Regulating Hydration Heat in Magnesium Phosphate Cement Using Paraffins: Efficacy and Performance Trade-Offs
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Test Specimens
2.3. Test Set-Up
3. Results and Discussion
3.1. Phase Change Performance Analysis of PA/MPC
3.2. Influence of PAs on MPC Hydration Temperature Rise
3.2.1. Changes in MPC Hydration Heat Release
- Stage A: Lasting approximately 2.4 min (0.04 h), MPC absorbed heat from the environment at an increasing rate after water addition. This stage was dominated by the dissolution of KH2PO4 and concluded upon reaching the endothermic trough.
- Stage B: The heat release rate of MPC increased rapidly, marking the transition from endothermic to exothermic hydration. MgO dissolution dominated this stage, which concluded after approximately 0.21 h, reaching the first exothermic peak (0.028 W/g).
- Stage C: MPC continued to release heat, but the rate decreased rapidly, reaching a trough point at approximately 0.64 h.
- Stage D: The heat release rate of MPC increased again, dominated by the formation of hydration products like KMgPO4·6H2O. This stage ended at approximately 1.43 h, reaching the second exothermic peak.
- Stage E: The heat release rate of MPC gradually decreased as the hydration process progressively stabilized.
- Stage F: This stage started approximately 4.5 h after hydration commenced, characterized by a stable hydration process of MPC with no further change in heat release rate.
3.2.2. Temperature Rise Variations in PA/MPC Systems
3.3. Influence of PAs on the Compressive Strength of MPC
3.4. Influence of PAs on MPC Setting Time
3.5. Microstructural Analysis of PA/MPC
3.5.1. XRD Analysis
3.5.2. SEM Analysis
4. Conclusions
- The incorporation of all three PAs significantly retarded MPC hydration heat release, suppressed the internal temperature rise, and introduced stable temperature plateaus, demonstrating significant potential for mitigating thermal cracks. Specifically, 4% n-C22 achieved the optimal regulation efficacy, reducing the hydration exothermic peak by 64% and the peak temperature by 16%, outperforming many conventional MPC additives.
- As an inherent trade-off, compressive strength decreased with increasing PA content, but remained acceptable for rapid repair within specific content limits. n-C18 (≤8%), n-C22 (≤4%), and n-C20 (2%) all satisfied the 3 h compressive strength requirement (≥20 MPa) of JC/T 2537-2019, with the highest 28 d strength (42.96 MPa) achieved by C-18-2.
- PA did not alter the types of MPC hydration products but hindered the formation and crystallization process. This reduced hydration degree and microstructure compactness, while dispersed PA particles introduced weak interfaces and pores, providing a mechanistic explanation for the observed macro-scale trade-off between hydration heat regulation efficacy and mechanical performance.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, B.; Zhang, J.; Liu, A.; Zhang, L.; Xie, Z.; Ouyang, X.; Ma, Z.J. Effect of recycled oyster shell powder on hydration and strength development of magnesium phosphate cement. Adv. Cem. Res. 2024, 36, 116–128. [Google Scholar] [CrossRef]
