Innovation and Cost Influence of Environmental Regulation Policies on Megaprojects
Abstract
1. Introduction
- What are the optimal and measurable indicators for sustainable practices and regulations that could be adopted?
- To what extent do these indicators correlate with these constructs?
- What is the significance of cost in the relationship between sustainable practices and the environment?
- What is the effect of cost on the link between regulations and the environment?
1.1. Literature Review and Hypothesis Development
1.1.1. Sustainable Practices in Construction and Development
1.1.2. Contributing Factors to Environmental Impact
1.1.3. Remediation Measures
1.1.4. Sustainable Practices and Regulations
1.1.5. The Hindrances of Cost
2. Materials and Methods
2.1. Paper Retrieval
2.2. Cluster Analysis
2.3. Questionnaire Development
2.4. The Collection of Data and Sampling
3. Results
3.1. Measurement Model
3.1.1. The Loadings of Factors
3.1.2. Model Assessment
3.1.3. Indicator Multicollinearity
3.1.4. Reliability Analysis
- Construct Validity
- Convergent Validity
- Discriminant Validity
- Fornell and Larker Criteria
3.2. Cross Loadings
Heterotrait–Monotrait Ratio (HTMT)
4. Discussion
4.1. Direct Relationship Results of Hypothesis H1
4.2. Moderation Analysis Result of Cost-Hypothesis Test H2
COST x R -> EI
4.3. Moderation Analysis Result of Cost-Hypothesis Test H3
COST x SP -> EI
4.4. Sustainable Practices (SP)
- Establishing both strategic and tactical sustainability objectives (SP1)
- 2.
- Designing projects with a focus on sustainability (SP2)
- 3.
- Establishing sustainable policies (by project hosts) (SP3)
- 4.
- Project behaviors that affect sustainability (SP4)
4.5. Regulations (R)
- Setting a standard for future design and construction (R1)
- 2.
- Building regulations (R2)
- 3.
- Government policies and regulations (R3).
- 4.
- Increased education and training (R4)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TBL | Tripple Bottom Line |
EI | Environmental Impact |
SP | Sustainable Practices |
R | Regulations |
C | Cost |
SC | Sustainable Construction |
EN | Environmental |
S | Social |
EC | Economical |
References
- Zhang, X.; Wu, Y.; Shen, L.; Skitmore, M. A prototype system dynamic model for assessing the sustainability of construction projects. Int. J. Proj. Manag. 2014, 32, 66–76. [Google Scholar] [CrossRef]
- Ofori, G. Challenges of construction industries in developing countries: Lessons from various countries. In Proceedings of the 2nd International Conference on Construction in Developing Countries: Challenges Facing the Construction Industry in Developing Countries, Gaborone, Botswana, 15–17 November 2000; pp. 15–17. [Google Scholar]
- Ofori, G. Greening the construction supply chain in Singapore. Eur. J. Purch. Supply Manag. 2000, 6, 195–206. [Google Scholar] [CrossRef]
- Ofori, G. Nature of the construction industry, its needs and its development: A review of four decades of research. J. Constr. Dev. Ctries. 2015, 20, 115. [Google Scholar]
- Sfakianaki, E. Critical success factors for sustainable construction: A literature review. Manag. Environ. Qual. Int. J. Int. J. 2018, 30, 176–196. [Google Scholar]
- James, P.; Matipa, W.M. Sustainable construction in a developing country: An assessment of how the professional’s practice impact the environment. In Proceedings of the 20th Annual ARCOM Conference, Heriot Watt University, Edinburgh, UK, 1–3 September 2004; pp. 1–3. [Google Scholar]
- Chin, W.W. The Partial Least Squares Approach for Structural Equation Modelin. In Modern Methods for Business Research; Psychology Press: Melbourne, Australia, 1998. [Google Scholar]
