Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,266)

Search Parameters:
Keywords = peripheral blood mononuclear cell (PBMC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1508 KiB  
Article
Altered Expression of the MEG3, FTO, ATF4, and Lipogenic Genes in PBMCs from Children with Obesity and Its Associations with Added Sugar Intake
by Adrián Hernández-DíazCouder, Pablo J. Paz-González, Maryori Valdez-Garcia, Claudia I. Ramírez-Silva, Karol Iliana Avila-Soto, Araceli Pérez-Bautista, Miguel Vazquez-Moreno, Ana Nava-Cabrera, Rodrigo Romero-Nava, Fengyang Huang and Miguel Cruz
Nutrients 2025, 17(15), 2546; https://doi.org/10.3390/nu17152546 - 2 Aug 2025
Viewed by 237
Abstract
Background: Obesity and its complications have increased in both adults and children, with pediatric populations developing metabolic disorders at earlier ages. Long non-coding RNAs, particularly MEG3, are involved in obesity through regulation of lipogenic genes including ATF4, FTO, SREBP1, [...] Read more.
Background: Obesity and its complications have increased in both adults and children, with pediatric populations developing metabolic disorders at earlier ages. Long non-coding RNAs, particularly MEG3, are involved in obesity through regulation of lipogenic genes including ATF4, FTO, SREBP1, FASN, and ACACA. However, data on MEG3 expression in pediatric obesity are limited. This study evaluated MEG3, FTO, and ATF4 expression in PBMCs from children with obesity and their associations with added sugar intake and lipid metabolism genes. Methods: In this cross-sectional study 71 children within the age range of 6 to 12 years were included (28 normal weight and 43 with obesity). Anthropometrical and clinical parameters and dietary added sugar consumption were analyzed. Real-time PCR was performed to assess MEG3, FTO, ATF4, SREBP1, FASN, and ACACA gene expression in peripheral blood mononuclear cells. Results: The expression of MEG3, ATF4, FTO, SREBP1, FASN, and ACACA was decreased in children with obesity. MEG3 and FTO showed sex-dependent expression in children without obesity, while additional sex-related differences were observed for SREBP1, FASN, ACACA, FTO, and MEG3 in children with obesity. MEG3 was associated with the expression of SREBP1, FASN, ACACA, FTO, and ATF4. In insulin-resistant (IR) children, MEG3, ATF4, FTO, ACACA, and SREBP1 were reduced, while FASN was increased. Added sugar intake negatively correlated with FTO, SREBP1, and ACACA. Conclusions: The MEG3, FTO, and ATF4 expression was altered in children with obesity, showing sex- and IR-related differences. Added sugar intake correlated negatively with lipogenic gene expression. Full article
(This article belongs to the Special Issue Dietary Effects on Gene Expression and Metabolic Profiles)
Show Figures

Figure 1

20 pages, 4050 KiB  
Article
LDLR H3K27ac in PBMCs: An Early Warning Biomarker for Hypercholesterolemia Susceptibility in Male Newborns Treated with Prenatal Dexamethasone
by Kexin Liu, Can Ai, Dan Xu, Wen Hu, Guanghui Chen, Jinzhi Zhang, Ning Zhang, Dongfang Wu and Hui Wang
Toxics 2025, 13(8), 651; https://doi.org/10.3390/toxics13080651 - 31 Jul 2025
Viewed by 197
Abstract
Dexamethasone, widely used as an exogenous glucocorticoid in clinical and animal practice, has recently been recognized as an environmental contaminant of concern. Existing evidence documents its ability to induce persistent dyslipidemia in adult offspring. In this study, plasma cholesterol levels in male rats [...] Read more.
Dexamethasone, widely used as an exogenous glucocorticoid in clinical and animal practice, has recently been recognized as an environmental contaminant of concern. Existing evidence documents its ability to induce persistent dyslipidemia in adult offspring. In this study, plasma cholesterol levels in male rats exposed to dexamethasone prenatally (PDE) were increased. Meanwhile, developmental tracking revealed a reduction in hepatic low-density lipoprotein receptor (LDLR) promoter H3K27 acetylation (H3K27ac) and corresponding transcriptional activity across gestational-to-postnatal stages. Mechanistic investigations established glucocorticoid receptor/histone deacetylase2 (GR/HDAC2) axis-mediated epigenetic programming of LDLR through H3K27ac modulation in PDE offspring, potentiating susceptibility to hypercholesterolemia. Additionally, in peripheral blood mononuclear cells (PBMC) of PDE male adult offspring, LDLR H3K27ac level and expression were also decreased and positively correlated with those in the liver. Clinical studies further substantiated that male newborns prenatally treated with dexamethasone exhibited increased serum cholesterol levels and consistent reductions in LDLR H3K27ac levels and corresponding transcriptional activity in PBMC. This study establishes a complete evidence chain linking PDE with epigenetic programming and cholesterol metabolic dysfunction, proposing PBMC epigenetic biomarkers as a novel non-invasive monitoring tool for assessing the developmental toxicity of chemical exposures during pregnancy. This has significant implications for improving environmental health risk assessment systems. Full article
(This article belongs to the Special Issue Reproductive and Developmental Toxicity of Environmental Factors)
Show Figures

