The Remarkable Metabolism of Vickermania ingenoplastis: Genomic Predictions
Abstract
:1. Introduction
2. Results
2.1. Global Comparison between Vickermania ingenoplastis and Leishmania major Genomes
2.2. Mitochondrial Enzymes of Oxidative Phosphorylation: Complexes I and II
2.3. Mitochondrial Enzymes of Oxidative Phosphorylation: Complexes III and IV
2.4. Mitochondrial Enzymes of Oxidative Phosphorylation: Complex V
2.5. Cytochrome o
2.6. Krebs Cycle
2.7. Carbohydrate Metabolism
2.8. Hexose-Monophosphate Shunt and Gluconeogenesis
2.9. Sensitivity to Drugs
2.10. Beta-Oxidation and Synthesis of Fatty Acids
2.11. Amino Acid Metabolism
2.12. Catalase and Heme Synthesis
3. Discussion
4. Materials and Methods
4.1. Genome Reassembly and Analysis of Its Completeness
4.2. Gene Expression Analysis
4.3. Analysis of Metabolic Pathways
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vickerman, K. Comparative Cell Biology of the Kinetoplastid Flagellates in Biology of Kinetoplastida; Vickerman, K., Preston, T.M., Eds.; Academic Press: London, UK, 1976; pp. 35–130. [Google Scholar]
- Maslov, D.A.; Opperdoes, F.R.; Kostygov, A.Y.; Hashimi, H.; Lukeš, J.; Yurchenko, V. Recent advances in trypanosomatid research: Genome organization, expression, metabolism, taxonomy and evolution. Parasitology 2019, 146, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Maslov, D.A.; Votýpka, J.; Yurchenko, V.; Lukeš, J. Diversity and phylogeny of insect trypanosomatids: All that is hidden shall be revealed. Trends Parasitol. 2013, 29, 43–52. [Google Scholar] [CrossRef]
- D’Avila-Levy, C.M.; Boucinha, C.; Kostygov, A.; Santos, H.L.C.; Morelli, K.A.; Grybchuk-Ieremenko, A.; Duval, L.; Votýpka, J.; Yurchenko, V.; Grellier, P.; et al. Exploring the environmental diversity of kinetoplastid flagellates in the high-throughput DNA sequencing era. Memórias Inst. Oswaldo Cruz 2015, 110, 956–965. [Google Scholar] [CrossRef]
- Lukeš, J.; Butenko, A.; Hashimi, H.; Maslov, D.A.; Votýpka, J.; Yurchenko, V. Trypanosomatids Are Much More than Just Trypanosomes: Clues from the Expanded Family Tree. Trends Parasitol. 2018, 34, 466–480. [Google Scholar] [CrossRef] [Green Version]
- Lukeš, J.; Skalický, T.; Týč, J.; Votýpka, J.; Yurchenko, V. Evolution of parasitism in kinetoplastid flagellates. Mol. Biochem. Parasitol. 2014, 195, 115–122. [Google Scholar] [CrossRef]
- Wheeler, R.J.; Gluenz, E.; Gull, K. The cell cycle of Leishmania: Morphogenetic events and their implications for parasite biology. Mol. Microbiol. 2010, 79, 647–662. [Google Scholar] [CrossRef] [Green Version]
- Broadhead, R.; Dawe, H.R.; Farr, H.; Griffiths, S.; Hart, S.R.; Portman, N.; Shaw, M.K.; Ginger, M.L.; Gaskell, S.J.; Mckean, P.G.; et al. Flagellar motility is required for the viability of the bloodstream trypanosome. Nature 2006, 440, 224–227. [Google Scholar] [CrossRef] [Green Version]
- Hughes, L.; Ralston, K.S.; Hill, K.L.; Zhou, Z.H. Three-Dimensional Structure of the Trypanosome Flagellum Suggests that the Paraflagellar Rod Functions as a Biomechanical Spring. PLoS One 2012, 7, e25700. [Google Scholar] [CrossRef] [Green Version]
- Beneke, T.; Demay, F.; Hookway, E.; Ashman, N.; Jeffery, H.; Smith, J.; Valli, J.; Bečvář, T.; Myškova, J.; Leštinová, T.; et al. Genetic dissection of a Leishmania flagellar proteome demonstrates requirement for directional motility in sand fly infections. PLoS Pathog. 2019, 15, e1007828. [Google Scholar] [CrossRef] [Green Version]
