Unveiling Technological Innovation in Construction Waste Recycling: Insights from Text Mining
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. Patent Analysis
3.2. Text Mining: LDA Topic Model
3.2.1. Model Setup
3.2.2. Data Preprocessing
- (1)
- Screening core technologies. In the CWR industry, the core patented technology can better represent the technical field of CWR, so the core patented technology is selected first;
- (2)
- Cleaning data. The text modeling of patent abstracts for core technologies in CWR excludes data with an empty “abstract” field. Next, unify the abstract language and generate the “abstract” field;
- (3)
- Setting up professional vocabulary and stop-word lists. Building a professional vocabulary dictionary in CWR is necessary to process patent texts professionally. Next, a stop-word list is established to avoid interfering with the correct segmentation of professional vocabulary in subsequent processing. Four commonly used stop-word lists are collected and integrated. In addition, non-professional vocabulary that appeared in the data is supplemented and added to the stop-word list;
- (4)
- Organizing data. After the required data are converted into phrase form, they are set into the text form needed for LDA topic modeling to facilitate subsequent experimental operations for topic analysis.
3.2.3. Modeling and Parameter Setting
3.2.4. Topic Intensity
4. Overview of CWR Technology Patents
4.1. Statistical Insights from China
4.1.1. Patent Applications
4.1.2. Applicant Analysis
4.2. Comparative Analysis
4.2.1. Patent Applications
4.2.2. Applicant Analysis
4.2.3. Multidimensional View of Patents
- (1)
- Average number of citations
- (2)
- Average number of citations received
- (3)
- Average number of simple patent families
- (4)
- Average number of patent claims
- (5)
- Average technical value
- (6)
- Patent validity ratio
5. Topic Analysis of CWR Patents
5.1. Topic Extraction
5.2. Topic Intensity
5.3. Evolution Trends of Topic Intensity
- (1)
- Rising trend
- (2)
- Declining trend
- (3)
- Stable trend
5.4. Comparative Analysis
6. Discussion and Implications
6.1. Strengths and Weaknesses
6.1.1. Strengths
6.1.2. Weaknesses
6.2. Policy Implications
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Search Query Criteria and the Retrieved Patent Information
Data repository | IncoPat Patent Database |
Data crawling query | Keywords: construction waste, construction material waste, construction demolition waste, construction and demolition waste, construction trash, construction garbage, construction litter, construction rubbish IPC codes: A23K, A43B, A61L, A62D, B01D, B03B, B02C, B03C, B07B, B08B, B09B, B09C, B22F, B29B, B29C, B29D, B62D, B63B, B63J, B65B, B65F, B65G, C01B, C02F, C04B, C05D, C05F, C08J, C09D, C09K, C10B, C10G, C10L, C11B, C11D, C14C, C21B, C21C, C22B, C25C, D01C, D01F, D01G, D06B, D06F, D06L, D21B, D21C, D21H, E01C, E01H, E02B, E03C, E03F, E04B, E02D, E04D, E04F, E06B, E21B, E21F, F01N, F02B, F23B, F23C, F23G, F23J, F24F, F25J, F27B, G08B, G21C, G21F, H01B, H01J, H01M |
Data retrieved duration | January 1983–December 2023 |
Document type | Invention patents |
Appendix B. Technology Distribution Analysis
References
- Zhang, K.; Qing, Y.; Umer, Q.; Asmi, F. How construction and demolition waste management has addressed sustainable development goals: Exploring academic and industrial trends. J. Environ. Manag. 2023, 345, 118823. [Google Scholar] [CrossRef] [PubMed]
- Galvez-Martos, J.-L.; Styles, D.; Schoenberger, H.; Zeschmar-Lahl, B. Construction and demolition waste best management practice in Europe. Resour. Conserv. Recycl. 2018, 136, 166–178. [Google Scholar] [CrossRef]
- Bossink, B.A.G.; Brouwers, H.J.H. Construction Waste: Quantification and Source Evaluation. J. Constr. Eng. Manag. 1996, 122, 55–60. [Google Scholar] [CrossRef]
- China Promotes Construction Waste Management and Recycling. Available online: https://www.gov.cn/xinwen/2021-12/09/content_5659650.htm (accessed on 22 April 2025).