Graphical abstract

29 pages, 4944 KiB  
Article
Distinct Immunological Landscapes of HCMV-Specific T Cells in Bone Marrow and Peripheral Blood
by Sarah E. Jackson, Rosie Fairclough, Veronika Romashova, Georgina Okecha and Mark R. Wills
Pathogens 2025, 14(8), 722; https://doi.org/10.3390/pathogens14080722 - 22 Jul 2025
Viewed by 395
Abstract
Human cytomegalovirus (HCMV) establishes lifelong latency in the host, with the bone marrow (BM) CD34+ cells serving as a key reservoir. To investigate tissue-specific immune responses to CMV, we analysed paired peripheral blood mononuclear cells (PBMCs) and bone marrow mononuclear cells (BMMNCs) from [...] Read more.
Human cytomegalovirus (HCMV) establishes lifelong latency in the host, with the bone marrow (BM) CD34+ cells serving as a key reservoir. To investigate tissue-specific immune responses to CMV, we analysed paired peripheral blood mononuclear cells (PBMCs) and bone marrow mononuclear cells (BMMNCs) from HCMV-seropositive donors using multiparametric flow cytometry and cytokine FluroSpot assays. We assessed immune cell composition, memory T cell subsets, cytokine production, cytotoxic potential, activation marker expression, and checkpoint inhibitory receptor (CIR) profiles, both ex vivo and following stimulation with lytic and latent HCMV antigens. BMMNCs were enriched in CD34+ progenitor cells and exhibited distinct T cell memory subset distributions. HCMV-specific responses were compartmentalised: IFN-γ responses predominated in PBMCs following lytic antigen stimulation, while IL-10 and TNF-α responses were more prominent in BMMNCs, particularly in response to latent antigens. US28-specific T cells in the BM showed elevated expression of CD39, PD-1, BTLA, CTLA-4, ICOS, and LAG-3 on CD4+ T cells and increased expression of PD-1, CD39, BTLA, TIGIT, LAG-3, and ICOS on CD8+ T cell populations, suggesting a more immunoregulatory phenotype. These findings highlight functional and phenotypic differences in HCMV-specific T cell responses between blood and bone marrow, underscoring the role of the BM niche in shaping antiviral immunity and maintaining viral latency. Full article
Show Figures

Figure 1

21 pages, 2039 KiB  
Article
Comprehensive RNA-Seq Analysis of Human Osteoclast Function in Response to Bothrops moojeni Venom Fractions: Pathways of Bone Resorption and Cytoskeletal Disruption
by Fernanda D’Amélio, Hugo Vigerelli, Rodrigo Pinheiro Araldi, Isabel de Fátima Correia Batista, Daniel Carvalho Pimenta and Irina Kerkis
Toxins 2025, 17(7), 358; https://doi.org/10.3390/toxins17070358 - 19 Jul 2025
Viewed by 400
Abstract
This study investigated the effects of Bothrops moojeni (B. moojeni) venom and its high- (HMM) and low-molecular mass (LMM) fractions on human osteoclast (OC) differentiation and function in vitro, aiming to identify novel therapeutics for bone disorders. Venom preparations were applied [...] Read more.
This study investigated the effects of Bothrops moojeni (B. moojeni) venom and its high- (HMM) and low-molecular mass (LMM) fractions on human osteoclast (OC) differentiation and function in vitro, aiming to identify novel therapeutics for bone disorders. Venom preparations were applied at 5 µg/mL (crude venom and HMM) or 1 µg/mL (LMM) from day 4 of peripheral blood mononuclear cell (PBMC) differentiation through terminal OC formation, enabling evaluation across early differentiation, fusion, and maturation stages. RNA sequencing revealed 7793 genes common to all experimental groups, with unique gene expression signatures of 149 (control), 221 (HMM), 248 (crude venom), and 60 (LMM) genes, reflecting distinct molecular responses. The negative control PBMC group exhibited 1013 unique genes enriched in immune-related pathways, consistent with their undifferentiated state. Crude venom induced the broadest transcriptional modulation, upregulating key fusion (CD47) and resorption (CTSK) genes, and altering markers of OC differentiation. The HMM fraction predominantly influenced inflammatory and osteoclastogenic pathways, notably TNF and NF-κB signaling, while the LMM fraction selectively regulated fusion-related genes (e.g., CD44) and immune pathways, indicating targeted modulation of OC activity. Cytokine profiling showed that crude venom and HMM suppressed osteoclastogenic cytokines such as IL-1β and IL-6, supporting their potential use in inflammatory bone diseases. Pathway enrichment analyses confirmed these differential effects on immune response and bone resorption mechanisms. Together, these results demonstrate that B. moojeni venom and its fractions differentially impact OC biology, with crude venom exerting broad effects and HMM and LMM fractions offering more specific modulation. Future studies will isolate bioactive components and assess therapeutic efficacy in animal models of osteoporosis and rheumatoid arthritis. Full article
(This article belongs to the Special Issue Transcriptomic and Proteomic Study on Animal Venom: Looking Forward)
Show Figures

