Theoretical and Parametric Studies on the Lateral-Resistant Performance of the Steel Grid Shear Wall
Abstract
1. Introduction
2. Force Mechanism Analysis of the SGSW
2.1. Force Mechanism of Tension Strips
2.2. Force Mechanism of Compression Strips
3. Formula for Calculating the Lateral-Resistant Capacity of the SGSW
3.1. Deformation Coordination Analysis of the SGSW
3.1.1. ZONE 1
3.1.2. ZONE 2
3.1.3. ZONE 3
3.1.4. Summary
3.2. The Calculation Method of Lateral-Resistant Capacity
4. The Establishment of the Finite Element Model
4.1. Model Details
4.2. Comparison Between Experiment and Simulated Results
4.3. Improved Finite Element Model
5. Parametric Analyses of the SGSWs
5.1. The Influence of Span-to-Height Ratio
5.2. The Influence of the Spacing of the Steel Grid Components
5.3. The Influence of T-Shaped Steel Dimension Size
5.3.1. The Influence of Web Height
5.3.2. The Influence of Web Thickness
5.3.3. The Influence of Flange Width
5.3.4. The Influence of Flange Thickness
5.3.5. Comparison Between Simulation Results and Calculation Results
6. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Montgomery, C.J.; Medhekar, M.; Lubell, A.S.; Prion, H.G.L.; Ventura, C.E.; Rezai, M. Unstiffened Steel Plate Shear Wall Performance under Cyclic Loading. J. Struct. Eng. 2001, 127, 973–975. [Google Scholar]
- Elgaaly, M. Thin steel plate shear walls behavior and analysis. Thin-Walled Struct. 1998, 3, 151–180. [Google Scholar] [CrossRef]
- Mei, C.; Zhang, Y.; Wang, D.; Wu, C.; Xu, Y. Parameter optimal investigation of modular prefabricated two-side connected buckling-restrained steel plate shear wall. Structures 2021, 29, 2028–2043. [Google Scholar]
- Chen, Z.; Yang, Y.; Yan, X.; Zhang, T.; Wen, Y.; Zhang, M. Experimental, numerical and theoretical study on the steel-grid-shear-wall con-nected to frame-beams only. J. Constr. Steel Res. 2025, 224, 109091. [Google Scholar]
- Wang, K.; Tan, J.-K.; Wang, Y.-H.; Yu, Z.; Shen, Q.-W.; Yang, Y. Mechanical performance and design method of two-side-connected SPSW rein-forced on free edges. J. Constr. Steel Res. 2023, 206, 107914. [Google Scholar] [CrossRef]
- Wang, K.; Wang, Y.-H.; Zhou, X.-H.; Su, H.; Tan, J.-K.; Kong, W.-B.; Peng, T. Lateral behaviour and failure modes of buckling-restrained beam-only-connected steel plate shear walls. Eng. Fail. Anal. 2022, 142, 106833. [Google Scholar]
- Guo, H.; Li, Y.; Liang, G.; Liu, Y. Experimental study of cross stiffened steel plate shear wall with semi-rigid con-nected frame. J. Constr. Steel Res. 2017, 135, 69–82. [Google Scholar]
- Zhu, L.; Nie, J.-G. Lateral resistance capacity of stiffened steel plate shear walls. Thin-Walled Struct. 2013, 67, 155–167. [Google Scholar]
- Wu, Y.; Fan, S.; Zhou, H.; Guo, Y.; Wu, Q. Cyclic behaviour of diagonally stiffened stainless steel plate shear walls with two-side connections: Experiment, simulation and design. Eng. Struct. 2022, 268, 114756. [Google Scholar] [CrossRef]
- Khaloo, A.; Ghamari, A.; Foroutani, M. On the design of stiffened steel plate shear wall with diagonal stiffeners considering the crack effect. Structures 2021, 31, 828–841. [Google Scholar] [CrossRef]
- Sigariyazd, M.A.; Joghataie, A.; Attari, N.K. Analysis and design recommendations for diagonally stiffened steel plate shear walls. Thin-Walled Struct. 2016, 103, 72–80. [Google Scholar] [CrossRef]
- Gharaei-Moghaddam, N.; Meghdadian, M.; Ghalehnovi, M. Innovations and advancements in concrete-encased steel shear walls: A comprehensive review. Results Eng. 2023, 19, 101351. [Google Scholar]
- Valizadeh, H.; Sheidaii, M.; Showkati, H. Experimental investigation on cyclic behavior of perforated steel plate shear walls. J. Constr. Steel Res. 2012, 70, 308–316. [Google Scholar]
- Ali, M.M.; Osman, S.A.; Husam, O.A.; Al-Zand, A.W. Numerical study of the cyclic behavior of steel plate shear wall sys-tems (SPSWs) with differently shaped openings. Steel Compos. Struct. 2018, 26, 361–373. [Google Scholar]
- Zhao, X.; Tan, P.; Lin, Y.; Mercan, O.; Zhou, F.; Li, Y. Theoretical and experimental investigations of steel plate shear walls with diamond openings. Thin-Walled Struct. 2023, 189, 110838. [Google Scholar] [CrossRef]
- Cortés, G.; Liu, J. Experimental evaluation of steel slit panel–frames for seismic resistance. J. Con-Structional Steel Res. 2011, 67, 181–191. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, Y.; Yan, X.; Duan, Y.; Zhang, T.; Wang, J. Cyclic tests and parametric analyses of steel grid shear walls. J. Con-Structional Steel Res. 2023, 200, 107647. [Google Scholar]
- Li, Z.; Wen, Y.; Yan, X. Seismic Performance and Optimal Layout of a Grid-Shaped Steel Plate Shear Wal. J. Tianjin Univ. (Sci. Technol.) 2021, 54, 1039–1049. (In Chinese) [Google Scholar]
- Yan, X.; Yu, Y.; Zhang, M. Research on Performance-Based Seismic Design Method of Steel Grid Wall. Prog. Steel Build. Struct. 2024, 1–10. Available online: http://kns.cnki.net/kcms/detail/31.1893.TU.20240827.1629.007.html (accessed on 21 March 2025). (In Chinese).