- Szempruch, A.J.; Sykes, S.E.; Kieft, R.; Dennison, L.; Becker, A.C.; Gartrell, A.; Martin, W.J.; Nakayasu, E.S.; Almeida, I.C.; Hajduk, S.L.; et al. Extracellular vesicles from Trypanosoma brucei mediate virulence factor transfer and cause host anemia. Cell 2016, 164, 246–257. [Google Scholar] [CrossRef] [Green Version]
- Kostygov, A.Y.; Frolov, A.O.; Malysheva, M.N.; Ganyukova, A.I.; Chistyakova, L.V.; Tashyreva, D.; Tesařová, M.; Spodareva, V.V.; Režnarová, J.; Macedo, D.H.; et al. Vickermania gen. nov., trypanosomatids that use two joined flagella to resist midgut peristaltic flow within the fly host. BMC Biol. 2020, 18, 187. [Google Scholar] [CrossRef]
- Redman, C.A.; Coombs, G.H. The Products and Pathways of Glucose Catabolism in Herpetomonas muscarum ingenoplastis and Herpetomonas muscarum muscarum. J. Eukaryot. Microbiol. 1997, 44, 46–51. [Google Scholar] [CrossRef]
- Coombs, G.H. Herpetomonas muscarum ingenoplastis: An anaerobic kinetoplastid flagellate? In Biochemistry and Molecular Biology of “anaerobic” Protozoa; Lloyd, D., Coombs, G.H., Paget, T.A., Eds.; Harwood Academic Publishers: London, UK, 1989; pp. 254–266. [Google Scholar]
- Tielens, A.G.M.; Van Hellemond, J.J. Differences in Energy Metabolism between Trypanosomatidae. Parasitol. Today 1998, 14, 265–272. [Google Scholar] [CrossRef]
- Hajduk, S. Studies of Trypanosomatid Flagellates with Special Reference to Antigenic Variation and Kinetoplast DNA. Ph.D. Thesis, Department of Zoology, University of Glasgow, Glasgow, UK, 1980; p. 229. [Google Scholar]
- D’Avila-Levy, C.M.; Bearzatto, B.; Ambroise, J.; Helaers, R.; Butenko, A.; Yurchenko, V.; Morelli, K.A.; Santos, H.L.C.; Brouillard, P.; Grellier, P.; et al. First Draft Genome of the Trypanosomatid Herpetomonas muscarum ingenoplastis through MinION Oxford Nanopore Technology and Illumina Sequencing. Trop. Med. Infect. Dis. 2020, 5, 25. [Google Scholar] [CrossRef] [Green Version]
- Opperdoes, F.; Michels, P.A. Complex I of Trypanosomatidae: Does it exist? Trends Parasitol. 2008, 24, 310–317. [Google Scholar] [CrossRef]
- Čermáková, P.; Maďarová, A.; Baráth, P.; Bellová, J.; Yurchenko, V.; Horváth, A. Differences in mitochondrial NADH dehydrogenase activities in trypanosomatids. Parasitology 2021, in press. [Google Scholar]
- Morales, J.; Mogi, T.; Mineki, S.; Takashima, E.; Mineki, R.; Hirawake, H.; Sakamoto, K.; Ōmura, S.; Kita, K. Novel Mitochondrial Complex II Isolated from Trypanosoma cruziIs Composed of 12 Peptides Including a Heterodimeric Ip Subunit. J. Biol. Chem. 2009, 284, 7255–7263. [Google Scholar] [CrossRef] [Green Version]
- Acestor, N.; Zíková, A.; Dalley, R.A.; Anupama, A.; Panigrahi, A.K.; Stuart, K.D. Trypanosoma brucei Mitochondrial Respiratome: Composition and Organization in Procyclic Form. Mol. Cell. Proteom. 2011, 10, 006908. [Google Scholar] [CrossRef] [Green Version]
- Peña-Diaz, P.; Mach, J.; Kriegova, E.; Poliak, P.; Tachezy, J.; Lukeš, J. Trypanosomal mitochondrial intermediate peptidase does not behave as a classical mitochondrial processing peptidase. PLoS ONE 2018, 13, e0196474. [Google Scholar] [CrossRef] [Green Version]