Figure 1

18 pages, 994 KiB  
Article
Optimizing PBMC Cryopreservation and Utilization for ImmunoSpot® Analysis of Antigen-Specific Memory B Cells
by Noémi Becza, Lingling Yao, Paul V. Lehmann and Greg A. Kirchenbaum
Vaccines 2025, 13(7), 765; https://doi.org/10.3390/vaccines13070765 - 19 Jul 2025
Viewed by 450
Abstract
Background: Measuring frequencies of antigen-specific memory B cells (Bmem), their immunoglobulin (Ig) class and subclass usage, cross-reactivity, and affinity can provide insights into the efficacy of future antibody responses in case of antigen re-encounter. B cell ImmunoSpot® assays can provide [...] Read more.
Background: Measuring frequencies of antigen-specific memory B cells (Bmem), their immunoglobulin (Ig) class and subclass usage, cross-reactivity, and affinity can provide insights into the efficacy of future antibody responses in case of antigen re-encounter. B cell ImmunoSpot® assays can provide such information; however, like most cell-based tests, they require considerable amounts of blood to be drawn from the donor and this has hindered their inclusion in clinical trials and routine immune diagnostics. Methods: We introduce strategies for reducing the cell numbers required to 2–3 million peripheral blood mononuclear cells (PBMCs) per antigen, obtainable from 2–3 mL of blood from healthy adult donors. Results: Except when Bmem frequencies were very low, we found that testing PBMCs in singlet wells, but in serial dilution, enables as reliable Bmem frequency assessments as when testing replicate wells at a single fixed cell number. Additionally, B cell ImmunoSpot® assays can be multiplexed for detecting four Ig classes, or IgG subclasses, simultaneously and without loss of sensitivity. The requirement for low cell numbers and the retention of B cell functionality by cryopreserved PBMCs equivalent to freshly isolated material implies that fewer than the standard 10 million PBMCs per vial can be frozen. This would reduce the number of individuals who could not be tested for Bmem due to insufficient availability of PBMCs, a common problem with such assays. Conclusions: The predictable need for and recovery of cryopreserved PBMCs facilitates planning of and optimal cell utilization in B cell ImmunoSpot® assays and increases the practical feasibility of extensive Bmem characterization in larger cohorts. Full article
(This article belongs to the Special Issue Vaccination-Induced Antibody and B Cell Immune Response)
Show Figures

Figure 1

25 pages, 3349 KiB  
Article
Upregulation of the Antioxidant Response-Related microRNAs miR-146a-5p and miR-21-5p in Gestational Diabetes: An Analysis of Matched Samples of Extracellular Vesicles and PBMCs
by Jovana Stevanović, Ninoslav Mitić, Ana Penezić, Ognjen Radojičić, Daniela Ardalić, Milica Mandić, Vesna Mandić-Marković, Željko Miković, Miloš Brkušanin, Olgica Nedić and Zorana Dobrijević
Int. J. Mol. Sci. 2025, 26(14), 6902; https://doi.org/10.3390/ijms26146902 - 18 Jul 2025
Viewed by 239
Abstract
MicroRNA-based regulatory mechanisms show disturbances related to oxidative stress (OS) interconnected with inflammation (IFM), as well as impairments associated with gestational diabetes (GDM). The aim of this study was to assess the diagnostic and prognostic significance of the OS/IFM-related microRNA in GDM by [...] Read more.
MicroRNA-based regulatory mechanisms show disturbances related to oxidative stress (OS) interconnected with inflammation (IFM), as well as impairments associated with gestational diabetes (GDM). The aim of this study was to assess the diagnostic and prognostic significance of the OS/IFM-related microRNA in GDM by using peripheral blood mononuclear cells (PBMCs) and serum-derived extracellular vesicles (EVs) as biological samples. We selected the known OS/IFM-associated microRNAs miR-146a-5p, miR-155-5p, and miR-21-5p as candidates for our GDM biomarker analysis. Quantitative RT-PCR was employed for relative quantification of the selected microRNAs from paired samples of PBMCs and EVs derived from patients with GDM and healthy controls (n = 50 per group). The expression levels were analyzed for correlations with lipid and glycemic status indicators; metal ion-related parameters; serum thiol content; protein carbonyl and thiobarbituric acid-reactive substances’ (TBARS) levels; glutathione reductase (GR), Superoxide dismutase (SOD), and catalase (CAT) activity; and NRF2 expression. MiR-146a-5p and miR-21-5p were significantly upregulated in both PBMCs and EVs obtained from GDM patients. EVs-miR-21-5p showed a positive correlation with glycemic status in GDM patients, while miR-155-5p from PBMCs demonstrated correlation with iron-related parameters. The expression of selected microRNAs was found to correlate with NRF2 expression and SOD activity. The level of miR-146a-5p negatively correlated with neonatal anthropometric characteristics, while a higher level of PBMCs-miR-21-5p expression was determined in GDM patients with adverse pregnancy outcomes (p = 0.012). Our data demonstrate a disturbance of OS/IFM-microRNAs in GDM and illustrate their potential to serve as indicators of the associated OS-related changes, neonatal characteristics, and adverse pregnancy outcomes. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

