Zero-Emission Potential of Single-Family Houses in Croatia
Abstract
1. Introduction
2. Methodology
2.1. Embodied Carbon
2.1.1. Built-In Materials (Stages A1, A2, A3)
2.1.2. Refurbishment/Renovation (Stages B4, B5)
2.1.3. Material Transport (Stages A4, C2)
2.1.4. Construction/Deconstruction (Stages A5, C1)
2.2. Operational Carbon (Stage B6)
2.2.1. Annual Energy Need
2.2.2. Delivered Energy
2.2.3. Electricity Mix
2.2.4. Electricity Production on Site
2.2.5. Lighting
3. Results
3.1. Embodied Carbon
3.2. Operational Carbon
4. Discussion
4.1. Embodied Carbon
4.2. Operational Carbon
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| EPS | Expanded polystyrene (thermal insulation) |
| MW | Mineral wool (thermal insulation) |
| XPS | Extruded polystyrene (insulation) |
| nZEB | Nearly zero-energy building |
| ZEB | Zero-emission building |
| APV,ef (m2) | Effective photovoltaic module area |
| Edel,C (kWh/a) | Delivered energy for space cooling |
| Edel,H (kWh/a) | Delivered energy for space heating |
| Edel,light (kWh/a) | Delivered energy for lighting |
| Edel,total (kWh/a) | Total delivered energy |
| Edel,W (kWh/a) | Delivered energy for domestic hot water |
| Eel,grid use (kWh/a) | Electricity imported from the grid |
| Eel,PV (kWh/a) | Electricity generated by PV system |
| Eel,PV,exp (kWh/a) | PV electricity exported to grid |
| Eel,PV,used (kWh/a) | On-site used PV electricity |
| PPV (kWp) | PV installed power |
| GHG emissions (kgCO2eq/a) | Operational greenhouse gas emissions |
| PV GHG savings (kgCO2eq/a) | Avoided GHG from PV replacing grid electricity |
| Q″C,nd (kWh/(m2·a)) | Net specific space cooling demand (per floor area) |
| Q″H,nd (kWh/(m2·a)) | Net specific space heating demand (per floor area) |
| QC,nd (kWh/a) | Net space cooling demand |
| QH,nd (kWh/a) | Net space heating demand |
| QW,nd (kWh/a) | Net domestic hot water demand |
References
- Maduta, C.; D’Agostino, D.; Tsemekidi-Tzeiranaki, S.; Castellazzi, L. From Nearly Zero-Energy Buildings (NZEBs) to Zero-Emission Buildings (ZEBs): Current status and future perspectives. Energy Build. 2025, 328, 115133. [Google Scholar] [CrossRef]
- Mahmoodi, M.; Rasheed, E.; Le, A. Systematic Review on the Barriers and Challenges of Organisations in Delivering New Net Zero Emissions Buildings. Buildings 2024, 14, 1829. [Google Scholar] [CrossRef]
- Directive (EU) 2024/1275 of the European Parliament and of the Council of 24 April 2024. 2024. Available online: https://eur-lex.europa.eu/eli/dir/2024/1275/oj/eng (accessed on 20 September 2025).
- Myint, N.N.; Shafique, M.; Zhou, X.; Zheng, Z. Net zero carbon buildings: A review on recent advances, knowledge gaps and research directions. Case Stud. Constr. Mater. 2025, 22, e04200. [Google Scholar] [CrossRef]
- Zajacs, A.; Lebedeva, K.; Bogdanovičs, R. Evaluation of Heat Pump Operation in a Single-Family House. Latv. J. Phys. Tech. Sci. 2023, 60, 85–98. [Google Scholar] [CrossRef]
- Gjerkeń, H.; Zavrl, M.Ń.; Stegnar, G. Heat Pumps and Cost Optimal Building Performance. Eur. Sci. J. 2014, 10, 330–339. [Google Scholar]
- Scarlat, N.; Prussi, M.; Padella, M. Quantification of the carbon intensity of electricity produced and used in Europe. Appl. Energy 2022, 305, 117901. [Google Scholar] [CrossRef]
- European Environment Information and Observation Network (Eionet). Greenhouse Gas Emission Intensity of Electricity Generation in Europe, EEA Web Team. 2021. Available online: https://www.eea.europa.eu/ims/greenhouse-gas-emission-intensity-of-1 (accessed on 20 September 2025).
- Carbon Intensity of Electricity Generation. 2025. Available online: https://ourworldindata.org/grapher/carbon-intensity-electricity?time=2023..latest&mapSelect=~HRV (accessed on 22 September 2025).
