Retrofitting of Imperfect Halved Dovetail Carpentry Joints for Increased Seismic Resistance
Abstract
1. Introduction
2. Experiments
2.1. Test Specimens
2.1.1. Material Characteristics
2.1.2. Geometrical Characteristics
2.2. Joint Retrofitting
2.2.1. Metal Nails around a Wooden Pin
2.2.2. Friction Joints
2.3. Test Arrangement
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Parisi, M.A.; Piazza, M. Seismic behavior and retrofitting of joints in traditional timber roof structures. Soil Dyn. Earthq. Eng. 2002, 22, 1183–1191. [Google Scholar] [CrossRef]
- Parisi, M.A.; Piazza, M. Dynamic modeling of friction joints in traditional timber structures. In Proceedings of the Eurodyn’99 Conference, Prague, Czech Republic, 7–10 June 1999. [Google Scholar]
- Parisi, M.A.; Cordié, C. Mechanical behavior of double-step timber joints. Constr. Build. Mater. 2010, 24, 1364–1371. [Google Scholar] [CrossRef]
- Branco, J.M.; Piazza, M.; Cruz, P.J.S. Experimental evaluation of different strengthening techniques of traditional timber connections. Eng. Struct. 2011, 33, 2259–2270. [Google Scholar] [CrossRef]
- Palma, P.; Garcia, H.; Ferreirac, J.; Appletond, J.; Cruz, H. Behaviour and repair of carpentry connections—rotational behaviour of the rafter and tie beam connection in timber roof Structures. J. Cult. Heritage 2012, 13S, S64–S73. [Google Scholar] [CrossRef]
- Poletti, E.; Vasconcelos, G.; Branco, J.M. Performance evaluation of traditional timber joints under cyclic loading and their influence on the seismic response of timber frame structures. Constr. Build. Mater. 2016, 127, 321–334. [Google Scholar] [CrossRef]
- Drdácký, M.; Wald, F.; Sokol, Z. Sensitivity of Historic Timber Structures to Joint Response. In Proceedings of the 40th Anniversary Congress of IASS Madrid, Madrid, Spain, 20–24 September 1999; Astudillo, R., Madrid, A.J., Eds.; 1999; Volume 2, pp. G1–G10. [Google Scholar]
- Parisi, M.A.; Chesi, C.; Tardini, Ch. Inferring Seismic Behavior from Morphology in Timber Roofs. Int. J. Archit. Heritage 2012, 6, 100–116. [Google Scholar] [CrossRef]
- Parisi, M.A.; Piazza, M. Seismic strengthening and seismic improvement of timber structures. Constr. Build. Mater. 2015, 97, 55–66. [Google Scholar] [CrossRef]
- Giuriani, E.; Marini, A. Wooden roof box structure for the anti-seismic strengthening of historic buildings. Int. J. Archit. Heritage 2008, 2, 226–246. [Google Scholar] [CrossRef]
- Aira, J.R.; Arriaga, G.; Íñiguez-González, G.; Crespo, J. Static and kinetic friction coefficients of Scots pine (Pinus sylvestris L.), parallel and perpendicular to grain direction. Materiales de Construcción 2014, 64, 1–9. [Google Scholar] [CrossRef]
- Available online: http://www.engineershandbook.com/Tables/frictioncoefficients.htm (accessed on 20 December 2018).
- Wald, F.; Mareš, J.; Sokol, Z.; Drdácký, M. Component method for historical timber joints. In The Paramount Role of Joints into the Reliable Response of Structures; NATO Science Series; Baniotopoulos, C.C., Wald, F., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000; pp. 417–424. [Google Scholar]
- Vergne, A. Testing and modelling of load carrying behaviour of timber joints. In Proceedings of the International Conference Control of Semi-Rigid Behaviour of Civil Engineering Structural Connections, Liege, Belgium, 17–19 September 1998; p. 4. [Google Scholar]
- Ceccotti, A. Structural Timber: Characteristics and Testing. Struct. Eng. Int. 1993, 3, 95–98. [Google Scholar] [CrossRef]
- Kasal, B.; Pospíšil, S.; Jirovský, I.; Heiduschke, A.; Drdácký, M.; Haller, P. Seismic performance of laminated timber frames with fiber-reinforced joints. J. Earthq. Eng. Struct. Dyn. 2004, 33, 633–646. [Google Scholar] [CrossRef]
- Stehn, L.; Börjes, K. The influence of nail ductility on the load capacity of a glulam truss structure. Eng. Struct. 2004, 26, 809–816. [Google Scholar] [CrossRef]
- D 6.4 (2010) Experimental Result on Structural Connections. Deliverable 6.4, EC FP7 Collaborative Project NIKER—New Integrated Knowledge Based Approaches to the Protection of Cultural Heritage from Earthquake Induced Risk (Grant Agreement No.: 244123). Available online: www.niker.eu/ (accessed on 20 December 2018).
- Drdácký, M.; Urushadze, S.; Wünsche, M. Retrofitting of imperfect carpentry joints for increased seismic resistance. In SAHC 2012 “Structural Analysis of Historic Constructions”; Jasienko, J., Ed.; Dolnoslaskie Wydawnictwo Edukacyjne: Wroclaw, Poland, 2012; pp. 1485–1492. [Google Scholar]
Mechanical Property | Spruce | Oak | Brake Plate |
---|---|---|---|
Density—ρ (kg/m3) | 340–450 | 700–750 | 1950 |
Compression parallel to grain—R (MPa) | 15.63 | -- | -- |
Compression perpendicular to grain—R (MPa) | 2.09 | -- | -- |
Modulus of elasticity—E (MPa) | -- | 12,000 | -- |
Strength in compression—f (MPa) | -- | -- | 180 |
Coefficient of friction—µ | -- | 0.41 * | 0.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drdácký, M.; Urushadze, S. Retrofitting of Imperfect Halved Dovetail Carpentry Joints for Increased Seismic Resistance. Buildings 2019, 9, 48. https://doi.org/10.3390/buildings9020048
Drdácký M, Urushadze S. Retrofitting of Imperfect Halved Dovetail Carpentry Joints for Increased Seismic Resistance. Buildings. 2019; 9(2):48. https://doi.org/10.3390/buildings9020048
Chicago/Turabian StyleDrdácký, Miloš, and Shota Urushadze. 2019. "Retrofitting of Imperfect Halved Dovetail Carpentry Joints for Increased Seismic Resistance" Buildings 9, no. 2: 48. https://doi.org/10.3390/buildings9020048
APA StyleDrdácký, M., & Urushadze, S. (2019). Retrofitting of Imperfect Halved Dovetail Carpentry Joints for Increased Seismic Resistance. Buildings, 9(2), 48. https://doi.org/10.3390/buildings9020048