- Alsheyab, M.A.T. Recycling of construction and demolition waste and its impact on climate change and sustainable development. Int. J. Environ. Sci. Technol. 2022, 19, 2129–2138. [Google Scholar] [CrossRef]
- Chen, X.; Lu, W. Identifying factors influencing demolition waste generation in Hong Kong. J. Clean. Prod. 2017, 141, 799–811. [Google Scholar] [CrossRef]
- Wu, H.; Duan, H.; Zheng, L.; Wang, J.; Niu, Y.; Zhang, G. Demolition waste generation and recycling potentials in a rapidly developing flagship megacity of South China: Prospective scenarios and implications. Constr. Build. Mater. 2016, 113, 1007–1016. [Google Scholar] [CrossRef]
- Duan, H.; Li, J. Construction and demolition waste management: China’s lessons. Waste Manag. Res. 2016, 34, 397–398. [Google Scholar] [CrossRef]
- Li, C.Z.; Zhao, Y.; Xiao, B.; Yu, B.; Tam, V.W.Y.; Chen, Z.; Ya, Y. Research trend of the application of information technologies in construction and demolition waste management. J. Clean. Prod. 2020, 263, 121458. [Google Scholar] [CrossRef]
- Yuan, F.; Shen, L.; Li, Q. Emergy analysis of the recycling options for construction and demolition waste. Waste Manag. 2011, 31, 2503–2511. [Google Scholar] [CrossRef]
- Ortiz, O.; Pasqualino, J.C.; Castells, F. Environmental performance of construction waste: Comparing three scenarios from a case study in Catalonia, Spain. Waste Manag. 2010, 30, 646–654. [Google Scholar] [CrossRef]
- Hyvärinen, M.; Ronkanen, M.; Kärki, T. Sorting efficiency in mechanical sorting of construction and demolition waste. Waste Manag. Res. 2020, 38, 812–816. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Wang, X.; Kua, H.; Geng, Y.; Bleischwitz, R.; Ren, J. Construction and demolition waste management in China through the 3R principle. Resour. Conserv. Recycl. 2018, 129, 36–44. [Google Scholar] [CrossRef]
- Shao, Z.; Li, M.; Yu, D. Bibliometric analysis of construction and demolition waste recycling: Review and prospects. Proc. Inst. Civ. Eng.-Eng. Sustain. 2022, 175, 283–292. [Google Scholar] [CrossRef]
- Jin, R.; Li, B.; Zhou, T.; Wanatowski, D.; Piroozfar, P. An empirical study of perceptions towards construction and demolition waste recycling and reuse in China. Resour. Conserv. Recycl. 2017, 126, 86–98. [Google Scholar] [CrossRef]
- Li, J.; Yao, Y.; Zuo, J.; Li, J. Key policies to the development of construction and demolition waste recycling industry in China. Waste Manag. 2020, 108, 137–143. [Google Scholar] [CrossRef]
- Wu, Z.; Yu, A.T.W.; Shen, L.; Liu, G. Quantifying construction and demolition waste: An analytical review. Waste Manag. 2014, 34, 1683–1692. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, M.; Sang, P. A bibliometric review of studies on construction and demolition waste management by using CiteSpace. Energy Build. 2022, 258, 111822. [Google Scholar] [CrossRef]
- Jin, R.; Yuan, H.; Chen, Q. Science mapping approach to assisting the review of construction and demolition waste management research published between 2009 and 2018. Resour. Conserv. Recycl. 2019, 140, 175–188. [Google Scholar] [CrossRef]
- Wu, Z.; Xie, P.; Zhang, J.; Zhan, B.; He, Q. Tracing the Trends of General Construction and Demolition Waste Research Using LDA Modeling Combined With Topic Intensity. Front. Public Health 2022, 10, 899705. [Google Scholar] [CrossRef]
- Gupta, S.; Jha, K.N.; Vyas, G. Proposing building information modeling-based theoretical framework for construction and demolition waste management: Strategies and tools. Int. J. Constr. Manag. 2020, 22, 2345–2355. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Xu, S.; Tan, L. Mechanisms driving technological innovation behavior in construction and demolition waste remanufactured products via self-determination theory. Environ. Technol. Innov. 2025, 38, 104196. [Google Scholar] [CrossRef]