- Ziegler, M.S.; Mueller, J.M.; Pereira, G.D.; Song, J.; Ferrara, M.; Chiang, Y.M.; Trancik, J.E. Storage Requirements and Costs of Shaping Renewable Energy Toward Grid Decarbonization. Joule 2019, 3, 2134–2153. [Google Scholar] [CrossRef]
- BPIE. Policy Briefing Nearly Zero: A Review of Eu Member State Implementation of New Buıld Requırements; BPIE: Brussels, Belgium, 2021. [Google Scholar]
- Tehnički Propis o Racionalnoj Uporabi Energije i Toplinskoj Zaštiti u Zgradama (NN 102/2020) Technical Regulation on the Rational Utilization of Energy and Thermal Insulation of Buildings (Official Gazette 102/2020). 2020. Available online: https://narodne-novine.nn.hr/clanci/sluzbeni/2020_09_102_1922.html (accessed on 22 September 2025). (In Croatian).
- Nowtricity. Real Time Electricity Production Emissions by Country, 2025. Available online: https://www.nowtricity.com/ (accessed on 25 August 2025).
- Brizmohun, R.; Ramjeawon, T.; Azapagic, A. Life cycle assessment of electricity generation in Mauritius. J. Clean. Prod. 2015, 106, 565–575. [Google Scholar] [CrossRef]
- Andresen, I. Towards Zero Energy and Zero Emission Buildings—Definitions, Concepts, and Strategies. Curr. Sustain. Energy Rep. 2017, 4, 63–71. [Google Scholar] [CrossRef]
- Walsh, J.; McAulliffe, B. Study of the Embodied Carbon in Traditional Masonry Construction vs. Timber Frame Construction in Housing; Jeremy Walsh Project Management: Tralee, Ireland, 2020; p. 38. [Google Scholar]
- Monahan, J.; Powell, J.C. An embodied carbon and energy analysis of modern methods of construction in housing: A case study using a lifecycle assessment framework. Energy Build. 2011, 43, 179–188. [Google Scholar] [CrossRef]
- Hart, J.; D’Amico, B.; Pomponi, F. Whole-life embodied carbon in multistory buildings: Steel, concrete and timber structures. J. Ind. Ecol. 2021, 25, 403–418. [Google Scholar] [CrossRef]
- Szalay, Z. A parametric approach for developing embodied environmental benchmark values for buildings. Int. J. Life Cycle Assess. 2024, 29, 1563–1581. [Google Scholar] [CrossRef]
- Good, C.; Georges, L.; Kristjansdottir, T.; Wiberg, A.H.; Hestnes, A.G. A Comparative Study of Different PV Installations for a Norwegian NZEB Concept. In Proceedings of the EuroSun 2014, Aix-les-Bains, France, 16–19 September 2014; pp. 1–10. [Google Scholar] [CrossRef]
- Kristjansdottir, T.F.; Heeren, N.; Andresen, I.; Brattebø, H. Comparative emission analysis of low-energy and zero-emission buildings. Build. Res. Inf. 2018, 46, 367–382. [Google Scholar] [CrossRef]
- Maduta, C.; Melica, G.; D’Agostino, D.; Bertoldi, P. Towards a decarbonised building stock by 2050: The meaning and the role of zero emission buildings (ZEBs) in Europe. Energy Strateg. Rev. 2022, 44, 101009. [Google Scholar] [CrossRef]
- Pinel, D.; Korpås, M.; Lindberg, K.B. Cost Optimal Design of Zero Emission Neighborhoods’ (ZENs) Energy System: Model Presentation and Case Study on Evenstad; Springer: Berlin/Heidelberg, Germany, 2020; pp. 145–163. [Google Scholar] [CrossRef]
- Choi, W.J.; Joo, H.J.; Park, J.W.; Kim, S.K.; Lee, J.B. Power generation performance of building-integrated photovoltaic systems in a zero energy building. Energies 2019, 12, 2471. [Google Scholar] [CrossRef]
- Sannino, R.; Ronchetti, L.; Di Turi, S. Pathway to Zero-Emission Buildings: Energy and Economic Comparison of Different Demand Coverage by RES for a New Office Building. Sustainability 2024, 16, 10837. [Google Scholar] [CrossRef]
- Soldo, V.; Noval, S.; Horvat, I. Algoritam za Proračun Potrebne Energije za Grijanje i Hlađenje Prostora Zgrade Prema HRN EN ISO 13790 [Algorithm for Calculating the Energy Needs for Space Heating and Cooling of a Building According to HRN EN ISO 13790]. Zagreb, 2017. Available online: https://mpgi.gov.hr/UserDocsImages/dokumenti/EnergetskaUcinkovitost/meteoroloski_podaci/Algoritam_HRN_EN_13790_2017.pdf (accessed on 25 August 2025).
- EN 15804:2012+A2:2019/AC:2021; Sustainability of Construction Works—Environmental Product Declarations—Core Rules for the Product Category of Construction Products. European Committee for Standardization: Brussels, Belgium, 2021.
- baubook GmbH Baubook Eco2soft. Eco2Soft—Ökobilanz für Gebäude, (n.d.). Available online: https://www.baubook.at/eco2soft/ (accessed on 5 August 2025).
