2434) | 1.190 | 1.34 × 10−2 | ↑ | 3.05 | Secondary metab. |
25 | Arabitol, 5TMS (RI: 1750) | 1.002 | 2.39 × 10−2 | ↑ | 1.17 | Glycolysis/ gluconeogenesis |
26 | Nicotinic acid, TMS (RI: 1304) | 0.971 | 3.60 × 10−2 | ↓ | 1.77 | Nicotinate metab |
27 | 2-Aminobutyric acid, 2TMS (RI: 1149) | 0.898 | 3.64 × 10−2 | ↓ | 1.56 | Amino acid metab. |
28 | Phosphate, 3TMS (RI: 1297) | 0.888 | 4.64 × 10−2 | ↑ | 1.59 | Energy metab. |
29 | Succinic acid, 2TMS (RI: 1322) | 0.896 | 6.97 × 10−2 | ↑= | 1.10 | Citrate cycle |
30 | Uracil, 2TMS (RI: 1351) | 0.722 | 1.18 × 10−1 | ↑= | 1.23 | Nucleotide metab. |
31 | Valine, 2TMS (RI: 1230) | 0.810 | 1.35 × 10−1 | ↓= | 1.06 | Amino acid metab. |
32 | Isoleucine, 2TMS (RI: 1307) | 0.645 | 1.62 × 10−1 | ↓= | 1.99 | Amino acid metab. |
33 | Nicotinate, methyl 5-(1-Methoxyethyl) (RI: 1354) | 0.678 | 1.75 × 10−1 | ↓= | 1.12 | Nicotinate metab. |
34 | Proline, 2TMS (RI: 1314) | 0.690 | 1.80 × 10−1 | ↑= | 1.98 | Amino acid metab. |
35 | Glycine, 2TMS (RI: 1136) | 0.650 | 2.87 × 10−1 | ↓= | 1.15 | Amino acid metab. |
36 | Aspartic acid, 3TMS (RI: 1540) | 0.526 | 3.16 × 10−1 | ↑= | 1.12 | Amino acid metab. |
37 | Leucine, 2TMS (RI: 1286) | 0.430 | 4.23 × 10−1 | ↓= | 1.24 | Amino acid metab. |
38 | Citric acid, 4TMS (RI: 1844) | 0.492 | 6.38 × 10−1 | ↓= | 1.14 | Amino acid metab. |
39 | Alanine, 2TMS (RI: 1124) | 0.448 | 7.34 × 10−1 | ↑= | 1.03 | Amino acid metab. |
40 | Lactic acid, 2TMS (RI: 1083) | 0.392 | 7.49 × 10−1 | ↓= | 1.39 | Stress response |
41 | Pyroglutamic acid, 2TMS (RI: 1546) | 0.232 | 8.96 × 10−1 | ↓= | 1.02 | Amino acid and glutathione metab. |
42 | Cytosine, 2TMS (RI: 1546) | 0.256 | 9.72 × 10−1 | ↑= | 1.01 | Nucleotide metab. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galdiero, E.; Salvatore, M.M.; Maione, A.; Carraturo, F.; Galdiero, S.; Falanga, A.; Andolfi, A.; Salvatore, F.; Guida, M. Impact of the Peptide WMR-K on Dual-Species Biofilm Candida albicans/Klebsiella pneumoniae and on the Untargeted Metabolomic Profile. Pathogens 2021, 10, 214. https://doi.org/10.3390/pathogens10020214
Galdiero E, Salvatore MM, Maione A, Carraturo F, Galdiero S, Falanga A, Andolfi A, Salvatore F, Guida M. Impact of the Peptide WMR-K on Dual-Species Biofilm Candida albicans/Klebsiella pneumoniae and on the Untargeted Metabolomic Profile. Pathogens. 2021; 10(2):214. https://doi.org/10.3390/pathogens10020214
Chicago/Turabian StyleGaldiero, Emilia, Maria Michela Salvatore, Angela Maione, Federica Carraturo, Stefania Galdiero, Annarita Falanga, Anna Andolfi, Francesco Salvatore, and Marco Guida. 2021. "Impact of the Peptide WMR-K on Dual-Species Biofilm Candida albicans/Klebsiella pneumoniae and on the Untargeted Metabolomic Profile" Pathogens 10, no. 2: 214. https://doi.org/10.3390/pathogens10020214
APA StyleGaldiero, E., Salvatore, M. M., Maione, A., Carraturo, F., Galdiero, S., Falanga, A., Andolfi, A., Salvatore, F., & Guida, M. (2021). Impact of the Peptide WMR-K on Dual-Species Biofilm Candida albicans/Klebsiella pneumoniae and on the Untargeted Metabolomic Profile. Pathogens, 10(2), 214. https://doi.org/10.3390/pathogens10020214