- Qin, Z.; Ma, C.; Zheng, Z.; Long, G.; Chen, B. Effects of metakaolin on properties and microstructure of magnesium phosphate cement. Constr. Build. Mater. 2020, 234, 117353. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhang, L.; Geng, T.; Lai, Y.; Zheng, W.; Huang, M. Study on the compressive properties of magnesium phosphate cement mixing with eco-friendly coir fiber considering fiber length. Materials 2020, 13, 3194. [Google Scholar] [CrossRef]
- Haque, M.A.; Chen, B. Research progresses on magnesium phosphate cement: A review. Constr. Build. Mater. 2019, 211, 885–898. [Google Scholar] [CrossRef]
- Cao, X.; Ma, R.; Zhang, Q.; Wang, W.; Liao, Q.; Sun, S.; Zhang, P.; Liu, X. The factors influencing sludge incineration residue (SIR)-based magnesium potassium phosphate cement and the solidification/stabilization characteristics and mechanisms of heavy metals. Chemosphere 2020, 261, 127789. [Google Scholar] [CrossRef] [PubMed]
- Gardner, L.J.; Corkhill, C.L.; Walling, S.A.; Vigor, J.E.; Hyatt, N.C. Early age hydration and application of blended magnesium potassium phosphate cements for reduced corrosion of reactive metals. Cem. Concr. Res. 2021, 143, 106375. [Google Scholar] [CrossRef]
- Deng, Q.; Lai, Z.; Yan, T.; Wu, J.; Liu, M.; Lu, Z.; Lv, S. Effect of Cr (III) on hydration, microstructure of magnesium phosphate cement, and leaching toxicity evaluation. Environ. Sci. Pollut. Res. 2021, 28, 15290–15304. [Google Scholar] [CrossRef]
- Liu, X.; Bai, X.; He, R.; Song, X.; Luo, Q.; Wang, Z.; Cui, S. Development on Hydration Heat Controlling Materials. Kuei Suan Jen Hsueh Pao/J. Chin. Ceram. Soc. 2021, 49, 980–987. [Google Scholar] [CrossRef]
- Walling, S.A.; Provis, J.L. Magnesia-based cements: A journey of 150 years, and cements for the future? Chem. Rev. 2016, 116, 4170–4204. [Google Scholar] [CrossRef]
- Feijoo, J.; Álvarez-Feijoo, M.A.; Fort, R.; Arce, E.; Ergenç, D. Effects of paraffin additives, as phase change materials, on the behavior of a traditional lime mortar. Constr. Build. Mater. 2022, 361, 129734. [Google Scholar] [CrossRef]
- Liu, J.; Yan, Y.; Li, Z.; Yang, F.; Hai, R.; Yuan, M. Investigation on the potassium magnesium phosphate cement modified by pretreated red mud: Basic properties, water resistance and hydration heat. Constr. Build. Mater. 2023, 368, 130456. [Google Scholar] [CrossRef]
- Meng, X.; Jiang, Y.; Chen, B.; Wang, L. Research progress on the setting time and solidification mechanism of magnesium phosphate cement: A review. Constr. Build. Mater. 2023, 408, 133612. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, Z.; Li, Z.; Yu, H. Influence of FeCl3⋅6H2O on the hydration hardening and water resistance of magnesium potassium phosphate cement. ChemistrySelect 2020, 5, 5156–5161. [Google Scholar] [CrossRef]
- Chen, L.; Shi, Y.; Du, P.; Li, J.; Liao, P.; Du, J. Research Progress on the Preparation and Energy Storage Mechanism of Composite Phase Change Materials Based on Porous Materials Support. J. Mater. Sci. Eng. 2025, 43, 1673–2812. [Google Scholar] [CrossRef]
- Song, J.; Xu, M.; Wang, X.; Huang, F.; Qin, G. The effects of a new phase change material on the properties of low heat cement slurries. Drill. Fluid Complet. Fluid 2019, 36, 218–223. [Google Scholar]
- Wang, C.; Zhao, F.; Xue, Y.; Xia, D. Synthesis and performance evaluation of temperature-controlled coaggulation-promoting composite phase change endothermic agent for cementing in marine hydrate reservoirs. Nat. Gas Ind. 2025, 45, 182–192. [Google Scholar] [CrossRef]