- Pronk, A.; Brancart, S.; Sanders, F. Reusing Timber Formwork in Building Construction: Testing, Redesign, and Socio-Economic Reflection. Urban Plan. 2022, 7, 81–96. [Google Scholar] [CrossRef]
- Cristescu, C.; Honfi, D.; Sandberg, K.; Sandin, Y.; Shotton, E.; Walsh, S.J.; Cramer, M.; Ridley-Ellis, D.; De Arana-fernández, M.; Llana, D.F.; et al. Design for Deconstruction and Reuse of Timber Structures—State of the Art Review; RISE Research Institutes of Sweden: Göteborg, Sweden, 2020. [Google Scholar] [CrossRef]
- EN 15978:2011; Sustainability of Construction Works—Assessment of Environmental Performance of Buildings—Calculation Method. European Committee for Standardization: Brussels, Belgium, 2011.
- Gervasio, H.; Dimova, S. Model for Life Cycle Assessment (LCA) of Buildings; EUR 29123 EN; Publications Office of the European Union: Luxembourg, 2018; ISBN 978-92-79-79973-0. [Google Scholar] [CrossRef]
- Ragon, P.; Rodríguez, F. CO2 Emissions from Trucks in the EU: An Analysis of the Heavy-Duty CO2 Standards Baseline Data. 2021. Available online: https://theicct.org/publication/co2-emissions-from-trucks-in-the-eu-an-analysis-of-the-heavy-duty-co2-standards-baseline-data/ (accessed on 25 August 2025).
- Chen, S.; Teng, Y.; Zhang, Y.; Leung, C.K.Y.; Pan, W. Reducing embodied carbon in concrete materials: A state-of-the-art review. Resour. Conserv. Recycl. 2023, 188, 106653. [Google Scholar] [CrossRef]
- Backes, J.G.; Traverso, M.; Horvath, A. Environmental assessment of a disruptive innovation: Comparative cradle-to-gate life cycle assessments of carbon-reinforced concrete building component. Int. J. Life Cycle Assess. 2023, 28, 16–37. [Google Scholar] [CrossRef]
- Weigert, M.; Melnyk, O.; Winkler, L.; Raab, J. Carbon Emissions of Construction Processes on Urban Construction Sites. Sustainability 2022, 14, 12947. [Google Scholar] [CrossRef]
- Sizirici, B.; Fseha, Y.; Cho, C.S.; Yildiz, I.; Byon, Y.J. A review of carbon footprint reduction in construction industry, from design to operation. Materials 2021, 14, 6094. [Google Scholar] [CrossRef] [PubMed]
- EN 15316-4-2:2017/AC:2017; Energy Performance of Buildings—Method for Calculation of System Energy Requirements and System Efficiencies—Part 4-2: Space Heating Generation Systems, Heat Pump Systems, Module M3-8-2, M8-8-2, (n.d.). European Committee for Standardization: Brussels, Belgium, 2017.
- EN 15316-4-3:2017; Energy Performance of Buildings—Method for Calculation of System Energy Requirements and system Efficiencies—Part 4-3: Heat Generation Systems, Thermal Solar and Photovoltaic Systems, Module M3-8-3, M8-8-3, M11-8-3. European Committee for Standardization: Brussels, Belgium, 2017.
- CEN/TR 16798-14:2017; Energy Performance of Buildings—Ventilation for Buildings—Part 14: Interpretation of the Requirements in EN 16798-13—Calculation of Cooling Systems (Module M4-8)—Generation. European Committee for Standardization: Brussels, Belgium, 2017.
- Lončar, D.; Dović, D.; Horvat, I. Algoritam za Određivanje Energijskih Zahtjeva i Učinkovitosti Termo Tehničkih Sustava u Zgradama—Sustavi Kogeneracije, Sustavi Daljinskog Grijanja, Fotonaponski Sustavi [Algorithm for Determining Energy Requirements and Efficiency of Thermotechnical Systems in Buildings—Cogeneration Systems, District Heating Systems, Photovoltaic Systems]. Zagreb, 2017. Available online: https://mpgi.gov.hr/UserDocsImages/dokumenti/EnergetskaUcinkovitost/Propisi/2017/Algoritam-SustaviGrijanjaProstora.pdf (accessed on 25 August 2025). (In Croatian)
- Electricity Maps, Carbon Intensity Data (Version 27 January 2025). 2025. Available online: https://www.electricitymaps.com (accessed on 25 August 2025).
- European Commission. Electrification, 2025. Available online: https://energy.ec.europa.eu/topics/eus-energy-system/electrification_en (accessed on 20 September 2025).
- ENTSO-E. Power Statistics. (n.d.). Available online: https://www.entsoe.eu/data/power-stats/ (accessed on 21 September 2025).
- Bruno, J.C.; Pulido, T. Review and Analysis of Energy Losses and Inverter Sizing in Photovoltaic Plants, 2024. Available online: https://ssrn.com/abstract=5001650 (accessed on 25 August 2025).