- Zíková, A.; Panigrahi, A.K.; Uboldi, A.D.; Dalley, R.A.; Handman, E.; Stuart, K. Structural and Functional Association of Trypanosoma brucei MIX Protein with Cytochrome c Oxidase Complex. Eukaryot. Cell 2008, 7, 1994–2003. [Google Scholar] [CrossRef] [Green Version]
- Acestor, N.; Panigrahi, A.K.; Ogata, Y.; Anupama, A.; Stuart, K. Protein composition of Trypanosoma brucei mitochondrial membranes. Proteomics 2009, 9, 5497–5508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porcel, B.M.; Denoeud, F.; Opperdoes, F.; Noel, B.; Madoui, M.-A.; Hammarton, T.C.; Field, M.C.; Da Silva, C.; Couloux, A.; Poulain, J.; et al. The Streamlined Genome of Phytomonas spp. Relative to Human Pathogenic Kinetoplastids Reveals a Parasite Tailored for Plants. PLoS Genet. 2014, 10, e1004007. [Google Scholar] [CrossRef] [PubMed]
- Zíková, A.; Schnaufer, A.; Dalley, R.A.; Panigrahi, A.K.; Stuart, K. The F0F1-ATP Synthase Complex Contains Novel Subunits and Is Essential for Procyclic Trypanosoma brucei. PLoS Pathog. 2009, 5, e1000436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Opperdoes, F.; Borst, P.; Fonck, K. The potential use of inhibitors of glycerol-3-phosphate oxidase for chemotherapy of African trypanosomiasis. FEBS Lett. 1976, 62, 169–172. [Google Scholar] [CrossRef] [Green Version]
- Opperdoes, F.R.; Butenko, A.; Flegontov, P.; Yurchenko, V.; Lukeš, J. Comparative Metabolism of Free-living Bodo saltans and Parasitic Trypanosomatids. J. Eukaryot. Microbiol. 2016, 63, 657–678. [Google Scholar] [CrossRef] [PubMed]
- Butenko, A.; Hammond, M.; Field, M.C.; Ginger, M.L.; Yurchenko, V.; Lukeš, J. Reductionist Pathways for Parasitism in Euglenozoans? Expanded Datasets Provide New Insights. Trends Parasitol. 2020, 37, 100–116. [Google Scholar] [CrossRef] [PubMed]
- Van Weelden, S.W.H.; Van Hellemond, J.; Opperdoes, F.; Tielens, A.G.M. New Functions for Parts of the Krebs Cycle in Procyclic Trypanosoma brucei, a Cycle Not Operating as a Cycle. J. Biol. Chem. 2005, 280, 12451–12460. [Google Scholar] [CrossRef] [Green Version]
- Opperdoes, F.; Van Hellemond, J.; Tielens, A. The extraordinary mitochondrion and unusual citric acid cycle in Trypanosoma brucei. Biochem. Soc. Trans. 2005, 33, 967–971. [Google Scholar] [CrossRef]
- Opperdoes, F.; Michels, P. The glycosomes of the Kinetoplastida. Biochimie 1993, 75, 231–234. [Google Scholar] [CrossRef]
- Molinas, S.M.; Altabe, S.G.; Opperdoes, F.; Rider, M.H.; Michels, P.A.M.; Uttaro, A.D. The Multifunctional Isopropyl Alcohol Dehydrogenase of Phytomona ssp. Could Be the Result of a Horizontal Gene Transfer from a Bacterium to the Trypanosomatid Lineage. J. Biol. Chem. 2003, 278, 36169–36175. [Google Scholar] [CrossRef] [Green Version]
- Muller, M.; Mentel, M.; Van Hellemond, J.; Henze, K.; Woehle, C.; Gould, D.; Yu, R.-Y.; Van Der Giezen, M.; Tielens, A.; Martin, W. Biochemistry and Evolution of Anaerobic Energy Metabolism in Eukaryotes. Microbiol. Mol. Biol. Rev. 2012, 76, 444–495. [Google Scholar] [CrossRef] [Green Version]
- Martin, W.F.; Tielens, A.G.M.; Mentel, M. Mitochondria and Anaerobic Energy Metabolism in Eukaryotes: Biochemistry and Evolution; De Gruyter: Düsseldorf, Germany, 2021; p. 252. [Google Scholar]
