Machine Learning-Based Methods for Predicting the Structural Damage and Failure Mode of RC Slabs Under Blast Loading
Abstract
1. Introduction
2. Data Description
2.1. Literature Data and Feature Selection
2.2. Numerical Simulation of Supplementary Data
2.3. Data Preprocessing
2.4. Feature Engineering
3. Methodology
3.1. Machine Learning Methods
3.1.1. Extreme Gradient Boosting (XGBoost)
3.1.2. Back Propagation Neural Network (BPNN)
3.1.3. Support Vector Machine (SVM)
3.1.4. Random Forest (RF)
3.1.5. Light Gradient Boosting Machine (LightGBM)
3.1.6. Categorical Boosting (CatBoost)
3.2. Cross Validation
4. Structural Damage Prediction Models
4.1. Hyperparameter Optimization
4.2. Evaluation Indicators
4.3. Comparison of Prediction Results for Different Models
4.4. Interpretive Analysis Using SHAP
5. Failure Mode Prediction Models
6. Conclusions
- Among the six structural damage prediction models, the XGBoost model has the best prediction effect on crater size. Its fitting values R2 and EVS on the test set are 0.979 and 0.981, respectively. The error index MSE is 0.675, MAE is 0.379, MAPE is 3.639, and MSLE is 0.020. In contrast, the SVR model has the worst prediction effect;
- Using on the SHAP algorithm to rank the importance of the features affecting the size of the explosion crater and dependence analysis, the results show that the TNT charge mass, explosion distance, and compressive strength have the greatest impact on the size of the explosion crater, and the interaction of each two features has an interval variation rule on the impact of the crater size;
- In the comparison of the six failure mode ML algorithms, the CatBoost model has the highest prediction accuracy with an overall accuracy of 91%, where the accuracy of predicting BF, BSF, and SF is 95%, 84%, and 93%, respectively. The results show that the CatBoost model can accurately predict the failure modes of RC slabs under blast loading.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, C.; Chen, J. Damage mechanism and mode of square reinforced concrete slab subjected to blast loading. Theor. Appl. Fract. Mech. 2013, 63, 54–62. [Google Scholar] [CrossRef]
- Zhao, C.; Chen, J.; Wang, Y.; Lu, S. Damage mechanism and response of reinforced concrete containment structure under internal blast loading. Theor. Appl. Fract. Mech. 2012, 61, 12–20. [Google Scholar] [CrossRef]
- Zhao, C.; Lu, X.; Wang, Q.; Gautam, A.; Wang, J.; Mo, Y. Experimental and numerical investigation of steel-concrete (SC) slabs under contact blast loading. Eng. Struct. 2019, 196, 109337. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, Q.; Lu, X.; Huang, X.; Mo, Y. Blast resistance of small-scale RCS in experimental test and numerical analysis. Eng. Struct. 2019, 199, 109610. [Google Scholar] [CrossRef]
- Army, U. Fundamentals of protective design for conventional weapons. In Technical Manual; TM 5-855-1; Department of the Army: The Pentagon, WV, USA, 1986. [Google Scholar]
- U.S. Department of Defense. Structures to Resist the Effects of Accidental Explosions; UFC 3-340-02; U.S. Department of Defense: Arlington County, WV, USA, 2008. [Google Scholar]