- DNV KEMA Energy and Sustainability; Pacific Northwest National Laboratory. Residential Lighting End-Use Consumption Study: Estimation Framework and Initial Estimates; Pacific Northwest National Lab. (PNNL): Richland, WA, USA, 2012. [CrossRef]
- Ministarstvo Gospodarstva i Održivog Razvoja/Ministry of Economy and Sustainable Development. Pravilnik o Sustavu za Praćenje, Mejrenje i Verifikaciju Ušteda Energije (NN 98/21) Ordinance on the System for Monitoring, Measuring and Verification of Energy Savings (Official Gazzete 98/21). 2021. Available online: https://narodne-novine.nn.hr/clanci/sluzbeni/2021_09_98_1772.html (accessed on 25 August 2025).








| A | Product and Construction Stage | Included | |
| A1 | Raw material supply | Extraction, processing, and production of raw materials | Yes |
| A2 | Transport | Transport to the manufacturing site | Yes |
| A3 | Manufacturing | Manufacturing of construction materials and building elements | Yes |
| A4 | Transport to the site | Transport to the construction site | Yes |
| A5 | Construction/installation | Fuel and electricity use on the construction site | Yes |
| B | Use Stage | Included | |
| B1 | Use | Emissions during use (VOC, off-gassing of plastics…) | No |
| B2 | Maintenance | Cleaning, servicing, and repainting | No |
| B3 | Repair | Fixing damaged building components | No |
| B4 | Replacement | Replacement of parts of a building whose lifespan is shorter than the lifespan of the building | Yes |
| B5 | Refurbishment | Major renovation | Yes |
| B6 | Operational energy use | Energy consumption for heating, DHW preparation, cooling, lighting, appliances, and ventilation | Yes |
| B7 | Operational water use | Water supply, wastewater treatment, and associated emissions (can include DHW preparation instead of B6) | No |
| C | End-of-Life Stage | Included | |
| C1 | Deconstruction/demolition | Fuel and electricity use for machinery and equipment, dust, direct emissions | Yes |
| C2 | Transport | Transport to treatment or disposal site | Yes |
| C3 | Waste processing | Sorting, crushing, and preparation for further use | No |
| C4 | Disposal | Landfilling, incineration, and decomposition due to improper disposal | No |
| D | Benefits and Loads Beyond the System Boundary | Included | |
| D | Reuse, recovery, recycling potential | Credits/penalties for materials or energy recovered after end-of-life stages (material recycling, energy recovery, reuse potential) | No |
| Building Element | Reinforced Concrete | Hollow Clay Block | Porous Clay Block | Aerated Concrete Block | Wood-Based Sandwich Panels | Cross- Laminated Timber |
|---|---|---|---|---|---|---|
| Wall insulation thickness (cm) | EPS 15/10 ** | EPS 15/8 ** | 38 */30 *,** | 38 */30 *,** | MW 16 + + EPS 10 | EPS 15 |
| Uwall (W/(m2 K)) | 0.24/0.35 ** | 0.22/0.36 ** | 0.17/0.26 ** | 0.28/0.33 | 0.14 | 0.22 |
| αwall (-) | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 |
| Floor insulation thickness (cm) | EPS 12/8 ** | EPS 12/8 ** | EPS 12/8 ** | EPS 12/8 ** | EPS 12 | EPS 12 |
| Ufloor (W/(m2 K)) | 0.29/0.41 ** | 0.29/0.41 ** | 0.29/0.41 ** | 0.29/0.41 ** | 0.29 | 0.29 |
| Roof insulation thickness (cm) | MW 16 cm | MW 21 cm | MW 21 cm | MW 21 cm | MW 21 cm | MW 16 cm |
| Uroof (W/(m2 K)) | 0.21 | 0.16 | 0.16 | 0.16 | 0.16 | 0.18 |