- Van Hellemond, J.J.; Klockiewicz, M.; Gaasenbeek, C.P.H.; Roos, M.H.; Tielens, A.G.M. Rhodoquinone and Complex II of the Electron Transport Chain in Anaerobically Functioning Eukaryotes. J. Biol. Chem. 1995, 270, 31065–31070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fairlamb, A.H.; Opperdoes, F.; Borst, P. New approach to screening drugs for activity against African trypanosomes. Nature 1977, 265, 270–271. [Google Scholar] [CrossRef] [PubMed]
- Patterson, S.; Wyllie, S. Nitro drugs for the treatment of trypanosomatid diseases: Past, present, and future prospects. Trends Parasitol. 2014, 30, 289–298. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Stephens, J.L.; Englund, P.T. A fatty-acid synthesis mechanism specialized for parasitism. Nat. Rev. Genet. 2007, 5, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Millerioux, Y.; Mazet, M.; Bouyssou, G.; Allmann, S.; Kiema, T.-R.; Bertiaux, E.; Fouillen, L.; Thapa, C.; Biran, M.; Plazolles, N.; et al. De novo biosynthesis of sterols and fatty acids in the Trypanosoma brucei procyclic form: Carbon source preferences and metabolic flux redistributions. PLoS Pathog. 2018, 14, e1007116. [Google Scholar] [CrossRef] [PubMed]
- Kraeva, N.; Horáková, E.; Kostygov, A.; Kořený, L.; Butenko, A.; Yurchenko, V.; Lukeš, J. Catalase in Leishmaniinae: With me or against me? Infect. Genet. Evol. 2017, 50, 121–127. [Google Scholar] [CrossRef]
- Škodová-Sveráková, I.; Záhonová, K.; Bučková, B.; Füssy, Z.; Yurchenko, V.; Lukeš, J. Catalase and ascorbate peroxidase in euglenozoan protists. Pathogens 2020, 9, 317. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, C.; Kostygov, A.Y.; Kraeva, N.; Záhonová, K.; Horáková, E.; Sobotka, R.; Lukeš, J.; Yurchenko, V. An enigmatic catalase of Blastocrithidia. Mol. Biochem. Parasitol. 2019, 232, 111199. [Google Scholar] [CrossRef]
- Kořený, L.; Oborník, M.; Lukeš, J. Make It, Take It, or Leave It: Heme Metabolism of Parasites. PLoS Pathog. 2013, 9, e1003088. [Google Scholar] [CrossRef] [Green Version]
- Škodová-Sveráková, I.; Verner, Z.; Skalický, T.; Votýpka, J.; Horváth, A.; Lukeš, J. Lineage-specific activities of a multipotent mitochondrion of trypanosomatid flagellates. Mol. Microbiol. 2015, 96, 55–67. [Google Scholar] [CrossRef] [PubMed]
- Rosenzweig, D.; Smith, D.; Opperdoes, F.; Stern, S.; Olafson, R.W.; Zilberstein, D. Retooling Leishmania metabolism: From sand fly gut to human macrophage. FASEB J. 2008, 22, 590–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zikova, A.; Verner, Z.; Nenarokova, A.; Michels, P.A.M.; Lukeš, J. A paradigm shift: The mitoproteomes of procyclic and bloodstream Trypanosoma brucei are comparably complex. PLoS Pathog. 2017, 13, e1006679. [Google Scholar] [CrossRef] [PubMed]
- Mazet, M.; Morand, P.; Biran, M.; Bouyssou, G.; Courtois, P.; Daulouède, S.; Millerioux, Y.; Franconi, J.-M.; Vincendeau, P.; Moreau, P.; et al. Revisiting the Central Metabolism of the Bloodstream Forms of Trypanosoma brucei: Production of Acetate in the Mitochondrion Is Essential for Parasite Viability. PLoS Negl. Trop. Dis. 2013, 7, e2587. [Google Scholar] [CrossRef]
- Van Hellemond, J.J.; Bakker, B.M.; Tielens, A.G. Energy Metabolism and Its Compartmentation in Trypanosoma brucei. Adv. Microb. Physiol. 2005, 50, 199–226. [Google Scholar] [CrossRef]
- Lai, D.-H.; Hashimi, H.; Lun, Z.-R.; Ayala, F.J.; Lukeš, J. Adaptations of Trypanosoma brucei to gradual loss of kinetoplast DNA: Trypanosoma equiperdum and Trypanosoma evansi are petite mutants of T. brucei. Proc. Natl. Acad. Sci. USA 2008, 105, 1999–2004. [Google Scholar] [CrossRef] [Green Version]