- Huang, X.; Bao, H.; Hao, Y.; Hao, H. Damage assessment of two-way RC slab subjected to blast load using mode approximation approach. Int. J. Struct. Stab. Dyn. 2017, 17, 1750013. [Google Scholar] [CrossRef]
- Karmakar, S.; Shaw, A. Response of RC plates under blast loading using FEM-SPH coupled method. Eng. Fail. Anal. 2021, 125, 105409. [Google Scholar] [CrossRef]
- Wu, J.; Zhou, Y.; Zhang, R.; Liu, C.; Zhang, Z. Numerical simulation of reinforced concrete slab subjected to blast loading and the structural damage assessment. Eng. Fail. Anal. 2020, 118, 104926. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, G.; Lu, W.; Yan, P.; Chen, M.; Zhou, C. Damage features of RC slabs subjected to air and underwater contact explosions. Ocean Eng. 2018, 147, 531–545. [Google Scholar] [CrossRef]
- Zhou, X.; Kuznetsov, V.; Hao, H.; Waschl, J. Numerical prediction of concrete slab response to blast loading. Int. J. Impact Eng. 2008, 35, 1186–1200. [Google Scholar] [CrossRef]
- Kumar, V.; Kartik, K.; Iqbal, M.A. Experimental and numerical investigation of reinforced concrete slabs under blast loading. Eng. Struct. 2020, 206, 110125. [Google Scholar] [CrossRef]
- Morales-Alonso, G.; Cendón, D.A.; Gálvez, F.; Erice, B.; Sánchez-Gálvez, V. Blast response analysis of reinforced concrete slabs: Experimental procedure and numerical simulation. J. Appl. Mech. 2011, 78, 051010. [Google Scholar] [CrossRef]
- Ning, J.; Yang, S.; Ma, T.; Xu, X. Fragment behavior of concrete slab subjected to blast loading. Eng. Fail. Anal. 2022, 138, 106370. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, J.; Cui, J. Experimental studies on fragments of reinforced concrete slabs under close-in explosions. Int. J. Impact Eng. 2020, 144, 103630. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, D.; Lu, F.; Wang, S.-C.; Tang, F. Experimental study and numerical simulation of the damage mode of a square reinforced concrete slab under close-in explosion. Eng. Fail. Anal. 2013, 27, 41–51. [Google Scholar] [CrossRef]
- Wu, C.; Nurwidayati, R.; Oehlers, D.J. Fragmentation from spallation of RC slabs due to airblast loads. Int. J. Impact Eng. 2009, 36, 1371–1376. [Google Scholar] [CrossRef]
- Chiquito, M.; López, L.M.; Castedo, R.; Santos, A.P.; Pérez-Caldentey, A. Full-Scale Field Tests on Concrete Slabs Subjected to Close-In Blast Loads. Buildings 2023, 13, 15. [Google Scholar] [CrossRef]
- İskenderoğlu, F.C.; Baltacioğlu, M.K.; Demir, M.H.; Baldinelli, A.; Barelli, L.; Bidini, G. Comparison of support vector regression and random forest algorithms for estimating the SOFC output voltage by considering hydrogen flow rates. Int. J. Hydrogen Energy 2020, 45, 35023–35038. [Google Scholar] [CrossRef]
- Mohri, M.; Rostamizadeh, A.; Talwalkar, A. Foundations of Machine Learning; MIT Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Neapolitan, R.E.; Jiang, X. Artificial Intelligence: With an Introduction to Machine Learning; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Park, B.H.; Chae, C.K. Development of correlation equations on hydrogen properties for hydrogen refueling process by machine learning approach. Int. J. Hydrogen Energy 2022, 47, 4185–4195. [Google Scholar] [CrossRef]