- United Nations Development Programme. Assessment of Development Results: Evaluation of UNDP Contribution; United Nations Publications: Georgetown, Guyana, 2010. [Google Scholar]
- Üllenberg, A.; Minah, M.; Rauch, T.; Richter, D. Zambia: Towards Inclusive and Sustainable Rural Transformation; Albrecht Daniel Thaer-Institut für Agrar-und Gartenbauwissenschaften: Berlin, Germany, 2017. [Google Scholar]
- Oke, A.; Aghimien, D.; Aigbavboa, C.; Musenga, C. Drivers of sustainable construction practices in the Zambian construction industry. Energy Procedia 2019, 158, 3246–3252. [Google Scholar] [CrossRef]
- Marsh, R.J.; Brent, A.C.; de Kock, I.H. Understanding the barriers and drivers of sustainable construction adoption and implementation in South Africa: A quantitative study using the Theoretical Domains Framework and COM-B Model. J. S. Afr. Inst. Civ. Eng. 2021, 63, 11–23. [Google Scholar] [CrossRef]
- Goel, A.; Ganesh, L.S.; Kaur, A. Deductive content analysis of research on sustainable construction in India: Current progress and future directions. J. Clean. Prod. 2019, 226, 142–158. [Google Scholar] [CrossRef]
- Boons, F.; Lüdeke-Freund, F. Business models for sustainable innovation: State-of-the-art and steps towards a research agenda. J. Clean. Prod. 2013, 45, 9–19. [Google Scholar]
- Thounaojam, N.; Laishram, B. Issues in promoting sustainability in mega infrastructure projects: A systematic review. J. Environ. Plan. Manag. 2021, 65, 1349–1372. [Google Scholar] [CrossRef]
- Chawla, V.; Chanda, A.; Angra, S.; Chawla, G. The sustainable project management: A review and future possibilities. J. Proj. Manag. 2018, 3, 157–170. [Google Scholar] [CrossRef]
- Gan, X.; Zuo, J.; Ye, K.; Skitmore, M.; Xiong, B. Why sustainable construction? Why not? An owner’s perspective. Habitat Int. 2015, 47, 61–68. [Google Scholar] [CrossRef]
- Chang, R.D.; Soebarto, V.; Zhao, Z.Y.; Zillante, G. Facilitating the transition to sustainable construction: China’s policies. J. Clean. Prod. 2016, 131, 534–544. [Google Scholar] [CrossRef]
- Iqbal, M.; Ma, J.; Ahmad, N.; Hussain, K.; Usmani, M.S. Promoting sustainable construction through energy-efficient technologies: An analysis of promotional strategies using interpretive structural modeling. Int. J. Environ. Sci. Technol. 2021, 18, 3479–3502. [Google Scholar] [CrossRef]
- Du, C. Plessis and others. Agenda 21 for sustainable construction in developing countries. CSIR Rep. BOU E 2002, 204, 2–5. [Google Scholar]
- Kumar, B.S.C.; Gupta, S.K. Sustainable Construction Management. Int. J. Appl. Eng. Res. 2014, 9, 17115–17126. [Google Scholar] [CrossRef]
- Bardhan, S. Assessment of water resource consumption in building construction in India. WIT Trans. Ecol. Environ. 2011, 144, 93–101. [Google Scholar] [CrossRef]
- Arif, M.; Bendi, D.; Toma-Sabbagh, T.; Sutrisna, M. Construction waste management in India: An exploratory study. Constr. Innov. 2012, 12, 133–155. [Google Scholar] [CrossRef]
- Francis, A.; Mahalingam, A. The impact of the lean technique of value stream mapping in Indian construction sites on reducing carbon emissions. Procedia-Soc. Behav. Sci. 2012, 27, 6–19. [Google Scholar]
- Mani, M.; Reddy, B.V.V. Sustainability in human settlements: Imminent material and energy challenges for buildings in India. J. Indian Inst. Sci. 2012, 92, 145–162. [Google Scholar]
- Antony, J.; Nair, D.G. Potential of construction and demolished wastes as pozzolana. Procedia Technol. 2016, 25, 194–200. [Google Scholar] [CrossRef]