- Xiao, C.; Zhu, S.; Zhang, G.; Yang, X. Application Research Progress of Functional Polymers in Phase Change Thermal Storage Materials. J. Funct. Polym. 2021, 34, 336–351. [Google Scholar] [CrossRef]
- Latibari, S.T.; Mehrali, M.; Mehrali, M.; Mahlia, T.M.I.; Metselaar, H.S.C. Synthesis, characterization and thermal properties of nanoencapsulated phase change materials via sol–gel method. Energy 2013, 61, 664–672. [Google Scholar] [CrossRef]
- Wang, C.; Wang, L.; Wang, R.; Duan, Z.; Meng, S.; Shen, T.; Su, Q. Research progress of nano-enhanced microcapsule composite phase change materials. Acta Mater. Compos. Sin. 2024, 41, 3968–3986. [Google Scholar]
- Sarier, N.; Onder, E. The manufacture of microencapsulated phase change materials suitable for the design of thermally enhanced fabrics. Thermochim. Acta 2007, 452, 149–160. [Google Scholar] [CrossRef]
- Guo, S.; Wang, K.; Wang, W.; Qi, X.; Jia, Z. Preparation of binary low eutectic composite phase change microcapsule materials and their applications. J. Mater. Eng./Cailiao Gongcheng 2024, 42, 5875–5882. [Google Scholar] [CrossRef]
- Illampas, R.; Rigopoulos, I.; Ioannou, I. Influence of microencapsulated Phase Change Materials (PCMs) on the properties of polymer modified cementitious repair mortar. J. Build. Eng. 2021, 40, 102328. [Google Scholar] [CrossRef]
- Yin, G.; Zhang, J.; Shi, M.; Chen, W.; Zheng, X.; Wei, P.; Feng, J.; Zheng, B. Thermal properties of phase change thermal storage foam concrete. Fuhe Cailiao Xuebao/Acta Mater. Compos. Sin. 2023, 40, 4246–4259. [Google Scholar] [CrossRef]
- Zhou, J.; Nie, Z.; Guo, Z.; Yang, J.; Zheng, Z. Review on preparation and properties of phase change concrete. J. Jiangsu Univ. (Nat. Sci. Ed.) 2020, 41, 588–595. [Google Scholar] [CrossRef]
- Peng, Y.; Qin, Z.; Tian, Y.; Ma, G.; Chen, Q.; Qin, Y. Review of preparation and application of phase change energy storage concrete. Concrete 2025, 183–188. [Google Scholar] [CrossRef]
- Feng, Q.; Liu, X.-j.; Peng, Z.-g.; Zheng, Y.; Huo, J.-h.; Liu, H. Preparation of low hydration heat cement slurry with micro-encapsulated thermal control material. Energy 2019, 187, 116000. [Google Scholar] [CrossRef]
- Shi, C.; Wang, P.; Yang, L. Research Progress on Modification of Paraffin-BasedPhase Change Energy Storage Materials for Construction. Mater. China 2022, 41, 607–616. [Google Scholar]
- Bharathiraja, R.; Ramkumar, T.; Selvakumar, M.; Radhika, N. Thermal characteristics enhancement of Paraffin Wax Phase Change Material (PCM) for thermal storage applications. Renew. Energy 2024, 222, 119886. [Google Scholar] [CrossRef]
- Xu, B.; Li, Z. Paraffin/diatomite composite phase change material incorporated cement-based composite for thermal energy storage. Appl. Energy 2013, 105, 229–237. [Google Scholar] [CrossRef]
- Zhang, Z.; Cai, W.; Wang, L. Preparation and properties of paraffin-based composite phase change energy storage mortar. J. Funct. Mater./Gongneng Cailiao 2025, 56, 1193–1199. [Google Scholar] [CrossRef]
- Meng, D.; Zhao, K.; Wang, A.; Wang, B. Preparation and properties of paraffin/PMMA shape-stabilized phase change material for building thermal energy storage. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2020, 35, 231–239. [Google Scholar] [CrossRef]