- Zhao, C.; Zhu, Y.; Zhou, Z. Machine learning-based approaches for predicting the dynamic response of RC slabs under blast loads. Eng. Struct. 2022, 273, 115104. [Google Scholar] [CrossRef]
- Li, Z.-X.; Zhang, X.; Shi, Y.; Wu, C.; Li, J. Predication of the residual axial load capacity of CFRP-strengthened RC column subjected to blast loading using artificial neural network. Eng. Struct. 2021, 242, 112519. [Google Scholar] [CrossRef]
- Neto, L.B.; Saleh, M.; Pickerd, V.; Yiannakopoulos, G.; Mathys, Z.; Reid, W. Rapid mechanical evaluation of quadrangular steel plates subjected to localised blast loadings. Int. J. Impact Eng. 2020, 137, 103461. [Google Scholar] [CrossRef]
- Dennis, A.A.; Pannell, J.J.; Smyl, D.J.; Rigby, S.E. Prediction of blast loading in an internal environment using artificial neural networks. Int. J. Prot. Struct. 2021, 12, 287–314. [Google Scholar] [CrossRef]
- Almustafa, M.; Nehdi, M. Machine learning model for predicting structural response of RC slabs exposed to blast loading. Eng. Struct. 2020, 221, 111109. [Google Scholar] [CrossRef]
- Xu, Y.; Huang, Y.; Ma, G. A beetle antennae search improved BP neural network model for predicting multi-factor-based gas explosion pressures. J. Loss Prev. Process Ind. 2020, 65, 104117. [Google Scholar] [CrossRef]
- Hemmatian, B.; Casal, J.; Planas, E.; Hemmatian, B.; Rashtchian, D. Prediction of BLEVE mechanical energy by implementation of artificial neural network. J. Loss Prev. Process Ind. 2020, 63, 104021. [Google Scholar] [CrossRef]
- Pannell, J.J.; Panoutsos, G.; Cooke, S.B.; Pope, D.J.; Rigby, S.E. Predicting specific impulse distributions for spherical explosives in the extreme near-field using a Gaussian function. Int. J. Prot. Struct. 2021, 12, 437–459. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Y.; Li, L.; Hao, H.; Wang, R.; Li, J. Prediction of BLEVE loads on structures using machine learning and CFD. Process Saf. Environ. Prot. 2023, 171, 914–925. [Google Scholar] [CrossRef]
- Cai, R.; Li, Y.; Zhang, C.; Cao, H.; Qi, H.; Mao, J. Size effect on reinforced concrete slabs under direct contact explosion. Eng. Struct. 2022, 252, 113656. [Google Scholar] [CrossRef]
- Castedo, R.; Segarra, P.; Alañon, A.; Lopez, L.; Santos, A.; Sanchidrian, J. Air blast resistance of full-scale slabs with different compositions: Numerical modeling and field validation. Int. J. Impact Eng. 2015, 86, 145–156. [Google Scholar] [CrossRef]
- He, F. Static Limit Analysis and Nonlinear Explosion Response of Reinforced Concrete Slabs. Master’s Thesis, South China University of Technology, Guangzhou, China, 2018. [Google Scholar]
- Hou, X.; Lu, H.; Chen, W.; Zhou, B.; Wei, X. Numerical simulation of blast-resistances for high strength RC slabs under non-contact explosion loading. Prot. Eng. 2016, 38, 34–43. (In Chinese) [Google Scholar]
