The Tip Region on VP2 Protein of Bluetongue Virus Contains Potential IL-4-Inducing Amino Acid Peptide Segments
Abstract
:1. Introduction
2. Results
2.1. Experimental Design
2.2. The Viral Loads and Titers of BTV2/BTV12 in Infected PBMCs
2.3. Infection Rate of BTV2 and BTV12 in MDMs Detected by IFA
2.4. Expression of mRNA in BTV-Infected PBMCs
2.5. The Cytokine Production Induced by BTV2 and BTV12
2.6. Prediction of Potential IL-4-Inducing Peptides on the VP2 of Various BTV Strains
2.7. Predicted IL-4-Inducing Peptide Segments in the VP2 Tip Region of BTV2 and BTV12
2.8. Induction of IL-4 Production in PBMC Stimulated with Synthetic Peptide
3. Discussion
4. Materials and Methods
4.1. Animals, and Preparation of Bovine PBMC and Monocyte-Derived Macrophage (MDMs)
4.2. Virus Infection and Quantitation of BTV Viral Loads in PBMCs
4.3. TCID50 Assay to Determine the Titer of Progeny Virus in the PBMC Supernatant
4.4. Pair-Wise Comparison of the Cytokine mRNA Expression by qRT-PCR
4.5. IFA of BTV-Infected MDMs by Confocal Microscopy
4.6. Enzyme-Linked Immunosorbent Assay (ELISA) for IL-1β, IFN-α, and IL-4
4.7. The Prediction of Potential IL-4-Inducing Peptides and Three-Dimensional (3D) Protein Structure Modeling on VP2 of BTVs
4.8. Synthesis of BTV Potential IL-4 Inducing Peptides
4.9. PBMC Stimulation Assay for Synthetic IL-4-Inducing Peptides
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Conte, A.; Daniels, P.; Goffredo, M.; Ostlund, E.N.; Di Lorenzo, A.; Savini, L.; Tora, S.; Lubisi, B.A.; Calistri, P.; Bruno, R.; et al. OIEBTLABNET: The web-based network of the OIE Bluetongue Reference Laboratories. Vet. Ital. 2016, 52, 187–193. [Google Scholar] [PubMed]
- Elbers, A.R.; Backx, A.; Meroc, E.; Gerbier, G.; Staubach, C.; Hendrickx, G.; van der Spek, A.; Mintiens, K. Field observations during the bluetongue serotype 8 epidemic in 2006. I. Detection of first outbreaks and clinical signs in sheep and cattle in Belgium, France and the Netherlands. Prev. Vet. Med. 2008, 87, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Maclachlan, N.J.; Henderson, C.; Schwartz-Cornil, I.; Zientara, S. The immune response of ruminant livestock to bluetongue virus: From type I interferon to antibody. Virus. Res. 2014, 182, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Cordon, P.J.; Perez de Diego, A.C.; Gomez-Villamandos, J.C.; Sanchez-Vizcaino, J.M.; Pleguezuelos, F.J.; Garfia, B.; del Carmen, P.; Pedrera, M. Comparative analysis of cellular immune responses and cytokine levels in sheep experimentally infected with bluetongue virus serotype 1 and 8. Vet. Microbiol. 2015, 177, 95–105. [Google Scholar] [CrossRef]
- Odeon, A.C.; Gershwin, L.J.; Osburn, B.I. IgE responses to bluetongue virus (BTV) serotype 11 after immunization with inactivated BTV and challenge infection. Comp. Immunol. Microbiol. Infect. Dis. 1999, 22, 145–162. [Google Scholar] [CrossRef]
- Anderson, G.A.; Stott, J.L.; Gershwin, L.J.; Osburn, B.I. Identification of bluetongue virus-specific immunoglobulin E in cattle. J. Gen. Virol. 1987, 68, 2509–2514. [Google Scholar] [CrossRef]
- Yang, J.L.; Chang, C.Y.; Yen, W.C.; Yen, L.H.; Wang, C.C.; Wang, F.I. Type I hypersensitivity is induced in cattle PBMC during Bluetongue virus Taiwan isolate infection. Vet. Immunol. Immunopathol. 2020, 226, 110071. [Google Scholar] [CrossRef]