- Zhang, N.; Yuan, Y. Synthesis and thermal properties of nanoencapsulation of paraffin as phase change material for latent heat thermal energy storage. Energy Built Environ. 2020, 1, 410–416. [Google Scholar] [CrossRef]
- Li, Y.; Lin, H.; Hejazi, S.A.S.; Zhao, C.; Xie, M. The effect of low temperature phase change material of hydrated salt on the performance of magnesium phosphate cement. Constr. Build. Mater. 2017, 149, 272–278. [Google Scholar] [CrossRef]
- Zhao, S.; Yan, H.; Zhang, H.; Wang, H.; Li, Y.; Hu, Z.; Sun, H. The effects of admixtures of inorganic hydrates on the hydration hardening of magnesium potassium phosphate cement. Adv. Cem. Res. 2018, 30, 83–92. [Google Scholar] [CrossRef]
- Zhao, S.; Yan, H.; Wang, H.; Li, Y. Effect of Paraffin/Diatomite Form-stable Phase Change Materials on the Performances of Magnesium Potassium Phosphate Cement. J. Logist. Eng. Univ. 2017, 33, 52–57. [Google Scholar] [CrossRef]
- Li, Y.; Yan, H.; Wang, H.; Wang, Q.; Zhao, S. Effect of paraffin/expanded graphite composite phase change materials on the hydration performances of magnesium phosphate cement. Bull. Chin. Ceram. Soc. 2016, 9, 3007–3013. [Google Scholar]
- Li, Y.; Yan, H.; Wang, Q.; Wang, H.; Zhao, S. Effect of stearic acid composite phase change material on thermal properties of magnesium phosphate cement. New Build. Mater. 2017, 44, 122–127. [Google Scholar]
- Zhao, S.; Yan, H.; Wang, H.; Li, Y.; Zhang, H.; Hu, Z. Influence of Na2SO4·10H2O on Hydration and Hardening of Magnesium Potassium Phosphate Cement. Cailiao Daobao/Mater. Rev. 2017, 31, 187–192+197. [Google Scholar] [CrossRef]
- Fang, G.; Sun, P.; Yu, M.; Zhang, W.; Tan, X. Research progress in improving thermal properties of paraffin phase change materials. Appl. Chem. Ind. 2022, 51, 2433. [Google Scholar] [CrossRef]
- Yan, T.; Chen, H. Temperature Control Performance of Paraffin Phase Change Energy Storage Module. Packag. Eng. 2023, 44, 119–125. [Google Scholar] [CrossRef]
- Mishra, D.K.; Bhowmik, C.; Bhowmik, S.; Pandey, K.M. Property-enhanced paraffin-based composite phase change material for thermal energy storage: A review. Environ. Sci. Pollut. Res. 2022, 29, 43556–43587. [Google Scholar] [CrossRef]
- Cunha, S.; Leite, P.; Aguiar, J. Characterization of innovative mortars with direct incorporation of phase change materials. J. Energy Storage 2020, 30, 101439. [Google Scholar] [CrossRef]
- Cunha, S.; Lima, M.; Aguiar, J.B. Influence of adding phase change materials on the physical and mechanical properties of cement mortars. Constr. Build. Mater. 2016, 127, 1–10. [Google Scholar] [CrossRef]
- GB/T 1346-2024; Test Methods for Water Requirement of Standard Consistency, Setting Time and Soundness of the Portland Cement. China Academy of Building Materials Science: Beijing, China, 2024.
- Liu, M.; Lai, Z.; Deng, Q.; Xiao, R.; Liu, Z.; Luo, X.; Lu, Z.; Lv, S. Surface modification of magnesium oxide and its effect on the performance of magnesium phosphate cement. Constr. Build. Mater. 2022, 316, 125880. [Google Scholar] [CrossRef]
- Viani, A.; Mácová, P. Polyamorphism and frustrated crystallization in the acid–base reaction of magnesium potassium phosphate cements. CrystEngComm 2018, 20, 4600–4613. [Google Scholar] [CrossRef]