17 pages, 2956 KiB  
Article
Pathogenesis of Graves’ Disease Determined Using Single-Cell Sequencing with Thyroid Autoantigen Peptide Stimulation in B Cells
by Genki Kobayashi, Takuro Okamura, Yoshitaka Hashimoto, Kimiko Sakai, Madoka Sumi, Dan Imai, Nobuko Kitagawa, Masahide Hamaguchi and Michiaki Fukui
Cells 2025, 14(14), 1102; https://doi.org/10.3390/cells14141102 - 17 Jul 2025
Viewed by 763
Abstract
This study reports the use of single-cell RNA sequencing to evaluate B cells in the peripheral blood mononuclear cells (PBMCs) and intrathyroidal blood mononuclear cells of patients with Graves’ disease (GD) undergoing thyroidectomy. These cells were stimulated with overlapping peptides of thyroid autoantigens, [...] Read more.
This study reports the use of single-cell RNA sequencing to evaluate B cells in the peripheral blood mononuclear cells (PBMCs) and intrathyroidal blood mononuclear cells of patients with Graves’ disease (GD) undergoing thyroidectomy. These cells were stimulated with overlapping peptides of thyroid autoantigens, including thyroid-stimulating hormone receptor (TSHR), thyroglobulin (Tg), and thyroid peroxidase (TPO). In PBMCs, naive B cells are characterized by IL6 and CXCR5, whereas memory B cells express IGHG1, IGHG2, and CD74. HLA-DMA, HLA-DRB1, IGHG, IGHM, CD74, CD79A, and MS4A1 expression increased in peptide-stimulated naive and memory B cells compared to those in the controls. Thyroid naive B cells are characterized by CD40 and TNFRSF13C, whereas memory B cells express IGHM, CD79A, and MS4A1. Thyroid B cells showed higher DUSP1, DUSP2, CD69, FOSB, RGS1, and immunoglobulin gene expression than control PBMCs and thyroid cells. B-cell receptor analysis revealed frequent IGHV3-23 and IGHV4-34 usage in controls, whereas IGHV4-34/IGHJ4 expression was increased in TSHR-stimulated groups. We concluded that B-cell responses to TSHR, Tg, and TPO differed and that changes in B-cell reactivity also occurred in PBMCs and the thyroid. Additionally, IGHV3-23 and IGHV4-34 may be associated with autoantibody production in GD. Full article
Show Figures

Figure 1

16 pages, 1359 KiB  
Article
Dysregulation of Purinergic Signaling Sustains Chronic Inflammation and Oxidative Imbalance in Patients After PitNET Surgical Resection
by Geile Fistarol, Luiz A. de Oliveira, Gilnei B. da Silva, Daiane Manica, Marceli C. Hanauer, Paula Dallagnol, Rafael A. Narzetti, Maria L. Bergamini, Vitória C. de Melo, Tais Vidal, Micheli M. Pillat, Jussara de Lima, Marcelo L. V. da Cunha, Marielle L. Makiyama, Filomena Marafon, Aniela P. Kempka, Ariane Zamoner and Margarete D. Bagatini
Int. J. Mol. Sci. 2025, 26(14), 6890; https://doi.org/10.3390/ijms26146890 - 17 Jul 2025
Viewed by 234
Abstract
Pituitary neuroendocrine tumors (PitNETs) are the most common intracranial tumors. Evidence suggests that these types of tumors may have high recurrence rates. In this context, the purinergic system, oxidative stress, and inflammation are important signaling pathways involved in the cancer’s pathophysiology. This study [...] Read more.
Pituitary neuroendocrine tumors (PitNETs) are the most common intracranial tumors. Evidence suggests that these types of tumors may have high recurrence rates. In this context, the purinergic system, oxidative stress, and inflammation are important signaling pathways involved in the cancer’s pathophysiology. This study aimed to evaluate the sociodemographic and diagnostic profiles, as well as assess the purinergic signaling, immunological, and redox profiles, of patients after PitNET resection. We collected sociodemographic data and the patients’ diagnostic profiles. We also collected blood samples to analyze glycemia, triglycerides, albumin, and ATP levels. The ectonucleotidase activity was determined in peripheral blood mononuclear cells (PBMCs). In addition, we evaluated their redox and immunological profiles. There was a prevalence of gonadotropic macroadenoma derived from PIT-1 cells. We found that patients included in the PitNET group had increased glycemia, serum ATP levels, and ATP hydrolysis in PBMCs. Analyzing their immunological profiles, we found that patients had increased levels of IL-6, IL-10, and TNF, while the IL-27 level was decreased. Regarding their redox profiles, PitNET patients had increased levels of ROS and protein carbonylation. Unexpectedly, patients also showed increased levels of non-protein thiols (NPSHs), total thiols (PSHs), and ascorbic acid. Thus, the dysregulation of purinergic signaling sustained chronic inflammation and oxidative imbalance in PitNET patients for a long time after surgical resection. These data suggest that patients with PitNETs require long-term accompanying to prevent cancer recurrence prognosis. The biomarkers highlighted in this study may be good tools to help the medical approaches. Full article
(This article belongs to the Special Issue Advances in the Purinergic System)
Show Figures