| Udoor (W/(m2 K)) | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 |
| Ublinds (W/(m2 K)) | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 |
| Uwindow (W/(m2 K)) | 1.40 | 1.40 | 1.40 | 1.40 | 1.40 | 1.40 |
| Ff (-) | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 |
| FC,C (-) | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |
| g┴ (-) | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 |
| Heating | Value |
| Heating capacity/output, A7/W50, ΦH (kW), according to Lončar et al. [41] | 10/7 * |
| Balance temperature, Θb (°C) | −5 |
| Floor heating, ηem (-) | 0.9 |
| Supply floor heating temperature, Θsup (°C) | 40 |
| Return floor heating temperature, Θret (°C) | 30 |
| DHW Preparation | |
| Hot water temperature, Θw,del (°C) | 45 |
| Storage tank capacity, Vst,w (l) | 300 |
| Location of water storage tank | Inside |
| Cooling | |
| Chilled water 7/12 °C, refrigerant R410A, energy efficiency ratio, EER (-) | 2.4 |
| Single-zone system with continuous control, mean partial load factor, PLVav (-) | 1.37 |
| Photovoltaic Panels | |
| Monocrystalline silicon, peak power coefficient, Kpk (-) | 0.18 |
| Moderately ventilated modules, installation-dependent efficiency factor, fperf (-) | 0.8 |
| Reference solar irradiance, Iref (-) | 1 |
| Overall efficiency, ηPV (-) | 0.14 |
| Panel orientation (azimuth angle), γ (°) | 0 (S) |
| Panel tilt, β (°) | 30 |
| Load-Bearing Construction/ Material | Reinforced Concrete | Hollow Clay Block | Porous Clay Block | Aerated Concrete Block | Wood-Based Sandwich Panels | Cross- Laminated Timber | Transport Distance (km) |
|---|---|---|---|---|---|---|---|
| Reinforced concrete | 286.480 | 103.850 | 95.870 | 80.333 | 44.173 | 44.173 | 21 |
| Bitumen waterproofing | 791 | 791 | 791 | 791 | 791 | 791 | 64 |
| Hollow clay block | 0 | 41.134 | 20.960 | 0 | 0 | 0 | 81 |
| Roof tiles | 3.593 (3.593) | 3.593 (3.593) | 3.593 (3.593) | 3.593 (3.593) | 3.593 (3.593) | 3.593 (3.593) | 60 |
| Wooden door | 364 (44) | 364 (44) | 364 (44) | 364 (44) | 364 (44) | 364 (44) | 130 |
| Wooden elements | 1.040 (210) | 1.455 (210) | 1.455 (210) | 1.455 (210) | 9.547 (210) | 1.040 (210) | 36 |
| EPS | 596 (399) | 613 (399) | 294 | 254 | 480 (266) | 596 (399) | 15 |
| Cement screed | 17.263 | 17.263 | 17.263 | 17.263 | 17.263 | 17.263 | 30 |
| Gypsum board | 1.822 | 2.944 | 2.944 | 2.944 | 7.864 | 1.822 | 60 |
| Wall putty | 0 | 0 | 0 | 3.280 | 0 | 0 | 30 |
| Ceramics | 662 (662) | 662 (662) | 662 (662) | 662 (662) | 662 (662) | 662 (662) | 200 |
| Rain dam | 22 (22) | 22 (22) | 22 (22) | 22 (22) | 22 (22) | 22 (22) | 147 |
| Laminated wood | 0 | 0 | 0 | 0 | 0 | 42.027 | 155 |
| Metal construction | 172 | 521 | 521 | 521 | 521 | 172 | 335 |
| Mineral wool | 501 | 632 | 632 | 632 | 1.847 | 501 | 60 |
| OSB board | 0 | 1.297 | 1.297 | 1.297 | 9.288 | 0 | 89 |
| PE foil | 51 | 51 | 51 | 51 | 90 | 51 | 21 |
| PVC window | 1.013 (1.013) | 1.013 (1.013) | 1.013 (1.013) | 1.013 (1.013) | 1.013 (1.013) | 1.013 (1.013) | 59 |
| Parquet | 1.611 (1.611) | 1.611 (1.611) | 1.611 (1.611) | 1.611 (1.611) | 1.611 (1.611) | 1.611 (1.611) | 25 |
| Aerated concrete block | 0 | 0 | 0 | 33.734 | 0 | 0 | 117 |
| Extension plaster | 16.244 | 14.447 | 24.024 (9.577) | 9.577 (9.577) | 0 | 0 | 19 |
| Porous clay block | 0 | 0 | 37.235 | 0 | 0 | 0 | 55 |
| XPS | 75 | 75 | 75 | 75 | 0 | 75 | 19 |