- Hou, X.W.; Lu, H.B.; Chen, W.X.; Zhou, B.K.; Liu, Y. Analysis on the Anti-contact Explosion Failure Patterns of High Strength RC Slabs. J. Wuhan Univ. Technol. 2013, 35, 96–100. (In Chinese) [Google Scholar]
- Jiachao, S.; Xiaowei, C.; Yongjun, D.; Yong, Y. Dynamic response of mesoscopic plain/reinforced concrete slabs under blast loading. Explos. Shock Waves 2019, 39, 113101-1–113101-11. (In Chinese) [Google Scholar]
- Li, J.; Wu, C.; Hao, H. Investigation of ultra-high performance concrete slab and normal strength concrete slab under contact explosion. Eng. Struct. 2015, 102, 395–408. [Google Scholar] [CrossRef]
- Li, J.; Wu, C.; Hao, H.; Wang, Z.; Su, Y. Experimental investigation of ultra-high performance concrete slabs under contact explosions. Int. J. Impact Eng. 2016, 93, 62–75. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, X.; Fang, H.; Wang, G.; Shi, M. Investigation on the damage features and dynamic response of reinforced concrete slabs with polyurethane sacrificial cladding under close-range explosions. Constr. Build. Mater. 2023, 395, 132149. [Google Scholar] [CrossRef]
- Qiang, W. Study on Dynamic Response of Reinforced Concrete Slab and Containment Dome with 60° Configuration under Blast Load. Master’s Thesis, Hefei University of Technology, Hefei, China, 2019. [Google Scholar]
- Ruggiero, A.; Bonora, N.; Curiale, G.; De Muro, S.; Iannitti, G.; Marfia, S.; Sacco, E.; Scafati, S.; Testa, G. Full scale experimental tests and numerical model validation of reinforced concrete slab subjected to direct contact explosion. Int. J. Impact Eng. 2019, 132, 103309. [Google Scholar] [CrossRef]
- Shi, Y.; Chen, L.; Wang, Z.; Zhang, X. Field tests on spalling damage of reinforced concrete slabs under close-in explosions. Int. J. Prot. Struct. 2015, 6, 389–401. [Google Scholar] [CrossRef]
- Xu, S.L.; Li, R.; Li, Q.H.; Chen, B.K. Numerical simulation of functionally graded slabs of ultra-high toughness cementitious composites under contact explosion. Eng. Mech. 2020, 37, 123–133, 178. (In Chinese) [Google Scholar]
- Wang, W.; Huo, Q.; Yang, J.-C.; Wang, J.-H.; Wang, X. Experimental investigation of ultra-early-strength cement-based self-compacting high strength concrete slabs (URCS) under contact explosions. Def. Technol. 2023, 24, 326–339. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, D.; Lu, F.; Wang, S.-C.; Tang, F. Experimental study on scaling the explosion resistance of a one-way square reinforced concrete slab under a close-in blast loading. Int. J. Impact Eng. 2012, 49, 158–164. [Google Scholar] [CrossRef]
- Wei, W. Study on Damage Effects and Assessments Method of Reinforced Concrete Structural Members under Blast loading. Ph.D. Thesis, National University of Defense Technology, Changsha, China, 2012. [Google Scholar]
- Xu, W. Damage Evolution Process and Dynamic Response Analysis of Reinforced Concrete Slabs under Blast Loading. Master’s Thesis, Zhengzhou University, Zhengzhou China, 2022. [Google Scholar]