- Savage, J.P.; Li, M.; Turner, S.F.; Hatfield, D.E.; Cardinal, L.B. Mapping Patent Usage in Management Research: The State of Prior Art. J. Manag. 2020, 46, 1121–1155. [Google Scholar] [CrossRef]
- Tsuji, Y.S. Profiling technology development process using patent data analysis: A case study. Technol. Anal. Strateg. Manag. 2012, 24, 299–310. [Google Scholar] [CrossRef]
- Wang, X.; Daim, T.; Huang, L.; Li, Z.; Shaikh, R.; Kassi, D.F. Monitoring the development trend and competition status of high technologies using patent analysis and bibliographic coupling: The case of electronic design automation technology. Technol. Soc. 2022, 71, 102076. [Google Scholar] [CrossRef]
- Ma, J.; Porter, A.L. Analyzing patent topical information to identify technology pathways and potential opportunities. Scientometrics 2015, 102, 811–827. [Google Scholar] [CrossRef]
- Ma, S.-C.; Xu, J.-H.; Fan, Y. Characteristics and key trends of global electric vehicle technology development: A multi-method patent analysis. J. Clean. Prod. 2022, 338, 130502. [Google Scholar] [CrossRef]
- Ye, Q.; Umer, Q.; Zhou, R.; Asmi, A.; Asmi, F. How publications and patents are contributing to the development of municipal solid waste management: Viewing the UN Sustainable Development Goals as ground zero. J. Environ. Manag. 2023, 325, 116496. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, D. Cross-domain function analysis and trend study in Chinese construction industry based on patent semantic analysis. Technol. Forecast. Soc. Change 2021, 162, 120331. [Google Scholar] [CrossRef]
- Gebremariam, A.T.; Di Maio, F.; Vahidi, A.; Rem, P. Innovative technologies for recycling End-of-Life concrete waste in the built environment. Resour. Conserv. Recycl. 2020, 163, 104911. [Google Scholar] [CrossRef]
- Chen, J.; Fu, Y.; Lu, W.; Pan, Y. Augmented reality-enabled human-robot collaboration to balance construction waste sorting efficiency and occupational safety and health. J. Environ. Manag. 2023, 348, 119341. [Google Scholar] [CrossRef]
- Dodampegama, S.; Hou, L.; Asadi, E.; Zhang, G.; Setunge, S. Revolutionizing construction and demolition waste sorting: Insights from artificial intelligence and robotic applications. Resour. Conserv. Recycl. 2024, 202, 107375. [Google Scholar] [CrossRef]
- Rodriguez-Morales, J.; Burciaga-Diaz, O.; Gomez-Zamorano, L.Y.; Escalante-Garcia, J.I. Transforming construction and demolition waste concrete as a precursor in sustainable cementitious materials: An innovative recycling approach. Resour. Conserv. Recycl. 2024, 204, 107474. [Google Scholar] [CrossRef]
- Yao, P.; Yang, D.; Wang, C.; Ma, Z. Upcycling of construction waste powder for sustainable ultra-high performance engineered cementitious composites: Effects of waste powder source and content. Constr. Build. Mater. 2022, 349, 128789. [Google Scholar] [CrossRef]
- Chandru, U.; Bahurudeen, A.; Senthilkumar, R. Systematic comparison of different recycled fine aggregates from construction and demolition wastes in OPC concrete and PPC concrete. J. Build. Eng. 2023, 75, 106768. [Google Scholar] [CrossRef]
- Malazdrewicz, S.; Ostrowski, K.A.; Sadowski, L. Self-compacting concrete with recycled coarse aggregates from concrete construction and demolition waste-Current state-of-the art and perspectives. Constr. Build. Mater. 2023, 370, 130702. [Google Scholar] [CrossRef]
- Arredondo, P.W.C.; Silva, Y.F.; Araya-Letelier, G.; Hernández, H. Valorization of Recycled Aggregate and Copper Slag for Sustainable Concrete Mixtures: Mechanical, Physical, and Environmental Performance. Sustainability 2024, 16, 11239. [Google Scholar] [CrossRef]
- Jiang, J.; Chu, C.; Song, L.; Gao, X.; Huang, B.; Zhang, Y.; Zhang, Y.; Liu, Y.; Hou, L.; Ju, M.; et al. From prospecting to mining: A review of enabling technologies, LCAs, and LCCAs for improved construction and demolition waste management. WASTE Manag. 2023, 159, 12–26. [Google Scholar] [CrossRef] [PubMed]