Figure 1

27 pages, 3379 KiB  
Article
Cutaneous T-Cell Lymphoma: Yin-Yang Effects of Transcription Factors HLF and NFIL3 in Regulation of Malignant T-Cell Markers in the Context of HDAC Inhibitor Romidepsin Treatment
by Andrew V. Kossenkov, Noor Dawany, Sonali Majumdar, Celia Chang, Calen Nichols, Maria Wysocka, Richard Piekarz, Michael K. Showe, Susan E. Bates, Alain H. Rook, Ellen J. Kim and Louise C. Showe
Cancers 2025, 17(14), 2380; https://doi.org/10.3390/cancers17142380 - 17 Jul 2025
Viewed by 416
Abstract
Background/Objectives: We examined the in vivo effects of successive treatments with the histone deacetylase (HDAC) inhibitor romidepsin in patients with cutaneous T-cell lymphoma (CTCL), using changes in gene expression in peripheral blood mononuclear cells (PBMCs). Methods: Exploiting data from a highly responsive CTCL [...] Read more.
Background/Objectives: We examined the in vivo effects of successive treatments with the histone deacetylase (HDAC) inhibitor romidepsin in patients with cutaneous T-cell lymphoma (CTCL), using changes in gene expression in peripheral blood mononuclear cells (PBMCs). Methods: Exploiting data from a highly responsive CTCL patient through 12 months of treatment, we identified a malignant cell predictor (MCP), a gene signature associated with the diminishing numbers of circulating malignant cells. Results: The MCP was successfully validated in the patient’s relapse sample 9 months after treatment was terminated and via an independent set of CTCL patient samples. Conclusions: The MCP set of genes contained novel CTCL markers, including membrane-associated proteins not normally expressed in lymphocytes. A subclass of those markers was also detectable in residual malignant cells undetected by flow cytometry in remission samples from a patient who relapsed 10 months later. We identified a subset of transcriptional regulators, miRNAs and methylation patterns associated with the effect of progressive treatments revealing potential mechanisms of transcriptional dysregulation and functional effects in the malignant cells. We demonstrate a role for transcriptional activator HLF, over-expressed in malignant cells, and downregulated transcriptional-suppressor and immune-modulator NFIL3, as regulators of CTCL-specific genes. Full article
(This article belongs to the Special Issue Cutaneous Lymphomas: From Pathology to Treatment)
Show Figures