- Yao, J.; Li, S.; Zhang, P.; Deng, S.; Zhou, G. Dynamic Response and Damage Characteristics of Large Reinforced Concrete Slabs under Explosion. Appl. Sci. 2023, 13, 12552. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, G.; Lu, W.; Yang, G.; Chen, M.; Yan, P. Experimental investigation of RC slabs under air and underwater contact explosions. Eur. J. Environ. Civ. Eng. 2021, 25, 190–204. [Google Scholar] [CrossRef]
- Rhouma, M.B.; Maazoun, A.; Aminou, A.; Belkassem, B.; Tysmans, T.; Lecompte, D. Damage Assessment of Laboratory-Scale Reinforced Concrete Columns Under Localized Blast Loading. Buildings 2025, 15, 1003. [Google Scholar] [CrossRef]
- Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space. arXiv 2013, arXiv:1301.3781. [Google Scholar]
- Bengio, Y.; Ducharme, R.; Vincent, P.; Jauvin, C. A neural probabilistic language model. J. Mach. Learn. Res. 2003, 3, 1137–1155. [Google Scholar]
- Topuz, B.; Alp, N.Ç. Machine learning in architecture. Autom. Constr. 2023, 154, 105012. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Dong, J.; Chen, Y.; Yao, B.; Zhang, X.; Zeng, N. A neural network boosting regression model based on XGBoost. Appl. Soft Comput. 2022, 125, 109067. [Google Scholar] [CrossRef]
- Song, K.; Yan, F.; Ding, T.; Gao, L.; Lu, S. A steel property optimization model based on the XGBoost algorithm and improved PSO. Comput. Mater. Sci. 2020, 174, 109472. [Google Scholar] [CrossRef]
- Wang, L.; Zeng, Y.; Chen, T. Back propagation neural network with adaptive differential evolution algorithm for time series forecasting. Expert Syst. Appl. 2015, 42, 855–863. [Google Scholar] [CrossRef]
- Sarothi, S.Z.; Ahmed, K.S.; Khan, N.I.; Ahmed, A.; Nehdi, M.L. Predicting bearing capacity of double shear bolted connections using machine learning. Eng. Struct. 2022, 251, 113497. [Google Scholar] [CrossRef]
- Vapnik, V.N. The Nature of Statistical Learning Theory; Wiley: Hoboken, NJ, USA, 1995. [Google Scholar]
- Farnaaz, N.; Jabbar, M. Random forest modeling for network intrusion detection system. Procedia Comput. Sci. 2016, 89, 213–217. [Google Scholar] [CrossRef]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. Lightgbm: A highly efficient gradient boosting decision tree. In Advances in Neural Information Processing Systems 30 (NIPS 2017), Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 2017; NeurIPS: San Diego, CA, USA, 2017; Volume 30, pp. 3146–3154. [Google Scholar]
- Hancock, J.T.; Khoshgoftaar, T.M. CatBoost for big data: An interdisciplinary review. J. Big Data 2020, 7, 94. [Google Scholar] [CrossRef] [PubMed]
- Ye, M.; Li, L.; Yoo, D.-Y.; Li, H.; Zhou, C.; Shao, X. Prediction of shear strength in UHPC beams using machine learning-based models and SHAP interpretation. Constr. Build. Mater. 2023, 408, 133752. [Google Scholar] [CrossRef]
- Lazaridis, P.C.; Kavvadias, I.E.; Demertzis, K.; Iliadis, L.; Papaleonidas, A.; Vasiliadis, L.K.; Elenas, A. Structural damage prediction under seismic sequence using neural networks. In Proceedings of the 8th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering (ECCOMAS-COMPDYN 2021), Athens, Greece, 28–30 June 2021. [Google Scholar]