- Khodaei, H.; Olson, C.; Patino, D.; Rico, J.; Jin, Q.; Boateng, A. Multi-objective utilization of wood waste recycled from construction and demolition (C&D): Products and characterization. WASTE Manag. 2022, 149, 228–238. [Google Scholar] [CrossRef]
- Kliem, D.; Scheidegger, A.; Kopainsky, B. Closing the mineral construction material cycle—An endogenous perspective on barriers in transition. Resour. Conserv. Recycl. 2021, 175, 105859. [Google Scholar] [CrossRef]
- Reike, D.; Vermeulen, W.J.V.; Witjes, S. The circular economy: New or Refurbished as CE 3.0?—Exploring Controversies in the Conceptualization of the Circular Economy through a Focus on History and Resource Value Retention Options. Resour. Conserv. Recycl. 2018, 135, 246–264. [Google Scholar] [CrossRef]
- Castro, C.G.; Trevisan, A.H.; Pigosso, D.C.A.; Mascarenhas, J. The rebound effect of circular economy: Definitions, mechanisms and a research agenda. J. Clean. Prod. 2022, 345, 131136. [Google Scholar] [CrossRef]
- Yu, C.; Wang, T.; Lin, A.-L.; Su, H.-N. Analyzing Status Quo of Technology Fusion by Using Patents: A Global and Technical Assessment. IEEE Trans. Eng. Manag. 2024, 71, 7101–7111. [Google Scholar] [CrossRef]
- Huang, H.-C.; Su, H.-N. The innovative fulcrums of technological interdisciplinarity: An analysis of technology fields in patents. Technovation 2019, 84–85, 59–70. [Google Scholar] [CrossRef]
- Breschi, S.; Lissoni, F.; Malerba, F. Knowledge-relatedness in firm technological diversification. Res. Policy 2003, 32, 69–87. [Google Scholar] [CrossRef]
- Dong, F.; Zhang, G.; Mei, L. General purpose technology R&D specialization and supply chain cross-industry expansion: The moderation effect of technology portfolio breadth and depth. Technol. Soc. 2025, 82, 102889. [Google Scholar] [CrossRef]
- Blei, D.M.; Ng, A.; Jordan, M.I. Latent dirichlet allocation. J. Mach. Learn. Res. 2003, 3, 993–1022. [Google Scholar] [CrossRef]
- Zuo, Y.; Zhao, J.; Xu, K. Word network topic model: A simple but general solution for short and imbalanced texts. Knowl. Inf. Syst. 2016, 48, 379–398. [Google Scholar] [CrossRef]
- Yang, P.; Yao, Y.; Zhou, H. Leveraging Global and Local Topic Popularities for LDA-Based Document Clustering. IEEE Access 2020, 8, 24734–24745. [Google Scholar] [CrossRef]
- Zhao, F.; Ren, X.; Yang, S.; Han, Q.; Zhao, P.; Yang, X. Latent Dirichlet Allocation Model Training with Differential Privacy. IEEE Trans. Inf. Forensics Secur. 2021, 16, 1290–1305. [Google Scholar] [CrossRef]
- Tomojiri, D.; Takaya, K.; Ise, T. Temporal trends and spatial distribution of research topics in anthropogenic marine debris study: Topic modelling using latent Dirichlet allocation. Mar. Pollut. Bull. 2022, 182, 113917. [Google Scholar] [CrossRef]
- Wang, B.; Wang, Z. Heterogeneity evaluation of China’s provincial energy technology based on large-scale technical text data mining. J. Clean. Prod. 2018, 202, 946–958. [Google Scholar] [CrossRef]
- Ma, W.; Wang, W. Evolution of renewable energy laws and policies in China. Heliyon 2024, 10, e29712. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Xiang, B. Discovering topics and trends in the field of Artificial Intelligence: Using LDA topic modeling. Expert Syst. Appl. 2023, 225, 120114. [Google Scholar] [CrossRef]
- Goloshchapova, I.; Poon, S.-H.; Pritchard, M.; Reed, P. Corporate social responsibility reports: Topic analysis and big data approach. Eur. J. Financ. 2019, 25, 1637–1654. [Google Scholar] [CrossRef]
- Gan, J.; Qi, Y. Selection of the Optimal Number of Topics for LDA Topic Model—Taking Patent Policy Analysis as an Example. Entropy 2021, 23, 1301. [Google Scholar] [CrossRef]
- Wang, J.; Fan, Y.; Zhang, H.; Feng, L. Technology Hotspot Tracking: Topic Discovery and Evolution of China’s Blockchain Patents Based on a Dynamic LDA Model. Symmetry 2021, 13, 415. [Google Scholar] [CrossRef]