- Dakwale, V.A.; Ralegaonkar, R.V. Development of sustainable construction material using construction and demolition waste. Indian J. Eng. Mater. Sci. 2014, 21, 451–457. [Google Scholar]
- Kumar, D.; Katoch, S.S. Environmental sustainability of run of the river hydropower projects: A study from western Himalayan region of India. Renew. Energy 2016, 93, 599–607. [Google Scholar]
- Darko, A.; Chan, A.P.C.; Gyamfi, S.; Olanipekun, A.O.; He, B.-J.; Yu, Y. Driving forces for green building technologies adoption in the construction industry: Ghanaian perspective. Build. Environ. 2017, 125, 206–215. [Google Scholar]
- Malik, S.; Fatima, F.; Imran, A.; Chuah, L.F.; Klemeš, J.J.; Khaliq, I.H.; Asif, S.; Aslam, M.; Jamil, F.; Durrani, A.K.; et al. Improved project control for sustainable development of construction sector to reduce environment risks. J. Clean. Prod. 2019, 240, 118214. [Google Scholar]
- Maji, I.K. Impact of clean energy and inclusive development on CO2 emissions in sub-Saharan Africa. J. Clean. Prod. 2019, 240, 118186. [Google Scholar] [CrossRef]
- Wang, N.; Chen, X.; Wu, G.; Chang, Y.-C.; Yao, S. A short-term based analysis on the critical low carbon technologies for the main energy-intensive industries in China. J. Clean. Prod. 2018, 171, 98–106. [Google Scholar] [CrossRef]
- McLennan, J.F. The Philosophy of Sustainable Design: The Future of Architecture; Ecotone Publishing: West Sacramento, CA, USA, 2004. [Google Scholar]
- Robichaud, L.B.; Anantatmula, V.S. Greening project management practices for sustainable construction. J. Manag. Eng. 2011, 27, 48–57. [Google Scholar]
- Kibert, C.J. Sustainable Construction: Green Building Design and Deliver; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Yılmaz, M.; Bakış, A. Sustainability in construction sector. Procedia-Soc. Behav. Sci. 2015, 195, 2253–2262. [Google Scholar] [CrossRef]
- Wang, G.; Wu, P.; Wu, X.; Zhang, H.; Guo, Q.; Cai, Y. Mapping global research on sustainability of megaproject management: A scientometric review. J. Clean. Prod. 2020, 259, 120831. [Google Scholar]
- Kibert, C.J. The Next Generation of Sustainable Construction; Taylor & Francis: Abingdon, UK, 2007. [Google Scholar]
- Winch, G.M. Managing Construction Projects; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Shinde, D.S.; Wadke, Y.; Wani, A. A Study on Sustainable Construction Practices and Management. In Proceedings of the Conference: IOP Conference, Coimbatore, India, 11–12 February 2022. [Google Scholar]
- Zhang, X.; Platten, A.; Shen, L. Green property development practice in China: Costs and barriers. Build. Environ. 2011, 46, 2153–2160. [Google Scholar]
- Rogers, P.P.; Jalal, K.F.; Boyd, J.A. An Introduction to Sustainable Development; Routledge: London, UK, 2012. [Google Scholar]
- Nilashi, M.; Rupani, P.F.; Rupani, M.M.; Kamyab, H.; Shao, W.; Ahmadi, H.; Rashid, T.A.; Aljojo, N. Measuring sustainability through ecological sustainability and human sustainability: A machine learning approach. J. Clean. Prod. 2019, 240, 118162. [Google Scholar] [CrossRef]
- Locatelli, G.; Mariani, G.; Sainati, T.; Greco, M. Corruption in public projects and megaprojects: There is an elephant in the room! Int. J. Proj. Manag. 2017, 35, 252–268. [Google Scholar]
- Osuizugbo, I.C.; Oyeyipo, O.; Lahanmi, A.; Morakinyo, A.; Olaniyi, O. Barriers to the adoption of sustainable construction. Eur. J. Sustain. Dev. 2020, 9, 150. [Google Scholar]
- Khalfan, M.; Noor, M.A.; Maqsood, T.; Alshanbri, N.; Sagoo, A. Perceptions towards sustainable construction amongst construction contractors in state of Victoria, Australia. J. Econ. Bus. Manag. 2015, 3, 940–947. [Google Scholar]