| Finishing plaster | 975 (975) | 975 (975) | 0 | 0 | 975 (975) | 975 (975) | 30 |
| Gravel | 20.376 | 22.704 | 22.704 | 22.704 | 23.868 | 23.868 | 19 |
| Total (kg) | 353.650 (8.529) | 216.019 (8.529) | 233.382 (7.155) | 182.176 (16.732) | 123.972 (8.396) | 140.618 (8.529) |
| Load-Bearing Construction /Material | Reinforced Concrete | Hollow Clay Block | Porous Clay Block | Aerated Concrete Block | Transport Distance (km) |
|---|---|---|---|---|---|
| Reinforced concrete | 286.480 | 103.850 | 90.549 | 75.012 | 24 |
| Bitumen waterproofing | 791 | 791 | 791 | 791 | 461 |
| Hollow clay block | 0 | 41.134 | 20.960 | 0 | 487 |
| Roof tiles | 3.593 (3.593) | 3.593 (3.593) | 3.593 (3.593) | 3.593 (3.593) | 316 |
| Wooden door | 364 (44) | 364 (44) | 364 (44) | 364 (44) | 378 |
| Wooden elements | 1.040 (210) | 1.455 (210) | 1.455 (210) | 1.455 (210) | 26 |
| EPS | 391 (266) | 355 (213) | 182 | 234 | 20 |
| Cement screed | 17.263 | 17.263 | 17.263 | 17.263 | 12 |
| Gypsum board | 1.822 | 2.944 | 2.944 | 2.944 | 73 |
| Wall putty | 0 | 0 | 0 | 3.280 | 27 |
| Ceramics | 662 (662) | 662 (662) | 662 (662) | 662 (662) | 450 |
| Rain dam | 22 (22) | 22 (22) | 22 (22) | 22 (22) | 419 |
| Laminated wood | 0 | 0 | 0 | 0 | 360 |
| Metal construction | 172 | 521 | 521 | 521 | 215 |
| Mineral wool | 501 | 632 | 632 | 632 | 471 |
| OSB board | 0 | 1.297 | 1.297 | 1.297 | 490 |
| PE foil | 51 | 51 | 51 | 51 | 411 |
| PVC window | 1.013 (1.013) | 1.013 (1.013) | 1.013 (1.013) | 1.013 (1.013) | 450 |
| Parquet | 1.611 (1.611) | 1.611 (1.611) | 1.611 (1.611) | 1.611 (1.611) | 317 |
| Aerated concrete block | 0 | 0 | 0 | 29.513 | 347 |
| Extension plaster | 16.244 | 14.447 | 24.024 (9.577) | 9.577 (9.577) | 415 |
| Porous clay block | 0 | 0 | 29.396 | 0 | 235 |
| XPS | 75 | 75 | 75 | 75 | 403 |
| Finishing plaster | 975 (975) | 975 (975) | 0 | 0 | 420 |
| Gravel | 20.376 | 22.704 | 22.704 | 22.704 | 7 |
| Total (kg) | 353.445 (8.396) | 215.761 (8.342) | 220.110 (7.154) | 172.615 (16.731) |
| Load-Bearing Construction/ Material | Reinforced Concrete | Hollow Clay Block | Porous Clay Block | Aerated Concrete Block | Wood-Based Sandwich Panels | Cross- Laminated Timber | Specific Material Emissions (kgCO2eq/kg) |
|---|---|---|---|---|---|---|---|
| Reinforced concrete | 45.837 | 16.616 | 15.339 | 12.853 | 7.068 | 7.068 | 0.16 |
| Bitumen waterproofing | 340 | 340 | 340 | 340 | 340 | 340 | 0.43 |
| Hollow clay block | 0 | 7.404 | 3.773 | 0 | 0 | 0 | 0.18 |
| Roof tiles | 431 (431) | 431 (431) | 431 (431) | 431 (431) | 431 (431) | 431 (431) | 0.12 |
| Wooden door | −364 (−44) | −364 (−44) | −364 (−44) | −364 (−44) | −364 (−44) | −364 (−44) | −1.00 |
| Wooden elements | −1.040 (−210) | −1.455 (−210) | −1.455 (−210) | −1.455 (−210) | −9.547 (−210) | −1.040 (−210) | −1.00 |
| EPS | 2.485 (1.664) | 2.556 (1.664) | 1.226 | 1.059 | 2.002 (1.109) | 2.485 (1.664) | 4.17 |
| Cement screed | 2.072 | 2.072 | 2.072 | 2.072 | 2.072 | 2.072 | 0.12 |
| Gypsum board | 419 | 677 | 677 | 677 | 1.809 | 419 | 0.23 |
| Wall putty | 0 | 0 | 0 | 656 | 0 | 0 | 0.20 |
| Ceramics | 516 (516) | 516 (516) | 516 (516) | 516 (516) | 516 (516) | 516 (516) | 0.78 |
| Rain dam | 73 (73) | 73 (73) | 73 (73) | 73 (73) | 73 (73) | 73 (73) | 3.30 |
| Laminated wood | 0 | 0 | 0 | 0 | 0 | −46.230 | −1.10 |
| Metal construction | 205 | 620 | 620 | 620 | 620 | 205 | 1.19 |