Figure 1

18 pages, 2859 KiB  
Article
Effect of IL-1β on NSCLC-Derived Small Extracellular Vesicles as Actors in Mediating Cancer Progression and Evading Immune System
by Hamid Heydari Sheikhhossein, Luisa Amato, Viviana De Rosa, Caterina De Rosa, Annalisa Ariano, Sabrina Critelli, Daniela Omodei, Valeria Nele, Concetta Tuccillo, Paola Franco, Giovanni N. Roviello, Rosa Camerlingo, Adriano Piattelli, Giovanni Vicidomini, Floriana Morgillo, Giuseppe De Rosa, Maria Patrizia Stoppelli, Carminia Maria Della Corte, Natalia Di Pietro and Francesca Iommelli
Int. J. Mol. Sci. 2025, 26(14), 6825; https://doi.org/10.3390/ijms26146825 - 16 Jul 2025
Viewed by 326
Abstract
Background: Increased IL-1β levels may promote carcinogenesis and metastasis by affecting tumor biology and the tumor microenvironment (TME). In this context, extracellular vesicles (EVs) play a key role in cell-to-cell communication, thus modulating the TME and immune response. Here, we aimed to test [...] Read more.
Background: Increased IL-1β levels may promote carcinogenesis and metastasis by affecting tumor biology and the tumor microenvironment (TME). In this context, extracellular vesicles (EVs) play a key role in cell-to-cell communication, thus modulating the TME and immune response. Here, we aimed to test whether tumor-derived small EVs (TEVs) isolated from sensitive and osimertinib-resistant (OR) non-small-cell lung cancer (NSCLC) cells may promote EMT via fibronectin binding to α5β1 integrin as well as suppress the immune system and if these effects may be favored by IL-1β. Methods: TEVs were isolated from control, OR, and IL-1β-stimulated NSCLC cells. Expressions of fibronectin and PD-L1 were screened in TEVs and the mRNA levels of vimentin and SMAD3 were also assessed in cancer cells after TEV co-culturing. Furthermore, to detect the effect on immune cells, we co-cultured TEVs with lung cancer patients’ peripheral blood mononuclear cells (PBMCs). Results: TEVs were positive for fibronectin and the highest protein levels were found in TEVs obtained from the OR and IL-1β-stimulated cells. TEV-mediated activation of α5β1 signaling led to the upregulation of vimentin and SMAD3 mRNA in NSCLC cells and stimulated cell migration. EVs also increased PD-1, CTLA-4, FOXP3, TNF-α, IL-12, and INF-γ mRNA in lung cancer patients’ immune cells. Conclusions: Our findings indicate that TEVs promote EMT in NSCLC cells by the activation of the fibronectin–α5β1 axis. Finally, IL-1β stimulation induces TEV release with biological properties similar to OR TEVs, thus leading to cancer invasion and immune suppression and suggesting that inflammation can promote tumor spreading. Full article
Show Figures

Graphical abstract

18 pages, 4140 KiB  
Article
Immune Responses Induced by Recombinant Membrane Proteins of Mycoplasma agalactiae in Goats
by Beatriz Almeida Sampaio, Maysa Santos Barbosa, Matheus Gonçalves de Oliveira, Manoel Neres Santos Júnior, Bruna Carolina de Brito Guimarães, Emilly Stefane Souza Andres, Ágatha Morgana Bertoti da Silva, Camila Pacheco Gomes, Rafaela de Souza Bittencourt, Thiago Macêdo Lopes Correia, Lucas Santana Coelho da Silva, Jurandir Ferreira da Cruz, Rohini Chopra-Dewasthaly, Guilherme Barreto Campos, Jorge Timenetsky, Bruno Lopes Bastos and Lucas Miranda Marques
Vaccines 2025, 13(7), 746; https://doi.org/10.3390/vaccines13070746 - 11 Jul 2025
Viewed by 500
Abstract
Background/Objectives: Contagious agalactia (CA) is a disease typically caused by Mycoplasma agalactiae, affecting small ruminants worldwide and being endemic in certain countries. CA causes severe economic losses due to mastitis, agalactia, and arthritis. As an alternative to existing immunoprophylactic measures, this study [...] Read more.
Background/Objectives: Contagious agalactia (CA) is a disease typically caused by Mycoplasma agalactiae, affecting small ruminants worldwide and being endemic in certain countries. CA causes severe economic losses due to mastitis, agalactia, and arthritis. As an alternative to existing immunoprophylactic measures, this study aimed to develop a recombinant subunit vaccine against M. agalactiae and evaluate its specific immune response in goats. Methods: Goats were divided into three groups: group 1 received recombinant proteins (P40 and MAG_1560), group 2 received formalin-inactivated M. agalactiae, and group 3 received Tris-buffered saline (negative control). All solutions were emulsified in Freund’s adjuvant. Animals were monitored for 181 days. IgG antibody production was assessed by ELISA, and peripheral blood mononuclear cells (PBMCs) were analyzed by real-time PCR for the expression of IL-1β, IFN-γ, IL-12, and MHC class II genes. Results: M. agalactiae-specific antibody response was observed for six months in the sera of animals from group 1. Analysis of cytokine gene expression revealed increased IL-1β mRNA levels over time in both experimental groups. In group 1, IFN-γ mRNA levels increased with P40 stimulation and decreased with MAG_1560. IL-12 mRNA expression decreased over time in group 1 with P40 stimulation, whereas group 2 showed increased IL-12 expression for both proteins. MHC-II expression was stimulated in both groups. Conclusions: The recombinant proteins induced antibody production and cytokine expression, demonstrating immunogenic potential and supporting their promise as vaccine candidates capable of eliciting both humoral and cellular immune responses against M. agalactiae. Full article
(This article belongs to the Section Veterinary Vaccines)
Show Figures