- Thorburn, L.J.; Kulak, G.L.; Montgomery, C.J. Analysis of Steel Plate Shear Walls. Department of Civil Engineering; University of Alberta: Edmonton, AB, Canada, 1983. [Google Scholar]
- Guo, L.; Li, R.; Zhang, S. Simplified Model of Thin-Walled Steel Plate Shear Walls. Eng. Mech. 2013, 30, 149–153. (In Chinese) [Google Scholar]
- Li, R.; Guo, L.; Zhang, S. Hysteretic Analysis and Simplified Model of Steel Plate Shear Wall. J. Tianjin Univ. (Sci. Technol.) 2010, 43, 919–927. (In Chinese) [Google Scholar]
- JGJ/T380-2015; Ministry of Housing and Urban-Rural Development of the People’s Republic of China, Technical Specification for Steel Plate Shear Walls. China Architecture Publishing & Media Co., Ltd.: Beijing, China, 2016. (In Chinese)
Model Number | Details |
---|---|
GWG | L = H = 2700 mm; a = 168 mm; d = 650 mm; dy = 200 mm steel grid components are arranged on both sides |
GWG-L | L = H = 2700 mm; a = 168 mm; d = 650 mm; dy = 200 mm; steel grid components are arranged only on the tension side |
GWG-Y | L = H = 2700 mm; a = 168 mm; d = 650 mm; dy = 200 mm; steel grid components are arranged only on the compression side |
GWG-YWB | L = H = 2700 mm; a = 168 mm; d = 650 mm; dy = 200 mm; only the fishplate is established without steel grid components |
Specimen | Cross-Section Dimension/mm | ||
---|---|---|---|
Column | Beam | T-Shaped Steel Grid Member | |
GWG1 [17] | H 200 × 200 × 8 × 12 | H 300 × 200 × 8 × 12 | T 150 × 40× 4 × 4 |
GWG2 [18] | H 200 × 200 × 8 × 12 | H 320 × 200 × 10 × 12 | T 60 × 60 × 6 × 6 |
Specimen | Peak Load/kN | ||
---|---|---|---|
Test | FEA | Error | |
GWG1 | 1066.20 | 1076.84 | −1.00% |
GWG2 | 1291.44 | 1258.12 | 2.58% |
Span (L)/mm | 2160 | 2430 | 2700 | 3240 | 3780 |
---|---|---|---|---|---|
Span to height ratio (L/H) | 0.8 | 0.9 | 1.0 | 1.2 | 1.4 |
L/H | Simulation Value | Calculated Value | Error in K0 (%) | Error in Vf (%) | ||
---|---|---|---|---|---|---|
Initial Stiffness K0 (kN/mm) | Yield Load Vf (kN) | Initial Stiffness K0′ (kN/mm) | Yield Load Vf′ (kN) | |||
0.8 | 131 | 1039 | 134 | 1166 | 2.00 | 1.60 |
0.9 | 150 | 1167 | 181 | 1285 | 0.60 | 2.60 |
1.0 | 161 | 1185 | 164 | 1297 | 0.40 | 1.10 |
1.2 | 185 | 1295 | 186 | 1319 | 0.50 | 0.70 |
1.4 | 207 | 1426 | 207 | 1467 | 0.20 | 2.90 |
Model Number | KCL-d−10 | KCL-d−5 | KCL-d | KCL-d+5 | KCL-d+10 |
---|---|---|---|---|---|
Steel spacing (d)/mm | 550 | 600 | 650 | 700 | 750 |
Steel Spacing | Simulation Value | Calculated Value | Error in K0 (%) | Error in Vf (%) | ||
---|---|---|---|---|---|---|
Initial Stiffness K0 (kN/mm) | Yield Load Vf (kN) | Initial Stiffness K0′ (kN/mm) | Yield Load Vf′ (kN) | |||
550 | 194 | 1395 | 198 | 1405 | 2.00 | 0.70 |
600 | 188 | 1342 | 191 | 1357 | 1.60 | 1.10 |
650 | 185 | 1308 | 184 | 1308 | 0.40 | 0.00 |
700 | 183 | 1283 | 177 | 1260 | 3.00 | 1.80 |
750 | 176 | 1231 | 171 | 1212 | 3.00 | 1.60 |
Group | Model Number | T-Shaped Steel Dimension/mm | Change in Section Area/mm2 |