- Duran, B.; Eftekhar Azam, S.; Sanayei, M. Leveraging Deep Learning for Robust Structural Damage Detection and Classification: A Transfer Learning Approach via CNN. Infrastructures 2024, 9, 229. [Google Scholar] [CrossRef]
- Reifarth, C.; Castedo, R.; Santos, A.; Chiquito, M.; López, L.; Pérez-Caldentey, A.; Martínez-Almajano, S.; Alañon, A. Numerical and experimental study of externally reinforced RC slabs using FRPs subjected to close-in blast loads. Int. J. Impact Eng. 2021, 156, 103939. [Google Scholar] [CrossRef]
- Zhou, T.; Yang, J.; Zhan, X.; Pei, Y.; Zhang, J.; Chen, H.; Zhu, F. Data-driven method and interpretability analysis for transient voltage stability assessment. Power Syst. Technol. 2021, 45, 4416–4425. [Google Scholar]
- Lundberg, S.M.; Lee, S.-I. A unified approach to interpreting model predictions. In Advances in Neural Information Processing Systems 30 (NIPS 2017), Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 2017; NeurIPS: San Diego, CA, USA, 2017; Volume 30, pp. 4765–4774. [Google Scholar]
- Nguyen, K.T.; Medjaher, K. A new dynamic predictive maintenance framework using deep learning for failure prognostics. Reliab. Eng. Syst. Saf. 2019, 188, 251–262. [Google Scholar] [CrossRef]
No. | Author | Number | Type | No. | Author | Number | Type |
---|---|---|---|---|---|---|---|
1 | Zhao et al., 2013 [1] | 10 | E a + N b | 13 | Li et al., 2016 [39] | 2 | E a |
2 | Zhao et al., 2018 [10] | 4 | E a + N b | 14 | Liu et al., 2023 [40] | 2 | E a |
3 | Kumar et al., 2020 [12] | 10 | E a + N b | 15 | Wang Qiang., 2019 [41] | 25 | E a + N b |
4 | Wang et al., 2013 [16] | 6 | E a + N b | 16 | Ruggiero et al., 2019 [42] | 3 | E a |
5 | Wu et al., 2009 [17] | 2 | E a | 17 | Shi et al., 2015 [43] | 4 | E a |
6 | Cai et al., 2022 [32] | 10 | E a | 18 | Xu et al., 2020 [44] | 20 | E a + N b |
7 | Castedo et al., 2015 [33] | 20 | E a + N b | 19 | Wang et al., 2023 [45] | 4 | E a |
8 | He Fukang., 2018 [34] | 34 | N b | 20 | Wang et al., 2012 [46] | 2 | E a |
9 | Hou et al., 2016 [35] | 12 | N b | 21 | Wang Wei., 2012 [47] | 12 | N b |
10 | Hou et al., 2013 [36] | 32 | E a + N b | 22 | Xu Wenfeng., 2022 [48] | 26 | N b |
11 | Sun et al., 2019 [37] | 10 | N b | 23 | Yao et al., 2023 [49] | 1 | E a |
12 | Li et al., 2015 [38] | 4 | E a + N b | 24 | Zhao et al., 2021 [50] | 5 | E a |
No. | Feature | Units | Experiment Range | Simulation Range |
---|---|---|---|---|
X1 | Compressive Strength | MPa | 23.4~75 | 25~68 |
X2 | Reinforcement Ratio | % | 0.15~1.73 | 0.15~1.70 |
X3 | Steel Yield Strength | MPa | 235~630 | 235~500 |
X4 | Length | cm | 50~400 | 50~400 |
X5 | Width | cm | 40~400 | 40~400 |
X6 | Thickness | cm | 3~50 | 3~50 |
X7 | Explosion Distance | m | 0.1~2.1 | 0.1~2.1 |
X8 | TNT Charge Mass | kg | 0.2~15 | 0.2~10 |
X9 | Boundary Condition | B1(46), B2(40), B3(36), B4(26), B5(25), B6(17), B7(17), B8(38), B9(15) |
TNT Charge Mass (kg) | Explosion Distance (m) | Spall Radius (mm) | (Experiment-Numerical)/Experiment | |
---|---|---|---|---|
Experiment Results | Numerical Results | |||