- Yu, L.; Wang, G.; Marcouiller, D.W. A scientometric review of pro-poor tourism research: Visualization and analysis. Tour. Manag. Perspect. 2019, 30, 75–88. [Google Scholar]
- Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar]
- Van Eck, N.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar]
- He, Q.; Wang, G.; Luo, L.; Shi, Q.; Xie, J.; Meng, X. Mapping the managerial areas of Building Information Modeling (BIM) using scientometric analysis. Int. J. Proj. Manag. 2017, 35, 670–685. [Google Scholar]
- Li, X.; Wu, P.; Shen, G.Q.; Wang, X.; Teng, Y. Mapping the knowledge domains of Building Information Modeling (BIM): A bibliometric approach. Autom. Constr. 2017, 84, 195–206. [Google Scholar]
- Synnestvedt, M.B.; Chen, C.; Holmes, J.H. CiteSpace II, visualization and knowledge discovery in bibliographic databases. AMIA Annu. Symp. Proc. 2005, 2005, 724–728. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1560567/ (accessed on 23 June 2023). [PubMed]
- Ohiomah, I.; Aigbavboa, C.; Thwala, W.D. An assessment on the drivers and obstacles of sustainable project management in South Africa: A case study of Johannesburg. IOP Conf. Ser. Mater. Sci. Eng. 2019, 640, 12022. [Google Scholar]
- Akadiri, P.O. Understanding barriers affecting the selection of sustainable materials in building projects. J. Build. Eng. 2015, 4, 86–93. [Google Scholar]
- Serdar, D.; Zavadskas, E.K.; Derek, T.; Audrius, B.; Ali, I. Sustainable Construction Industry in Cambodia: Awareness, Drivers and Barriers. Sustainability 2018, 10, 392. [Google Scholar] [CrossRef]
- Durdyev, S.; Ismail, S.; Bakar, N.F.S.A.; Darko, A. A partial least squares structural equation modeling (PLS-SEM) of barriers to sustainable construction in Malaysia. J. Clean. Prod. 2018, 204, 564–572. [Google Scholar]
- Munyasya, B.M.; Chileshe, N. Towards Sustainable Infrastructure Development: Drivers, Barriers, Strategies, and Coping Mechanisms. Sustainability 2018, 10, 4341. [Google Scholar] [CrossRef]
- Jaillon, L.; Poon, C.S. Sustainable construction aspects of using prefabrication in dense urban environment: A Hong Kong case study. Constr. Manag. Econ. 2008, 26, 953–966. [Google Scholar]
- Chen, J.J.; Chambers, D. Sustainability and the impact of Chinese policy initiatives upon construction. Constr. Manag. Econ. 2010, 17, 679–687. [Google Scholar]
- Aarseth, W.; Ahola, T.; Aaltonen, K.; Økland, A.; Andersen, B. Project sustainability strategies: A systematic literature review. Int. J. Proj. Manag. 2017, 35, 1071–1083. [Google Scholar] [CrossRef]
- Opoku, J.D.-G.; Agyekum, K.; Ayarkwa, J. Drivers of environmental sustainability of construction projects: A thematic analysis of verbatim comments from built environment consultants. Int. J. Constr. Manag. 2019, 22, 1033–1041. [Google Scholar]
- Serpell, A.; Kort, J.; Vera, S. Awareness, actions, drivers and barriers of sustainable construction in Chile. Technol. Econ. Dev. Econ. 2013, 19, 272–288. [Google Scholar]
- Valdes-Vasquez, R.; Klotz, L.E. Social sustainability considerations during planning and design: Framework of processes for construction projects. J. Constr. Eng. Manag. 2013, 139, 80–89. [Google Scholar]
- Berardi, U. Clarifying the new interpretations of the concept of sustainable building. Sustain. Cities Soc. 2013, 8, 72–78. [Google Scholar] [CrossRef]
- Tiwari, P.; Parikh, J. Housing paradoxes in India: Is there a solution? Build. Environ. 2000, 35, 59–75. [Google Scholar]
- Korytárová, J.; Hromádka, V. The economic evaluation of megaprojects—Social and economic impacts. Procedia-Soc. Behav. Sci. 2014, 119, 495–502. [Google Scholar]