- Chen, B.; Tsutsui, S.; Ding, Y.; Ma, F. Understanding the topic evolution in a scientific domain: An exploratory study for the field of information retrieval. J. Informetr. 2017, 11, 1175–1189. [Google Scholar] [CrossRef]
- Zhu, H.; Qian, L.; Qin, W.; Wei, J.; Shen, C. Evolution analysis of online topics based on ‘word-topic’ coupling network. Scientometrics 2022, 127, 3767–3792. [Google Scholar] [CrossRef]
- Jian, F.; Yajiao, W.; Yuanyuan, D. Microblog topic evolution computing based on LDA algorithm. Open Phys. 2018, 16, 509–516. [Google Scholar] [CrossRef]
- Ding, Z.; Huang, X.; Wang, X.; Zuo, J. Assessment of promotional strategies for construction and demolition waste recycled products based on hybrid simulation system. Environ. Impact Assess. Rev. 2025, 112, 107814. [Google Scholar] [CrossRef]
- Tam, V.W.Y. Comparing the implementation of concrete recycling in the Australian and Japanese construction industries. J. Clean. Prod. 2009, 17, 688–702. [Google Scholar] [CrossRef]
- Ma, M.; Tam, V.W.Y.; Le, K.N.; Li, W. Challenges in current construction and demolition waste recycling: A China study. Waste Manag. 2020, 118, 610–625. [Google Scholar] [CrossRef] [PubMed]
- Cho, N.; El Asmar, M.; Aldaaja, M. An Analysis of the Impact of the Circular Economy Application on Construction and Demolition Waste in the United States of America. Sustainability 2022, 14, 10034. [Google Scholar] [CrossRef]
- He, Q.; Wu, Z.; Li, S.; Li, H.; Wang, Y. Two decades of the evolution of China’s green building policy: Insights from text mining. Build. Res. Inf. 2023, 51, 158–178. [Google Scholar] [CrossRef]
- Tsironis, G.; Cox, R.; Jolly, M.; Salonitis, K.; Tsagarakis, K.P. Exploring circular economy in the United Kingdom based on LinkedIn data from company profiles. J. Clean. Prod. 2025, 503, 145355. [Google Scholar] [CrossRef]
- Amini, E.; Babaei, A.; Mehrnia, M.R.; Shayegan, J.; Safdari, M.-S. Municipal wastewater treatment by semi-continuous and membrane algal-bacterial photo-bioreactors. J. Water Process Eng. 2020, 36, 101274. [Google Scholar] [CrossRef]
- Li, Z.; Yuan, R.; Hou, R.; Zhou, B.; Chen, H. Construction of an algal-bacterial symbiosis system and its application to municipal wastewater treatment: A review. Process Saf. Environ. Prot. 2025, 196, 106846. [Google Scholar] [CrossRef]
- Tam, V.W.Y.; Soomro, M.; Evangelista, A.C.J. A review of recycled aggregate in concrete applications (2000–2017). Constr. Build. Mater. 2018, 172, 272–292. [Google Scholar] [CrossRef]
- Ostapska, K.; Rüther, P.; Loli, A.; Gradeci, K. Design for Disassembly: A systematic scoping review and analysis of built structures Designed for Disassembly. Sustain. Prod. Consum. 2024, 48, 377–395. [Google Scholar] [CrossRef]
- Hernández, H.; Díaz, L.; Rodríguez-Grau, G. Examining building deconstruction: Introducing a holistic index to evaluate the ease of disassembly. Resour. Conserv. Recycl. 2025, 218, 108215. [Google Scholar] [CrossRef]
- Kytinou, V.K.; Metaxa, Z.S.; Zapris, A.G.; Kosheleva, R.I.; Prokopiou, V.D.; Alexopoulos, N.D. Exploitation of extruded polystyrene (XPS) waste for lightweight, thermal insulation and rehabilitation building applications. Dev. Built Environ. 2024, 20, 100580. [Google Scholar] [CrossRef]
- Dixit, A.; Pang, S.D.; Kang, S.-H.; Moon, J. Lightweight structural cement composites with expanded polystyrene (EPS) for enhanced thermal insulation. Cem. Concr. Compos. 2019, 102, 185–197. [Google Scholar] [CrossRef]
Rank | Applicant | Applicant Type | Patent Count | Rank | Applicant | Year of Establishment | Patent Count |
---|---|---|---|---|---|---|---|
1 | China State Construction Engineering Group Co., Ltd. | Enterprise | 655 | 1 | China State Construction Engineering Group Co., Ltd. (CSCEC) | 1982 | 655 |