| Mineral wool | 1.227 | 1.548 | 1.548 | 1.548 | 4.525 | 1.227 | 2.45 |
| OSB board | 0 | −1.492 | −1.492 | −1.492 | −10.681 | 0 | −1.15 |
| PE foil | 168 | 168 | 168 | 168 | 297 | 168 | 3.30 |
| PVC window | 1.236 (1.236) | 1.236 (1.236) | 1.236 (1.236) | 1.236 (1.236) | 1.236 (1.236) | 1.236 (1.236) | 1.22 |
| Parquet | 548 (548) | 548 (548) | 548 (548) | 548 (548) | 548 (548) | 548 (548) | 0.34 |
| Aerated concrete block | 0 | 0 | 0 | 7.759 | 0 | 0 | 0.23 |
| Extension plaster | 2.599 | 2.312 | 3.844 (1.532) | 1.532 (1.532) | 0 | 0 | 0.16 |
| Porous clay block | 0 | 0 | 6.702 | 0 | 0 | 0 | 0.18 |
| XPS | 313 | 313 | 313 | 313 | 0 | 313 | 4.17 |
| Finishing plaster | 185 (185) | 185 (185) | 0 | 0 | 185 (185) | 185 (185) | 0.19 |
| Gravel | 204 | 227 | 227 | 227 | 239 | 239 | 0.01 |
| Materials total (kg) | 57.454 (4.399) | 34.532 (4.399) | 36.343 (4.082) | 29.318 (4.082) | 1.367 (3.844) | −30.109 (4.399) | |
| Build phase | 57.454 | 34.532 | 36.343 | 29.318 | 1.367 | −30.109 | |
| Reconstruction | 4.399 | 4.399 | 4.082 | 4.082 | 3.844 | 4.399 | |
| Transport | 1.526 | 1.120 | 1.224 | 1.060 | 658 | 981 | |
| (De)construction | 3.622 | 2.245 | 2.405 | 1.989 | 1.324 | 1.491 | |
| Total embodied | 67.001 | 42.296 | 44.054 | 36.449 | 7.193 | −23.238 | |
| Specific embodied (kgCO2eq/m2) | 489 | 309 | 322 | 266 | 53 | −170 |
| Load-Bearing Construction | Reinforced Concrete | Hollow Clay Block | Porous Clay Block | Aerated Concrete Block | Wood-Based Sandwich Panels | Cross- Laminated Timber |
|---|---|---|---|---|---|---|
| QH,nd (kWh/a) | 8.340 | 7.449 | 6.672 | 7.800 | 6.312 | 7.366 |
| QW,nd (kWh/a) | 1.713 | 1.713 | 1.713 | 1.713 | 1.713 | 1.713 |
| QC,nd (kWh/a) | 3.051 | 3.468 | 3.554 | 3.780 | 3.924 | 3.852 |
| Q″H,nd (kWh/(m2 a)) | 60.88 | 54.37 | 48.70 | 56.94 | 46.07 | 53.76 |
| Q″C,nd (kWh/(m2 a)) | 12.50 | 12.50 | 12.50 | 12.50 | 12.50 | 12.50 |
| Edel,H (kWh/a) | 3.168 | 2.980 | 2.579 | 3.158 | 2.572 | 3.026 |
| Edel,W (kWh/a) | 724 | 734 | 724 | 738 | 733 | 739 |
| Edel,C (kWh/a) | 998 | 1.153 | 1.177 | 1.230 | 1.274 | 1.268 |
| Edel,light (kWh/a) | 304 | 304 | 304 | 304 | 304 | 304 |
| Edel,total (kWh/a) | 5.195 | 5.172 | 4.784 | 5.430 | 4.883 | 5.337 |
| AFN,ef (m2) | 13.7 | 13.8 | 12.9 | 14.4 | 13.3 | 14.3 |
| PPV (kWp) | 2.5 | 2.5 | 2.3 | 2.6 | 2.4 | 2.6 |
| Eel,PV (kWh/a) | 2.893 | 2.912 | 2.734 | 3.058 | 2.808 | 3.025 |
| Eel,PV/Edel (%) | 56% | 56% | 57% | 56% | 58% | 57% |
| Eel,PV,used (kWh/a) | 1.308 | 1.363 | 1.330 | 1.432 | 1.395 | 1.446 |
| Eel,PV,exp (kWh/a) | 1.585 | 1.549 | 1.404 | 1.627 | 1.413 | 1.579 |
| Eel,grid use (kWh/a) | 3.887 | 3.809 | 3.454 | 3.998 | 3.488 | 3.891 |
| PV GHG savings = GHG grid use (kgCO2eq/a) | 761 | 744 | 674 | 781 | 678 | 758 |
| Load-Bearing Construction | Reinforced Concrete | Hollow Clay Block | Porous Clay Block | Aerated Concrete Block |
|---|---|---|---|---|
| QH,nd (kWh/a) | 4.108 | 3.875 | 3.150 | 3.526 |
| QW,nd (kWh/a) | 1.713 | 1.713 | 1.713 | 1.713 |
| QC,nd (kWh/a) | 4.719 | 4.960 | 4.913 | 5.038 |
| Q″H,nd (kWh/(m2 a)) | 29.99 | 28.28 | 22.99 | 25.74 |
| Q″C,nd (kWh/(m2 a)) | 34.44 | 36.20 | 35.86 | 36.77 |
| Edel,H (kWh/a) | 1.037 | 1.008 | 784 | 923 |
| Edel,W (kWh/a) | 626 | 630 | 626 | 629 |
| Edel,C (kWh/a) | 1.515 | 1.599 | 1.589 | 1.626 |
| Edel,light (kWh/a) | 304 | 304 | 304 | 304 |