- Varun; Sharma, A.; Shree, V.; Nautiyal, H. Life cycle environmental assessment of an educational building in Northern India: A case study. Sustain. Cities Soc. 2024, 4, 22–28. [Google Scholar] [CrossRef]
- Angermeier, P.L.; Karr, J.R. Ecological health indicators. Encycl. Ecol. 2018, 1, 391–401. [Google Scholar] [CrossRef]
- Velásquez, E.; Fonte, S.J.; Barot, S.; Grimaldi, M.; Desjardins, T.; Lavelle, P. Soil macrofauna-mediated impacts of plant species composition on soil functioning in Amazonian pastures. Appl. Soil Ecol. 2012, 56, 43–50. [Google Scholar]
- Scheffers, B.R.; De Meester, L.; Bridge, T.C.L.; Hoffmann, A.A.; Pandolfi, J.M.; Corlett, R.T.; Butchart, S.H.M.; Pearce-Kelly, P.; Kovacs, K.M.; Dudgeon, D.; et al. The broad footprint of climate change from genes to biomes to people. Science 2016, 354, aaf7671-11. [Google Scholar]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. Using partial least squares path modeling in advertising research: Basic concepts and recent issues. In Handbook of Research on International Advertising; Edward Elgar Publishing: Cheltenham, UK, 2012. [Google Scholar] [CrossRef]
- Hair, J.J.F.; Sarstedt, M., Jr.; Matthews, L.M.; Ringle, C.M. Identifying and treating unobserved heterogeneity with FIMIX-PLS, part I–method. Eur. Bus. Rev. 2016, 28, 63–76. [Google Scholar] [CrossRef]
- Pett, M.A.; Lackey, N.R.; Sullivan, J.J. Making Sense of Factor Analysis an Overview of Factor Analysis. 2003. Available online: https://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/ReferencesPapers.aspx?ReferenceID=1866190 (accessed on 23 June 2023).
- Sarstedt, M.; Hair, J.J.F.; Ringle, C.M.; Cheah, J.-H.; Becker, J.-M. How to Specify, Estimate, and Validate Higher-Order Constructs in PLS-SEM. Aust. Mark. J. 2019, 27, 197–211. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. PLS-SEM: Indeed a silver bullet. J. Mark. Theory Pract. 2011, 19, 139–152. [Google Scholar] [CrossRef]
- Fornell, C.; Bookstein, F.L. Two structural equation models, LISREL and PLS applied to consumer exit-voice theory. J. Mark. Res. 1982, 19, 440–452. [Google Scholar] [CrossRef]
- Marks, R.; Karkouti, E. Evaluation of the reliability of reflective marker placements. Physiother. Res. Int. 1996, 1, 50–61. [Google Scholar] [CrossRef]
- Bagozzi, R.P.; Yi, Y.; Phillips, L.W. Assessing construct validity in organizational research. Adm. Sci. Q. 1991, 36, 421–458. [Google Scholar] [CrossRef]
- Wasko, M.M.; Faraj, S. Why should I share, Examining social capital and knowledge contribution in electronic networks of practice. MIS Q. 2005, 29, 35–57. [Google Scholar] [CrossRef]
- Teo, T.S.H.; Srivastava, S.C.; Jiang, L. Trust and Electronic Government Success: An Empirical Study. J. Manag. Inf. Syst. 2008, 25, 99–132. [Google Scholar] [CrossRef]
- Kline, R.B. Principles and Practice of Structural Equation Modeling, 3rd ed.; Guilford Press: New York, NY, USA, 2023. [Google Scholar]
- Gignac, G.E.; Szodorai, E.T. Effect size guidelines for individual differences researchers. Personal. Individ. Differ. 2016, 102, 74–78. [Google Scholar] [CrossRef]
- Sawilowsky, S.S. New Effect Size Rules of Thumb. J. Mod. Appl. Stat. Methods 2009, 8, 597–599. [Google Scholar] [CrossRef]
- Liu, H.-Y.; Chang, C.-C. Effectiveness of 4Ps Creativity Teaching for College Students: A Systematic Review and Meta-Analysis. Creat. Educ. 2017, 8, 857. [Google Scholar] [CrossRef]