0.31 | 0.4 | 90 | 93 | −3.33% |
0.46 | 0.4 | 120 | 115 | 4.17% |
0.55 | 0.4 | 150 | 156 | −4.00% |
No. | Feature | Units | Simulation Range |
---|---|---|---|
X1 | Compressive Strength | MPa | 25~70 |
X2 | Reinforcement Ratio | % | 0.15~1.73 |
X3 | Steel Yield Strength | MPa | 250~600 |
X4 | Length | cm | 50~400 |
X5 | Width | cm | 40~400 |
X6 | Thickness | cm | 3~50 |
X7 | Explosion Distance | m | 0.1~2.1 |
X8 | TNT Charge Mass | kg | 0.2~15 |
X9 | Boundary Condition | B1(30), B2(50), B3(65), B4(30), B5(10), B6(15), B7(25), B8(30), B9(45) |
Variance | Feature/Output | Units | Ave a | Std b | Max | Min |
---|---|---|---|---|---|---|
X1 | Compressive Strength | MPa | 42.67 | 11.56 | 75.00 | 23.4 |
X2 | Reinforcement Ratio | % | 0.91 | 0.39 | 1.73 | 0.15 |
X3 | Steel Yield Strength | MPa | 457.09 | 94.04 | 630.00 | 235.00 |
X4 | Length | cm | 186.81 | 97.75 | 400.00 | 50.00 |
X5 | Width | cm | 173.60 | 102.88 | 400.00 | 40.00 |
X6 | Thickness | cm | 18.46 | 13.83 | 50.00 | 3.00 |
X7 | Explosion Distance | m | 0.27 | 0.35 | 2.10 | 0.10 |
X8 | TNT Charge Mass | kg | 2.32 | 3.06 | 15.00 | 0.20 |
X9 | Boundary Condition | B1(76), B2(90), B3(101), B4(56), B5(35), B6(32), B7(42), B8(68), B9(60) | ||||
Y | Explosion Crater Size | cm | 43.20 | 33.78 | 165.00 | 0.00 |
Algorithms | Hyperparameters | Range | Optimized Value |
---|---|---|---|
XGBoost | n_estimators | [100, 500] | 400 |
learning_rate | [0.01, 0.2] | 0.1 | |
min_child_weight | [1, 5] | 4 | |
max_depth | [1, 20] | 5 | |
BPNN | hidden_layer_sizes | [(10,)~(200,)] | (26,) |
SVR | C | [1, 1500] | 1000 |
gamma | [0.001, 1] | 0.04 | |
kernel | [‘linear’, ‘rbf’, ‘poly’] | rbf | |
RF | n_estimators | [100, 500] | 500 |
min_samples_split | [1, 8] | 5 | |
min_samples_leaf | [1, 4] | 2 | |
LightGBM | n_estimators | [100, 500] | 400 |
learning_rate | [0.01, 0.6] | 0.3 | |
num_leaves | [30, 120] | 50 | |
min_child_samples | [10, 40] | 30 | |
CatBoost | l2_leaf_reg | [1, 10] | 6 |
learning_rate | [0.01, 0.2] | 0.2 | |
depth | [2, 10] | 5 |
Model | R2 | MSE | MAE | EVS | MAPE | MSLE | |
---|---|---|---|---|---|---|---|
XGBoost | Ave | 0.972 | 0.688 | 0.386 | 0.977 | 3.645 | 0.022 |
Std | 0.011 | 0.117 | 0.029 | 0.008 | 0.416 | 0.026 | |
BPNN | Ave | 0.965 | 1.068 | 0.481 | 0.967 | 3.612 | 0.039 |
Std | 0.013 | 0.121 | 0.033 | 0.018 | 0.452 | 0.026 | |
SVR | Ave | 0.931 | 1.365 | 0.825 | 0.915 | 5.383 | 0.076 |
Std | 0.015 | 0.126 | 0.049 | 0.031 | 0.558 | 0.066 | |
RF | Ave | 0.961 | 0.790 | 0.440 | 0.968 | 3.942 | 0.042 |
Std | 0.013 | 0.120 | 0.032 | 0.023 | 0.503 | 0.030 | |
LightGBM | Ave | 0.954 | 0.836 | 0.435 | 0.967 | 4.101 | 0.040 |
Std | 0.017 | 0.130 | 0.031 | 0.021 | 0.495 | 0.031 | |
CatBoost | Ave | 0.970 | 0.651 | 0.398 | 0.974 | 3.885 | 0.035 |
Std | 0.011 | 0.122 | 0.025 | 0.019 | 0.451 | 0.028 |
Model | R2 | MSE | MAE | EVS | MAPE | MSLE |
---|---|---|---|---|---|---|
XGBoost | 0.979 | 0.675 | 0.379 | 0.981 | 3.639 | 0.020 |
BPNN | 0.968 | 1.043 | 0.468 | 0.970 | 3.608 | 0.035 |
SVR | 0.935 | 1.335 | 0.816 | 0.920 | 5.376 | 0.071 |