---|---|---|---|
Control Group | KCL-T | T125 × 125 × 6 × 9 | 0 |
Group-Ⅰ | KCL-T-F−10 | T115 × 125 × 6 × 9 | −60 |
KCL-T-F−5 | T120 × 125 × 6 × 9 | −30 | |
KCL-T-F+5 | T130 × 125 × 6 × 9 | +30 | |
KCL-T-F+10 | T135 × 125 × 6 × 9 | +60 | |
Group-Ⅱ | KCL-T-FH+1 | T125 × 125 × 7 × 9 | +114 |
KCL-T-FH+2 | T125 × 125 × 8 × 9 | +228 | |
KCL-T-FH+3 | T125 × 125 × 9 × 9 | +352 | |
KCL-T-FH+4 | T125 × 125 × 10 × 9 | +364 | |
Group-Ⅲ | KCL-T-Y−10 | T125 × 115 × 6 × 9 | −90 |
KCL-T-Y−5 | T125 × 120 × 6 × 9 | −45 | |
KCL-T-Y+5 | T125 × 130 × 6 × 9 | +45 | |
KCL-T-Y+10 | T125 × 135 × 6 × 9 | +90 | |
Group-Ⅳ | KCL-T-YH−2 | T125 × 125 × 6 × 7 | +125 |
KCL-T-YH−1 | T125 × 125 × 6 × 8 | +250 | |
KCL-T-YH+2 | T125 × 125 × 6 × 11 | +375 | |
KCL-T-YH+4 | T125 × 125 × 6 × 13 | +500 |
Parameter | Value | Simulation Value | Calculated Value | Error in K0 (%) | Error in Vf (%) | ||
---|---|---|---|---|---|---|---|
Initial Stiffness K0 (kN/mm) | Yield Load Vf (kN) | Initial Stiffness K0′ (kN/mm) | Yield Load Vf′ (kN) | ||||
Web height /mm | 115 | 180 | 1253 | 181 | 1285 | 0.60 | 2.60 |
120 | 182 | 1283 | 183 | 1297 | 0.40 | 1.10 | |
125 | 185 | 1308 | 184 | 1308 | 0.40 | 0.00 | |
130 | 187 | 1334 | 186 | 1320 | 0.60 | 1.10 | |
135 | 190 | 1356 | 188 | 1331 | 1.30 | 1.80 | |
Web thickness /mm | 6 | 185 | 1308 | 184 | 1308 | 0.40 | 0.00 |
7 | 188 | 1343 | 191 | 1356 | 1.60 | 1.00 | |
8 | 191 | 1376 | 198 | 1404 | 3.50 | 2.10 | |
9 | 194 | 1413 | 205 | 1452 | 5.40 | 2.80 | |
10 | 196 | 1444 | 211 | 1500 | 7.80 | 3.90 | |
Flange height /mm | 115 | 176 | 1243 | 176 | 1251 | 0.10 | 0.60 |
120 | 181 | 1277 | 180 | 1280 | 0.40 | 0.20 | |
125 | 185 | 1308 | 184 | 1308 | 0.40 | 0.00 | |
130 | 189 | 1341 | 188 | 1337 | 0.40 | 0.30 | |
135 | 193 | 1373 | 192 | 1366 | 0.30 | 0.50 | |
Flange thickness /mm | 7 | 165 | 1134 | 162 | 1148 | 2.00 | 1.30 |
8 | 176 | 1231 | 173 | 1228 | 1.70 | 0.20 | |
9 | 185 | 1308 | 184 | 1308 | 0.40 | 0.00 | |
11 | 202 | 1442 | 207 | 1468 | 2.40 | 1.80 | |
13 | 216 | 1536 | 229 | 1628 | 6.20 | 6.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Yan, X.; Chen, Z.; Wen, Y. Theoretical and Parametric Studies on the Lateral-Resistant Performance of the Steel Grid Shear Wall. Buildings 2025, 15, 1099. https://doi.org/10.3390/buildings15071099
Yang Y, Yan X, Chen Z, Wen Y. Theoretical and Parametric Studies on the Lateral-Resistant Performance of the Steel Grid Shear Wall. Buildings. 2025; 15(7):1099. https://doi.org/10.3390/buildings15071099
Chicago/Turabian StyleYang, Yan, Xiangyu Yan, Zhihua Chen, and Yuanhao Wen. 2025. "Theoretical and Parametric Studies on the Lateral-Resistant Performance of the Steel Grid Shear Wall" Buildings 15, no. 7: 1099. https://doi.org/10.3390/buildings15071099
APA StyleYang, Y., Yan, X., Chen, Z., & Wen, Y. (2025). Theoretical and Parametric Studies on the Lateral-Resistant Performance of the Steel Grid Shear Wall. Buildings, 15(7), 1099. https://doi.org/10.3390/buildings15071099