Figure 1

21 pages, 2776 KiB  
Article
Comparing DNA Methylation Landscapes in Peripheral Blood from Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Long COVID Patients
by Katie Peppercorn, Sayan Sharma, Christina D. Edgar, Peter A. Stockwell, Euan J. Rodger, Aniruddha Chatterjee and Warren P. Tate
Int. J. Mol. Sci. 2025, 26(14), 6631; https://doi.org/10.3390/ijms26146631 - 10 Jul 2025
Viewed by 1600
Abstract
Post-viral conditions, Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Long COVID (LC), share > 95% of their symptoms, but the connection between disturbances in their underlying molecular biology is unclear. This study investigates DNA methylation patterns in peripheral blood mononuclear cells (PBMC) from patients [...] Read more.
Post-viral conditions, Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Long COVID (LC), share > 95% of their symptoms, but the connection between disturbances in their underlying molecular biology is unclear. This study investigates DNA methylation patterns in peripheral blood mononuclear cells (PBMC) from patients with ME/CFS, LC, and healthy controls (HC). Reduced Representation Bisulphite Sequencing (RRBS) was applied to the DNA of age- and sex-matched cohorts: ME/CFS (n = 5), LC (n = 5), and HC (n = 5). The global DNA methylomes of the three cohorts were similar and spread equally across all chromosomes, except the sex chromosomes, but there were distinct minor changes in the exons of the disease cohorts towards more hypermethylation. A principal component analysis (PCA) analysing significant methylation changes (p < 0.05) separated the ME/CFS, LC, and HC cohorts into three distinct clusters. Analysis with a limit of >10% methylation difference and at p < 0.05 identified 214 Differentially Methylated Fragments (DMF) in ME/CFS, and 429 in LC compared to HC. Of these, 118 DMFs were common to both cohorts. Those in promoters and exons were mainly hypermethylated, with a minority hypomethylated. There were rarer examples with either no change in methylation in ME/CFS but a change in LC, or a methylation change in ME/CFS but in the opposite direction in LC. The differential methylation in a number of fragments was significantly greater in the LC cohort than in the ME/CFS cohort. Our data reveal a generally shared epigenetic makeup between ME/CFS and LC but with specific, distinct changes. Differences between the two cohorts likely reflect the stage of the disease from onset (LC 1 year vs. ME/CFS 12 years), but specific changes imposed by the SARS-CoV-2 virus in the case of the LC patients cannot be discounted. These findings provide a foundation for further studies with larger cohorts at the same disease stage and for functional analyses to establish clinical relevance. Full article
Show Figures

Figure 1

17 pages, 2353 KiB  
Article
High TCR Degeneracy Enhances Antiviral Efficacy of HTLV-1-Specific CTLs by Targeting Variant Viruses in HAM Patients
by Ryuji Kubota, Kousuke Hanada, Mineki Saito, Mika Dozono, Satoshi Nozuma and Hiroshi Takashima
Int. J. Mol. Sci. 2025, 26(14), 6602; https://doi.org/10.3390/ijms26146602 - 10 Jul 2025
Viewed by 326
Abstract
T-cell receptors (TCRs) exhibit degeneracy, enabling individual TCRs to recognize multiple altered peptide ligands (APLs) derived from a single cognate antigen. This characteristic has been involved in the pathogenesis of autoimmune diseases through cross-reactivity between microbial and self-antigens. Cytotoxic T lymphocytes (CTLs), which [...] Read more.
T-cell receptors (TCRs) exhibit degeneracy, enabling individual TCRs to recognize multiple altered peptide ligands (APLs) derived from a single cognate antigen. This characteristic has been involved in the pathogenesis of autoimmune diseases through cross-reactivity between microbial and self-antigens. Cytotoxic T lymphocytes (CTLs), which recognize peptide–MHC class I complexes via TCRs, play a critical role in the immune response against viral infections. However, the extent to which TCR degeneracy within a population of virus-specific CTLs contributes to effective viral control remains poorly understood. In this study, we investigated the magnitude and functional relevance of TCR degeneracy in CTLs targeting an immunodominant epitope of human T-cell leukemia virus type 1 (HTLV-1) in patients with HTLV-1-associated myelopathy (HAM). Using peripheral blood mononuclear cells (PBMCs) from these patients, we quantified TCR degeneracy at the population level by comparing CTL responses to a panel of APLs with responses to the cognate epitope. Our findings demonstrated that increased TCR degeneracy, particularly at the primary TCR contact residue at position 5 of the antigen, was inversely correlated with HTLV-1 proviral load (p = 0.038, R = −0.40), despite similar functional avidity across patient-derived CTLs. Viral sequencing further revealed that CTLs with high TCR degeneracy exerted stronger selective pressure on the virus, as indicated by a higher frequency of nonsynonymous substitutions within the epitope-encoding region in patients with highly degenerate TCR repertoires. Moreover, TCR degeneracy was positively correlated with the recognition rate of epitope variants (p = 0.018, R = 0.76), suggesting that CTLs with high TCR degeneracy exhibited enhanced recognition of naturally occurring epitope variants compared to those with low TCR degeneracy. Taken together, these results suggest that virus-specific CTLs with high TCR degeneracy possess superior antiviral capacity, characterized by broadened epitope recognition and more effective suppression of HTLV-1 infection. To our knowledge, this is the first study to systematically quantify TCR degeneracy in HTLV-1-specific CTLs and evaluate its contribution to viral control in HAM patients. These findings establish TCR degeneracy as a critical determinant of antiviral efficacy and provide a novel immunological insight into the mechanisms of viral suppression in chronic HTLV-1 infection. Full article
Show Figures