- Zhang, X.; Boyce, M.; Bhattacharya, B.; Zhang, X.; Schein, S.; Roy, P.; Zhou, Z.H. Bluetongue virus coat protein VP2 contains sialic acid-binding domains, and VP5 resembles enveloped virus fusion proteins. Proc. Natl. Acad. Sci. USA 2010, 107, 6292–6297. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Patel, A.; Celma, C.C.; Yu, X.; Roy, P.; Zhou, Z.H. Atomic model of a nonenveloped virus reveals pH sensors for a coordinated process of cell entry. Nat. Struct. Mol. Biol. 2016, 23, 74–80. [Google Scholar] [CrossRef]
- Lee, F.; Ting, L.J.; Lee, M.S.; Chang, W.M.; Wang, F.I. Genetic analysis of two Taiwanese bluetongue viruses. Vet. Microbiol. 2011, 148, 140–149. [Google Scholar] [CrossRef]
- Behl, J.D.; Verma, N.K.; Tyagi, N.; Mishra, P.; Behl, R.; Joshi, B.K. The major histocompatibility complex in bovines: A review. ISRN. Vet. Sci. 2012, 2012, 872710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groenen, M.A.; van der Poel, J.J.; Dijkhof, R.J.; Giphart, M.J. The nucleotide sequence of bovine MHC class II DQB and DRB genes. Immunogenetics 1990, 31, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Dhanda, S.K.; Gupta, S.; Vir, P.; Raghava, G.P. Prediction of IL-4 inducing peptides. Clin. Dev. Immunol. 2013, 2013, 263952. [Google Scholar] [CrossRef] [PubMed]
- MacLachlan, N.J.; Thompson, J. Bluetongue virus-induced interferon in cattle. Am. J. Vet. Res. 1985, 46, 1238–1241. [Google Scholar] [PubMed]
- Chauveau, E.; Doceul, V.; Lara, E.; Breard, E.; Sailleau, C.; Vidalain, P.O.; Meurs, E.F.; Dabo, S.; Schwartz-Cornil, I.; Zientara, S.; et al. NS3 of Bluetongue Virus Interferes with the Induction of Type I Interferon. J. Virol. 2013, 87, 8241–8246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratinier, M.; Shaw, A.E.; Barry, G.; Gu, Q.; Di Gialleonardo, L.; Janowicz, A.; Varela, M.; Randall, R.E.; Caporale, M.; Palmarini, M. Bluetongue Virus NS4 Protein Is an Interferon Antagonist and a Determinant of Virus Virulence. J. Virol. 2016, 90, 5427–5439. [Google Scholar] [CrossRef] [Green Version]
- Dinarello, C.A. Immunological and inflammatory functions of the interleukin-1 family. Annu. Rev. Immunol. 2009, 27, 519–550. [Google Scholar] [CrossRef]
- Latz, E.; Xiao, T.S.; Stutz, A. Activation and regulation of the inflammasomes. Nat. Rev. Immunol. 2013, 13, 397–411. [Google Scholar] [CrossRef]
- Essner, R.; Rhoades, K.; McBride, W.H.; Morton, D.L.; Economou, J.S. IL-4 down-regulates IL-1 and TNF gene expression in human monocytes. J. Immunol. 1989, 142, 3857–3861. [Google Scholar]
- Rojas, J.M.; Rodríguez-Calvo, T.; Sevilla, N. Recall T cell responses to bluetongue virus produce a narrowing of the T cell repertoire. Vet. Res. 2017, 48, 38. [Google Scholar] [CrossRef]
- Lee, F.; Ting, L.J.; Jong, M.H.; Chang, W.M.; Wang, F.I. Subclinical bluetongue virus infection in domestic ruminants in Taiwan. Vet. Microbiol. 2010, 142, 225–231. [Google Scholar] [CrossRef]
- Drew, C.P.; Heller, M.C.; Mayo, C.; Watson, J.L.; MacLachlan, N.J. Bluetongue virus infection activates bovine monocyte derived macrophages and pulmonary endothelial cells. Vet. Immunol. Imunopathol. 2010, 136, 292–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiu, S.C.; Yang, C.L.; Chen, Y.M.; Hu, S.C.; Chiu, K.C.; Lin, Y.C.; Chang, C.Y.; Wang, F.I. Multiple models of porcine teschovirus pathogenesis in endemically infected pigs. Vet. Microbiol. 2014, 168, 69–77. [Google Scholar] [CrossRef] [PubMed]
- LaBarre, D.D.; Lowy, R.J. Improvements in methods for calculating virus titer estimates from TCID50 and plaque assays. J. Virol. Methods 2001, 96, 107–126. [Google Scholar] [CrossRef]
- Reed, L.J.; Muench, H. A simple method of estimating fifty per cent endpoints. Am. J. Hyg. 1938, 27, 493–497. [Google Scholar]