- Sugama, T.; Kukacka, L.E. Magnesium monophosphate cements derived from diammonium phosphate solutions. Cem. Concr. Res. 1983, 13, 407–416. [Google Scholar] [CrossRef]
- Dai, F.; Wang, H.; Jiang, Z.; Zhao, S. Hydration Mechanism of Magnesium Phosphate Cement Based on Thermokinetics. Cailiao Yanjiu Xuebao/Chin. J. Mater. Res. 2018, 32, 247–254. [Google Scholar] [CrossRef]
- Ruan, W.; Liao, J.; Gu, X.; Mo, J.; Cai, M.; Guo, W.; Li, F.; Zhu, Y.; Ma, X. Effects of bauxite tailings and sodium silicate on mechanical properties and hydration mechanism of magnesium phosphate cement. Constr. Build. Mater. 2023, 366, 130055. [Google Scholar] [CrossRef]
- Lai, Z.; Lai, X.; Shi, J.; Lu, Z. Effect of Zn2+ on the early hydration behavior of potassium phosphate based magnesium phosphate cement. Constr. Build. Mater. 2016, 129, 70–78. [Google Scholar] [CrossRef]
- Maldonado-Alameda, A.; Lacasta, A.; Giro-Paloma, J.; Chimenos, J.; Formosa, J. Physical, thermal and mechanical study of MPC formulated with LG-MgO incorporating Phase Change Materials as admixture. IOP Conf. Ser. Mater. Sci. Eng. 2017, 251, 012024. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, Z.; Li, Z.; Yu, H. Experimental research on the utilization of gold mine tailings in magnesium potassium phosphate cement. J. Build. Eng. 2022, 45, 103313. [Google Scholar] [CrossRef]
- Ma, S.; Zhang, Z.; Liu, X.; Li, Y.; Zeng, Q.; Zhang, W. Reuse of red mud in magnesium potassium phosphate cement: Reaction mechanism and performance optimization. J. Build. Eng. 2022, 61, 105290. [Google Scholar] [CrossRef]
- Shi, Y.; Chen, B.; Ahmad, M.R. Effects of alumina as an effective constituent of metakaolin on properties of magnesium phosphate cements. J. Mater. Civ. Eng. 2019, 31, 04019147. [Google Scholar] [CrossRef]
- Li, Y.; Shi, T.; Chen, B. Experimental study of dipotassium hydrogen phosphate influencing properties of magnesium phosphate cement. J. Mater. Civ. Eng. 2016, 28, 04015170. [Google Scholar] [CrossRef]
- Xu, B.; Ma, H.; Shao, H.; Li, Z.; Lothenbach, B. Influence of fly ash on compressive strength and micro-characteristics of magnesium potassium phosphate cement mortars. Cem. Concr. Res. 2017, 99, 86–94. [Google Scholar] [CrossRef]
- Yang, J.; Lu, J.; Wu, Q.; Xia, M.F.; Li, X. Influence of steel slag powders on the properties of MKPC paste. Constr. Build. Mater. 2018, 159, 137–146. [Google Scholar] [CrossRef]
- JC/T 2537-2019; Magnesium Phosphate Repairing Mortar. Ministry of Industry and Information Technology of the People’s Republic of China (MIIT): Beijing, China, 2019.
- Wang, S.; Cheng, Q.; Gan, Y.; Li, Q.; Liu, C.; Sun, W. Effect of wax composition and shear force on wax aggregation behavior in crude oil: A molecular dynamics simulation study. Molecules 2022, 27, 4432. [Google Scholar] [CrossRef]
- Kurniawan, M.; Ruwoldt, J.; Norrman, J.; Paso, K.G. Influence of wax inhibitor molecular weight on solution crystallization and rheology of monodisperse waxes. Energy Fuels 2021, 35, 7666–7680. [Google Scholar] [CrossRef]









| Oxide | MgO | SiO2 | CaO | Fe2O3 | IL |
|---|---|---|---|---|---|
| Content/% | 92.00 | 4.50 | 2.00 | 1.20 | 0.30 |
| PA | Phase Change Point/°C | Latent Heat/(J/g) |
|---|---|---|
| n-C18 | 34.22 | 197.30 |
| n-C20 | 39.92 | 216.00 |
| n-C22 | 49.00 | 238.40 |
| Specimen No. | n-C18/% | n-C20/% | n-C22/% | Dead Burned MgO/g | KH2PO4/g | Borax/g | w/c |