2 | China Metallurgical Group Corporation | Enterprise | 623 | 2 | China Metallurgical Group Corporation (MCC) | 2006 | 623 |
3 | Xi’an Construction Engineering Group Co., Ltd. | Enterprise | 536 | 3 | Xi’an Construction Engineering Group Co., Ltd. (XACEG) | 2009 | 536 |
4 | Wuhan University of Technology | College | 426 | 4 | China National Building Materials Group Co., Ltd. | 1981 | 337 |
5 | Tongji University | College | 421 | 5 | BaoSteel Group Corporation | 2000 | 240 |
6 | China National Building Material Group Co., Ltd. | Enterprise | 337 | 6 | China National Materials Group Corporation | 1983 | 207 |
7 | Southeast University | College | 292 | 7 | China Communications Construction Co., Ltd. | 2005 | 187 |
8 | Kunming University of Science and Technology | College | 279 | 8 | China Railway Engineering Group Limited | 1950 | 163 |
9 | University of Science and Technology Beijing | College | 272 | 9 | Shanghai Construction Group | 1998 | 159 |
10 | BaoSteel Group Corporation | Enterprise | 240 | 10 | Sinopec Group | 2000 | 149 |
11 | Power Construction Corporation of China | 2011 | 136 | ||||
12 | GanSu HuaChen | 2016 | 132 |
Country | Average Number of Citations | Average Number of Citations Received | Average Number of Simple Patent Family | Average Number of Patent Claims | Average Technical Value | Patent Validity Ratio |
---|---|---|---|---|---|---|
China | 4.69 | 5.02 | 1.68 | 7.41 | 6.03 | 27.86% |
Japan | 2.86 | 6.04 | 3.14 | 8.67 | 7.11 | 16.31% |
South Korea | 1.16 | 3.65 | 3.31 | 8.76 | 6.72 | 30.50% |
United States | 8.21 | 11.03 | 4.18 | 22.15 | 8.7 | 36.80% |
Germany | 3.88 | 5.87 | 3.47 | 13.62 | 5.99 | 3.31% |
Topic Name | Keywords |
---|---|
Topic 1 (recycled concrete) | aggregate; renewable; gypsum; water reducer; solid waste |
Topic 2 (recycled building materials) | mortar; steel slag; performance; component; sand |
Topic 3 (construction wastewater) | waste water; pool; unit; sedimentation; adjust |
Topic 4 (resource recycling devices) | device; crush; fixed; install; pulverize |
Topic 5 (resource recycling process and method) | mud; solidification; ceramsite; light; red mud |
Rank | Topic Name | Topic Intensity |
---|---|---|
1 | Topic 4 (resource recycling devices) | 0.270 |
2 | Topic 2 (recycled building materials) | 0.248 |
3 | Topic 1 (recycled concrete) | 0.243 |
4 | Topic 5 (resource recycling process and method) | 0.131 |
5 | Topic 3 (construction wastewater) | 0.099 |
Rank | Topic Name | Keyword | Topic Intensity |
---|---|---|---|
1 | Topic 3 (recycled building materials) | aggregate; fiber; gypsum; regeneration; building material | 0.259 |
2 | Topic 1 (resource recycling devices) | device; set up; connect; unit; install | 0.232 |
3 | Topic 2 (construction wastewater) | waste water; solution; organism; liquid; organic | 0.183 |
4 | Topic 5 (resource recycling process and method) | sludge; waste material; waste; dry; gas | 0.161 |
5 | Topic 4 (recycled concrete) | sediment; asphalt; quality; mineral; clinker | 0.157 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, M.; Chen, S.; Liu, M.; Li, L. Unveiling Technological Innovation in Construction Waste Recycling: Insights from Text Mining. Buildings 2025, 15, 1544. https://doi.org/10.3390/buildings15091544
Yuan M, Chen S, Liu M, Li L. Unveiling Technological Innovation in Construction Waste Recycling: Insights from Text Mining. Buildings. 2025; 15(9):1544. https://doi.org/10.3390/buildings15091544
Chicago/Turabian StyleYuan, Mengqi, Sijin Chen, Mai Liu, and Long Li. 2025. "Unveiling Technological Innovation in Construction Waste Recycling: Insights from Text Mining" Buildings 15, no. 9: 1544. https://doi.org/10.3390/buildings15091544
APA StyleYuan, M., Chen, S., Liu, M., & Li, L. (2025). Unveiling Technological Innovation in Construction Waste Recycling: Insights from Text Mining. Buildings, 15(9), 1544. https://doi.org/10.3390/buildings15091544