- Jaskowska, E.; Butler, C.; Preston, G.; Kelly, S. Phytomonas: Trypanosomatids adapted to plant environments. PLoS Pathog. 2015, 11, e1004484. [Google Scholar] [CrossRef] [Green Version]
- Uttaro, A.D.; Opperdoes, F. Purification and characterisation of a novel iso-propanol dehydrogenase from Phytomonas sp. Mol. Biochem. Parasitol. 1997, 85, 213–219. [Google Scholar] [CrossRef]
- Chaumont, F.; Schanck, A.N.; Blum, J.J.; Opperdoes, F.R. Aerobic and anaerobic glucose metabolism of Phytomonas sp. isolated from Euphorbia characias. Mol. Biochem. Parasitol. 1994, 67, 321–331. [Google Scholar] [CrossRef]
- Opperdoes, F.R.; Borst, P. Localization of nine glycolytic enzymes in a microbody-like organelle in Trypanosoma brucei: The glycosome. FEBS Lett. 1977, 80, 360–364. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Moreno, M.; Lasztity, D.; Coppens, I.; Opperdoes, F. Characterization of carbohydrate metabolism and demonstration of glycosomes in a Phytomonas sp. isolated from Euphorbia characias. Mol. Biochem. Parasitol. 1992, 54, 185–199. [Google Scholar] [CrossRef]
- Uttaro, A.D.; Sanchez-Moreno, M.; Opperdoes, F. Genus-specific biochemical markers for Phytomonas spp. Mol. Biochem. Parasitol. 1997, 90, 337–342. [Google Scholar] [CrossRef]
- Zimin, A.V.; Marçais, G.; Puiu, D.; Roberts, M.; Salzberg, S.L.; Yorke, J.A. The MaSuRCA genome assembler. Bioinformatics 2013, 29, 2669–2677. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [Green Version]
- Steinbiss, S.; Silva-Franco, F.; Brunk, B.; Foth, B.; Hertz-Fowler, C.; Berriman, M.; Otto, T.D. Companion: A web server for annotation and analysis of parasite genomes. Nucleic Acids Res. 2016, 44, W29–W34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef] [PubMed]
- Seppey, M.; Manni, M.; Zdobnov, E.M. BUSCO: Assessing genome assembly and annotation completeness. In Gene Prediction: Methods in Molecular Biology; Kollmar, M., Ed.; Humana: New York, NY, USA, 2019; Volume 1962, pp. 227–245. [Google Scholar]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [Green Version]
- Quinlan, A. BEDTools: The Swiss-Army Tool for Genome Feature Analysis. Curr. Protoc. Bioinform. 2014, 47, 11.12.1–11.12.34. [Google Scholar] [CrossRef]
- Butenko, A.; Kostygov, A.Y.; Sádlová, J.; Kleschenko, Y.; Bečvář, T.; Podešvová, L.; Macedo, D.H.; Žihala, D.; Lukeš, J.; Bates, P.A.; et al. Comparative genomics of Leishmania (Mundinia). BMC Genom. 2019, 20, 726. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Opperdoes, F.R.; Butenko, A.; Zakharova, A.; Gerasimov, E.S.; Zimmer, S.L.; Lukeš, J.; Yurchenko, V. The Remarkable Metabolism of Vickermania ingenoplastis: Genomic Predictions. Pathogens 2021, 10, 68. https://doi.org/10.3390/pathogens10010068
Opperdoes FR, Butenko A, Zakharova A, Gerasimov ES, Zimmer SL, Lukeš J, Yurchenko V. The Remarkable Metabolism of Vickermania ingenoplastis: Genomic Predictions. Pathogens. 2021; 10(1):68. https://doi.org/10.3390/pathogens10010068
Chicago/Turabian StyleOpperdoes, Fred R., Anzhelika Butenko, Alexandra Zakharova, Evgeny S. Gerasimov, Sara L. Zimmer, Julius Lukeš, and Vyacheslav Yurchenko. 2021. "The Remarkable Metabolism of Vickermania ingenoplastis: Genomic Predictions" Pathogens 10, no. 1: 68. https://doi.org/10.3390/pathogens10010068