|---|---|---|---|---|---|---|---|
| Blank | - | - | - | 80.00 | 20.00 | 6.40 | 0.16 |
| C-18-2 | 2.00 | - | - | 80.00 | 20.00 | 6.40 | 0.16 |
| C-18-4 | 4.00 | - | - | 80.00 | 20.00 | 6.40 | 0.16 |
| C-18-6 | 6.00 | - | - | 80.00 | 20.00 | 6.40 | 0.16 |
| C-18-8 | 8.00 | - | - | 80.00 | 20.00 | 6.40 | 0.16 |
| C-20-2 | - | 2.00 | - | 80.00 | 20.00 | 6.40 | 0.16 |
| C-20-4 | - | 4.00 | - | 80.00 | 20.00 | 6.40 | 0.16 |
| C-20-6 | - | 6.00 | - | 80.00 | 20.00 | 6.40 | 0.16 |
| C-20-8 | - | 8.00 | - | 80.00 | 20.00 | 6.40 | 0.16 |
| C-22-2 | - | - | 2.00 | 80.00 | 20.00 | 6.40 | 0.16 |
| C-22-4 | - | - | 4.00 | 80.00 | 20.00 | 6.40 | 0.16 |
| C-22-6 | - | - | 6.00 | 80.00 | 20.00 | 6.40 | 0.16 |
| C-22-8 | - | - | 8.00 | 80.00 | 20.00 | 6.40 | 0.16 |
| Additives | M/P | w/c | Original Exothermic Peak/(W/g) | Exothermic Peak/(W/g) | Decrease/% | Ref. |
|---|---|---|---|---|---|---|
| C-18 | 4:1 a | 0.16 | 0.028 | 0.015 | 46 | - |
| C-20 | 4:1 a | 0.16 | 0.028 | 0.012 | 57 | - |
| C-22 | 4:1 a | 0.16 | 0.028 | 0.010 | 64 | - |
| Na2SO4·10H2O | 4:1 a | 0.12 | 0.0269 | 0.0156 | 42 | [38] |
| Bauxite tailings (BTs) | 7:2 a | 0.16 | 0.0082 | 0.0064 | 22 | [49] |
| Zn(NO3)2 | 4:1 b | 1 | 0.0440 | 0.0355 | 19 | [50] |
| CaCl2·6H2O | 9:2 b | 0.14 | 0.0094 | 0.0076 | 19 | [33] |
| Ca(NO3)2·4H2O/Na2SO4·10H2O | 3:1 a | 0.12 | 0.022 | 0.011 | 50 | [34] |
| Additives | M/P a | w/c | Original Tpeak/°C | Tpeak/°C | Decrease/% | Ref. |
|---|---|---|---|---|---|---|
| C-18 | 4:1 | 0.16 | 56.5 | 48.3 | 15 | - |
| C-20 | 4:1 | 0.16 | 56.5 | 47.3 | 16 | - |
| C-22 | 4:1 | 0.16 | 56.5 | 48.2 | 15 | - |
| AEA/MPCM | 3:2 | 0.34 | 39.0 | 36.5 | 6 | [51] |
| Na2SO4·10H2O | 4:1 | 0.12 | 62.7 | 61.0 | 3 | [38] |
| Gold mine tailing (GT) | 7:5 | 0.17 | 50.6 | 43.5 | 14 | [52] |
| Red mud | 3:1 | 0.18 | 65.3 | 61.7 | 6 | [53] |
| Metakaolin (MK) | 3:1 | 0.09 | 42.8 | 35.8 | 16 | [54] |
| Al2O3 | 3:1 | 0.09 | 42.8 | 36.0 | 16 | [54] |
| K2HPO4 | 9:2 | 0.12 | 62.5 | 52.5 | 16 | [55] |
| Broax | 9:2 | 0.12 | 62.5 | 60.0 | 4 | [55] |
| Fly ash (FA) | 9:2 | 0.15 | 42.0 | 35.0 | 17 | [56] |
| Steel slag powder | 3:1 | 0.108 | 48.0 | 43.5 | 9 | [57] |
| Ca(NO3)2·4H2O/Na2SO4·10H2O | 3:1 | 0.12 | 61.5 | 52.9 | 14 | [34] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Lin, Z.; Jiang, H.; Zhang, H.; Liu, J.; Liu, X.; Fan, J.; Hu, Z. Regulating Hydration Heat in Magnesium Phosphate Cement Using Paraffins: Efficacy and Performance Trade-Offs. Buildings 2026, 16, 304. https://doi.org/10.3390/buildings16020304
Lin Z, Jiang H, Zhang H, Liu J, Liu X, Fan J, Hu Z. Regulating Hydration Heat in Magnesium Phosphate Cement Using Paraffins: Efficacy and Performance Trade-Offs. Buildings. 2026; 16(2):304. https://doi.org/10.3390/buildings16020304
Chicago/Turabian StyleLin, Zhenxiang, Haoyang Jiang, Hansong Zhang, Jie Liu, Xiaoying Liu, Junyu Fan, and Zhide Hu. 2026. "Regulating Hydration Heat in Magnesium Phosphate Cement Using Paraffins: Efficacy and Performance Trade-Offs" Buildings 16, no. 2: 304. https://doi.org/10.3390/buildings16020304
APA StyleLin, Z., Jiang, H., Zhang, H., Liu, J., Liu, X., Fan, J., & Hu, Z. (2026). Regulating Hydration Heat in Magnesium Phosphate Cement Using Paraffins: Efficacy and Performance Trade-Offs. Buildings, 16(2), 304. https://doi.org/10.3390/buildings16020304