- Osman, R.; Gonzalez-Cano, P.; Brownlie, R.; Griebel, P.J. Induction of interferon and interferon-induced antiviral effectorgenes following a primary bovine herpesvirus-1 (BHV-1) respiratory infection. J. Gen. Virol. 2017, 98, 1831–1842. [Google Scholar] [CrossRef]
- Puech, C.; Dedieu, L.; Chantal, I.; Rodrigues, V. Design and evaluation of a unique SYBR Green real-time RT-PCR assay for quantification of five major cytokines in cattle, sheep and goats. BMC Vet. Res. 2015, 11, 65. [Google Scholar] [CrossRef]
- Pfaffl, M.W.; Tichopad, A.; Prgomet, C.; Neuvians, T.P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations. Biotechnol. Lett. 2004, 26, 509–515. [Google Scholar] [CrossRef]
- Pinho, A.; Pratas, D. MFCompress: A compression tool for FASTA and multi-FASTA data. Bioinformatics 2014, 30, 117–118. [Google Scholar] [CrossRef] [Green Version]
- Koolman, J.; Röhm, K.H. Color Atlas of Biochemistry; Thieme Verlag: Stuttgart, Germany, 1996; pp. 107–108. [Google Scholar]
- Lohia, N.; Baranwal, M. Highly conserved hemagglutinin peptides of H1N1 influenza virus elicit immune response. 3 Biotech 2017, 8, 492. [Google Scholar] [CrossRef]
BTV Serotype | Allergy-Reported | Non-Allergy Reported | |||
---|---|---|---|---|---|
Number | 2, 8, 11, 17 (n = 20) | 12, 1 (n = 15) | 10 (n = 7) | p Value (One-Way ANOVA) | |
Tip region a | 7.20 ± 0.748 | 2.60 ± 0.800 | 4.286 ± 0.452 | <0.01 | |
Total VP2 b | 24.80 ± 2.713 | 19.80 ± 2.926 | 21.714 ± 1.666 | <0.01 | |
Tip/Total c | 0.290 ± 0.0469 | 0.131 ± 0.0462 | 0.197 ± 0.0104 | <0.01 |
Parameters | BTV2 | BTV12 |
---|---|---|
Replication (VP7) in bovine PBMC (Figure 2) | Parallel | Parallel, slightly higher |
Replication (TCID50) in bovine PBMC (Figure 2) | Parallel | Parallel, more virulent |
Infection rates in MDMs (Figure 3) | 75% at MOI of 1 at 12 hpi | Cells died and detached at MOI of 1 by 12 hpi; 76.1% at MOI of 0.5. Stronger affinity or virulence to MDM/PBMC |
Innate immunity (TNF-α and IL-1β) (Figure 4, Figure 5 and Figure 8) | Minimal to mild | Activated strong and sustained, 2–4-fold higher (TNF-α) at 6–12 hpi 17–27-fold higher (IL-1β) at 6–12 hpi Likely part of a cytokine storm, which is cytocidal (combined Figure 3 with Figure 4c) |
Acquired immunity (Th2 and IL-4) (Figure 4, Figure 5 and Figure 8) | Activated strong and sustained 6–11-fold higher | Minimal |
Number of potential IL-4-inducing segments in the tip region of VP2 (Figure 6) | 7 | 2 |
Association with allergy (Table 1, Supplement Tables S1 and S2) | Yes | Low |
IL-4-inducing capacity of synthetic peptides (Figure 7) | Yes | Low |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.-L.; Chang, C.-Y.; Sheng, C.-S.; Wang, C.-C.; Wang, F.-I. The Tip Region on VP2 Protein of Bluetongue Virus Contains Potential IL-4-Inducing Amino Acid Peptide Segments. Pathogens 2021, 10, 3. https://doi.org/10.3390/pathogens10010003
Yang J-L, Chang C-Y, Sheng C-S, Wang C-C, Wang F-I. The Tip Region on VP2 Protein of Bluetongue Virus Contains Potential IL-4-Inducing Amino Acid Peptide Segments. Pathogens. 2021; 10(1):3. https://doi.org/10.3390/pathogens10010003
Chicago/Turabian StyleYang, Jia-Ling, Chia-Yi Chang, Chih-Shuan Sheng, Chia-Chi Wang, and Fun-In Wang. 2021. "The Tip Region on VP2 Protein of Bluetongue Virus Contains Potential IL-4-Inducing Amino Acid Peptide Segments" Pathogens 10, no. 1: 3. https://doi.org/10.3390/pathogens10010003
APA StyleYang, J. -L., Chang, C. -Y., Sheng, C. -S., Wang, C. -C., & Wang, F. -I. (2021). The Tip Region on VP2 Protein of Bluetongue Virus Contains Potential IL-4-Inducing Amino Acid Peptide Segments. Pathogens, 10(1), 3. https://doi.org/10.3390/pathogens10010003