RF | 0.965 | 0.779 | 0.430 | 0.971 | 3.938 | 0.038 |
LightGBM | 0.958 | 0.828 | 0.431 | 0.969 | 4.095 | 0.036 |
CatBoost | 0.972 | 0.649 | 0.385 | 0.975 | 3.878 | 0.029 |
ML Model | Error Range | Train Points | Train Percentage | Test Points | Test Percentage |
---|---|---|---|---|---|
XGBoost | −20%~20% | 383 | 85.5% | 84 | 75.4% |
−40%~40% | 418 | 93.4% | 100 | 89.5% | |
BPNN | −20%~20% | 381 | 85.1% | 77 | 68.4% |
−40%~40% | 405 | 90.4% | 94 | 84.2% | |
SVR | −20%~20% | 316 | 70.6% | 67 | 60.1% |
−40%~40% | 375 | 83.8% | 83 | 73.7% | |
RF | −20%~20% | 370 | 82.5% | 71 | 63.2% |
−40%~40% | 395 | 88.2% | 88 | 78.9% | |
LightGBM | −20%~20% | 364 | 81.3% | 69 | 61.3% |
−40%~40% | 392 | 87.5% | 85 | 75.8% | |
CatBoost | −20%~20% | 377 | 84.1% | 82 | 73.5% |
−40%~40% | 410 | 91.5% | 97 | 86.3% |
No. | Source | Method | Experimental (mm) | Existing (mm) | Error | XGBoost (mm) | Error |
---|---|---|---|---|---|---|---|
1 | Reifarth [68] | CONWEP | 818 | 834 | −1.96% | 839 | −2.57% |
2 | 818 | 868 | −6.11% | 839 | −2.57% | ||
3 | 526 | 586 | −11.41% | 541 | −2.85% | ||
4 | Zhao [10] | SPH | 390 | 420 | −7.69% | 405 | −3.85% |
5 | Hou [35] | ALE | 46 | 38 | 17.39% | 44 | 4.35% |
6 | 52 | 44 | 15.38% | 54 | −3.85% | ||
7 | 54 | 56 | 3.70% | 55 | −1.85% | ||
8 | 95 | 74 | 22.11% | 91 | 4.21% | ||
9 | 98 | 84 | 14.29% | 95 | 3.06% |
ML Model | Failure Mode | Precision | Recall | F1-Score | Accuracy |
---|---|---|---|---|---|
XGBoost | BF | 0.90 | 0.94 | 0.92 | 0.87 |
BSF | 0.81 | 0.78 | 0.79 | ||
SF | 0.89 | 0.88 | 0.88 | ||
BPNN | BF | 0.91 | 0.91 | 0.91 | 0.86 |
BSF | 0.81 | 0.80 | 0.80 | ||
SF | 0.87 | 0.88 | 0.87 | ||
SVC | BF | 0.89 | 0.89 | 0.89 | 0.85 |
BSF | 0.79 | 0.82 | 0.80 | ||
SF | 0.89 | 0.85 | 0.87 | ||
RF | BF | 0.87 | 0.80 | 0.83 | 0.76 |
BSF | 0.62 | 0.70 | 0.66 | ||
SF | 0.81 | 0.77 | 0.79 | ||
LightGBM | BF | 0.87 | 0.90 | 0.88 | 0.84 |
BSF | 0.81 | 0.78 | 0.79 | ||
SF | 0.82 | 0.83 | 0.82 | ||
CatBoost | BF | 0.95 | 0.95 | 0.95 | 0.91 |
BSF | 0.88 | 0.84 | 0.86 | ||
SF | 0.89 | 0.93 | 0.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Hao, Y.; Peng, D.; Shi, J.; Zhang, Y. Machine Learning-Based Methods for Predicting the Structural Damage and Failure Mode of RC Slabs Under Blast Loading. Buildings 2025, 15, 1221. https://doi.org/10.3390/buildings15081221
Yang J, Hao Y, Peng D, Shi J, Zhang Y. Machine Learning-Based Methods for Predicting the Structural Damage and Failure Mode of RC Slabs Under Blast Loading. Buildings. 2025; 15(8):1221. https://doi.org/10.3390/buildings15081221
Chicago/Turabian StyleYang, Jian, Yan Hao, Dang Peng, Jun Shi, and Yi Zhang. 2025. "Machine Learning-Based Methods for Predicting the Structural Damage and Failure Mode of RC Slabs Under Blast Loading" Buildings 15, no. 8: 1221. https://doi.org/10.3390/buildings15081221
APA StyleYang, J., Hao, Y., Peng, D., Shi, J., & Zhang, Y. (2025). Machine Learning-Based Methods for Predicting the Structural Damage and Failure Mode of RC Slabs Under Blast Loading. Buildings, 15(8), 1221. https://doi.org/10.3390/buildings15081221