Figure 1

19 pages, 1543 KiB  
Article
Peripheral Leukocyte Syndecan-3 Is Elevated in Alzheimer’s Disease: Evidence from a Human Study
by Anett Hudák, Annamária Letoha and Tamás Letoha
Int. J. Mol. Sci. 2025, 26(14), 6587; https://doi.org/10.3390/ijms26146587 - 9 Jul 2025
Viewed by 687
Abstract
Syndecan-3 (SDC3), a transmembrane heparan sulfate proteoglycan involved in cell signaling and endocytosis, has recently been implicated in the pathogenesis of neurodegenerative disorders. While preclinical studies have demonstrated its role in Alzheimer’s disease (AD), its diagnostic relevance in peripheral blood remains unexplored. In [...] Read more.
Syndecan-3 (SDC3), a transmembrane heparan sulfate proteoglycan involved in cell signaling and endocytosis, has recently been implicated in the pathogenesis of neurodegenerative disorders. While preclinical studies have demonstrated its role in Alzheimer’s disease (AD), its diagnostic relevance in peripheral blood remains unexplored. In this human cohort study, we measured SDC3 expression in peripheral blood mononuclear cells (PBMCs) from 22 clinically diagnosed AD patients and 20 cognitively unimpaired non-AD controls using a custom ELISA. The findings were compared with plasma p-tau217 levels and a panel of systemic laboratory markers. PBMC-expressed SDC3 was significantly elevated in AD patients and moderately correlated with AD status (r = 0.309, p = 0.0465) independent of age. Notably, SDC3 levels were inversely correlated with systemic inflammatory markers, including C-reactive protein (CRP; r = −0.421, p = 0.0055) and D-dimer (r = −0.343, p = 0.038), suggesting an AD-associated immune phenotype distinct from acute-phase or vascular inflammation. Conversely, plasma p-tau217 levels did not significantly differ between groups but correlated with markers of tissue injury and inflammation (LDH, GOT, and ferritin), potentially reflecting systemic influences in non-AD controls. A multivariable logistic regression model incorporating SDC3, p-tau217, and age demonstrated high diagnostic accuracy (AUC = 0.85). These findings identify PBMC-expressed SDC3 as a promising blood-based biomarker candidate for AD, warranting further validation in larger, biomarker-confirmed cohorts. Full article
Show Figures

Figure 1

18 pages, 1544 KiB  
Article
Translational Insights into Interferon Alpha’s Effects on Immunomolecular Dynamics in Philadelphia-Negative Myeloproliferative Neoplasms
by Regina García-Delgado, Elena Luque-Lupiáñez, David Mora-Infante, Rodolfo Matías Ortíz-Flores, Borja Cidoncha-Morcillo, Julio Torres-González, Andrés Fontalba-Navas and Alejandro Escamilla-Sánchez
Cancers 2025, 17(14), 2273; https://doi.org/10.3390/cancers17142273 - 8 Jul 2025
Viewed by 620
Abstract
Background/Objectives: Interferon alpha (IFNα) remains a cornerstone in the management of Philadelphia-negative myeloproliferative neoplasms (Ph-neg MPNs), yet its immunomolecular impact over time is not fully elucidated. The aim of the study was to explore how IFNα therapy dynamically reshapes immune and gene profiles [...] Read more.
Background/Objectives: Interferon alpha (IFNα) remains a cornerstone in the management of Philadelphia-negative myeloproliferative neoplasms (Ph-neg MPNs), yet its immunomolecular impact over time is not fully elucidated. The aim of the study was to explore how IFNα therapy dynamically reshapes immune and gene profiles in Ph-neg MPNs and assess their potential as treatment-related biomarkers. Methods: This single-center, prospective, observational study included a translational substudy conducted within a previously established clinical cohort of 44 IFNα-treated patients, selecting a representative subset of 18 individuals stratified by treatment duration. Cytokine profiling (ELISA) and gene expression (RT-qPCR) analysis were performed using plasma and peripheral blood mononuclear cells (PBMCs), respectively. Results: Patients with prolonged exposure showed reduced pro-inflammatory cytokines and downregulation of inflammatory-signalling STAT1/STAT3 expression. In contrast, those with intermediate exposure exhibited transient TH2/regulatory cytokine peaks and upregulation of immunomodulatory genes such as CXCL10, SOCS3, and TNFAIP3. Spearman correlations revealed functional associations between cytokine and gene expression patterns including notable links such as STAT1–IL-13 and MYB–IL-13. Conclusions: These results describe a sequential immune reprogramming driven by IFNα, supporting the development of dynamic immunomolecular biomarkers of response in Ph-neg MPNs. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Graphical abstract

Back to TopTop