| Edel,total (kWh/a) | 3.483 | 3.541 | 3.304 | 3.482 |
| AFN,ef (m2) | 9.1 | 9.3 | 8.7 | 9.1 |
| PPV (kWp) | 1.6 | 1.7 | 1.6 | 1.6 |
| Eel,PV (kWh/a) | 2.244 | 2.270 | 2.143 | 2.241 |
| Eel,PV/Edel (%) | 64% | 64% | 65% | 64% |
| Eel,PV,used (kWh/a) | 1.368 | 1.381 | 1.332 | 1.374 |
| Eel,PV,exp (kWh/a) | 876 | 890 | 811 | 867 |
| Eel,grid use (kWh/a) | 2.115 | 2.160 | 1.972 | 2.108 |
| PV GHG savings = GHG grid use (kgCO2eq/a) | 420 | 427 | 389 | 416 |
| Load-Bearing Construction/ Material | Reinforced Concrete | Hollow Clay Block | Porous Clay Block | Aerated Concrete Block | Specific Material Emissions (kgCO2eq/kg) |
|---|---|---|---|---|---|
| Reinforced concrete | 45.837 | 16.616 | 14.488 | 12.002 | 0.16 |
| Bitumen waterproofing | 340 | 340 | 340 | 340 | 0.43 |
| Hollow clay block | 0 | 7.404 | 3.773 | 0 | 0.18 |
| Roof tiles | 431 (431) | 431 (431) | 431 (431) | 431 (431) | 0.12 |
| Wooden door | −364 (−44) | −364 (−44) | −364 (−44) | −364 (−44) | −1.00 |
| Wooden elements | −1.040 (−210) | −1.455 (−210) | −1.455 (−210) | −1.455 (−210) | −1.00 |
| EPS | 1.630 (1.109) | 1.480 (888) | 759 | 976 | 4.17 |
| Cement screed | 2.072 | 2.072 | 2.072 | 2.072 | 0.12 |
| Gypsum board | 419 | 677 | 677 | 677 | 0.23 |
| Wall putty | 0 | 0 | 0 | 656 | 0.20 |
| Ceramics | 516 (516) | 516 (516) | 516 (516) | 516 (516) | 0.78 |
| Rain dam | 73 (73) | 73 (73) | 73 (73) | 73 (73) | 3.30 |
| Laminated wood | 0 | 0 | 0 | 0 | −1.10 |
| Metal construction | 205 | 620 | 620 | 620 | 1.19 |
| Mineral wool | 1.227 | 1.548 | 1.548 | 1.548 | 2.45 |
| OSB board | 0 | −1.492 | −1.492 | −1.492 | −1.15 |
| PE foil | 168 | 168 | 168 | 168 | 3.30 |
| PVC window | 1.236 (1.236) | 1.236 (1.236) | 1.236 (1.236) | 1.236 (1.236) | 1.22 |
| Parquet | 548 (548) | 548 (548) | 548 (548) | 548 (548) | 0.34 |
| Aerated concrete block | 0 | 0 | 0 | 6.788 | 0.23 |
| Extension plaster | 2.599 | 2.312 | 3.844 (1.532) | 1.532 (1.532) | 0.16 |
| Porous clay block | 0 | 0 | 5.291 | 0 | 0.18 |
| XPS | 313 | 313 | 313 | 313 | 4.17 |
| Finishing plaster | 185 (185) | 185 (185) | 0 | 0 | 0.19 |
| Gravel | 204 | 227 | 227 | 227 | 0.01 |
| Materials total (kg) | 56.599 (3.844) | 33.456 (3.623) | 33.613 (4.082) | 27.412 (4.082) | |
| Build phase | 56.599 | 33.456 | 33.613 | 27.412 | |
| Reconstruction | 3.844 | 3.623 | 4.082 | 4.082 | |
| Transport | 2.210 | 2.715 | 2.973 | 2.088 | |
| (De)construction | 3.618 | 2.241 | 2.273 | 1.893 | |
| Total embodied | 66.272 | 42.035 | 42.941 | 35.476 | |
| Specific embodied (kgCO2eq/m2) | 484 | 307 | 313 | 259 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Veršić, Z.; Binički, M.; Nosil Mešić, M. Zero-Emission Potential of Single-Family Houses in Croatia. Buildings 2026, 16, 207. https://doi.org/10.3390/buildings16010207
Veršić Z, Binički M, Nosil Mešić M. Zero-Emission Potential of Single-Family Houses in Croatia. Buildings. 2026; 16(1):207. https://doi.org/10.3390/buildings16010207
Chicago/Turabian StyleVeršić, Zoran, Marin Binički, and Mateja Nosil Mešić. 2026. "Zero-Emission Potential of Single-Family Houses in Croatia" Buildings 16, no. 1: 207. https://doi.org/10.3390/buildings16010207
APA StyleVeršić, Z., Binički, M., & Nosil Mešić, M. (2026). Zero-Emission Potential of Single-Family Houses in Croatia. Buildings, 16(1), 207. https://doi.org/10.3390/buildings16010207