- Shawky, K.A.; Abdelalim, A.M.; Sherif, A.G. Standardization of BIM Execution Plans (BEP’s) for Mega Construction Projects; A Comparative and Scientometric Study. Trans. Eng. Comput. Sci. 2024, 12, 103–129. [Google Scholar] [CrossRef]
- Cantarelli, C.C. Innovation in megaprojects and the role of project complexity. Prod. Plan. Control 2022, 33, 943–956. [Google Scholar] [CrossRef]
Cluster-ID | Cluster Label |
---|---|
#0 | Promoting sustainable construction |
#1 | Large-scale 3D printing |
#2 | Worldwide progress |
#3 | Waste generation |
#4 | Comprehensive assessment |
#5 | Sustainable construction industry |
#6 | Emission |
#7 | Greenhouse gas emission |
#8 | Building |
#9 | To-site carbon emission assessment |
#10 | Building interior decoration |
Title | Attribute | Number | Percentage |
---|---|---|---|
Experience | From 0 to 5 years | 179 | 61.5% |
From 6 to 10 years | 94 | 32.3% | |
Over 10 years | 18 | 6.2% | |
Education | Certificate level | 25 | 8.6% |
Technician level | 8 | 2.8% | |
Diploma level | 16 | 5.5% | |
Bachelor’s | 51 | 17.5% | |
Masters | 141 | 48.5% | |
Ph.D. | 50 | 17.1% |
No. | Factors | Code | References | ||||||
---|---|---|---|---|---|---|---|---|---|
[53,54,55,56,57] | [58,59,60] | [61,62] | [28,55,56] | [63,64] | [65,66,67] | [68,69,70] | |||
Social (S) | |||||||||
1 | Social justice and equity for those who are less fortunate in society | S1 | ✓ | ||||||
2 | An improvement in the standard of living, particularly for disadvantaged groups | S2 | ✓ | ||||||
3 | Alleviating poverty and creating jobs | S3 | ✓ | ||||||
4 | Minimizing the negative effects of construction on nearby residents and users | S4 | ✓ | ||||||
Environmental (EN) | |||||||||
1. | Material extraction at a rate that is lower than the rate of deposit | EN1 | ✓ | ||||||
2. | Life cycle analysis to reduce energy, water, land, and material consumption | EN2 | ✓ | ||||||
3. | Reducing construction-related emissions | EN3 | ✓ | ||||||
4. | Using environmentally safe and nontoxic materials | EN4 | ✓ | ||||||
Economical (EC) | |||||||||
1. | Financial viability of the facility for the intended users (such as social or cheap housing) | EC1 | ✓ | ||||||
2. | Enhanced profitability and competitiveness through increased output, productivity, and input reduction (resources) | EC2 | ✓ | ||||||
3. | Choosing vendors and contractors who practice environmental responsibility | EC3 | ✓ | ||||||
4. | Ethically sourced goods and services | EC4 | ✓ | ||||||
Sustainable Practices (SC) | |||||||||
1. | Establishing both strategic and tactical sustainability objectives | SP1 | ✓ | ||||||
2. | Designing projects with a focus on sustainability | SP2 | ✓ | ||||||
3. | Establishing sustainable policies (by project hosts) | SP3 | ✓ | ||||||
4. | Project behaviors that affect sustainability | SP4 | ✓ | ||||||
Ecological Balance (EI) | |||||||||
1. | Good soil | EI1 | ✓ | ||||||
2. | Good water | EI2 | ✓ | ||||||
3. | Unaltered biogeochemical cycles | EI3 | ✓ | ||||||
4. | Habitat preservation | EI4 | ✓ | ||||||
Industry Regulatory-Related Factors (R) | |||||||||
1. | Setting a standard for future design and construction | R1 | ✓ | ||||||
2. | Building regulations | R2 | ✓ | ||||||
3. | Government policies and regulations | R3 | ✓ | ||||||
4. | Increased education and training | R4 | ✓ | ||||||
COST as a Barrier to Sustainable Construction (C) | |||||||||
1. | Traditional methods of construction are more expensive than sustainable ones | C1 | ✓ | ||||||
2. | High cost is associated with sustainable buildings | C2 | ✓ | ||||||
3. | Due to the perceived scarcity of sustainable materials, sustainable choices are more expensive than alternative options | C3 | ✓ |
C | EC | EI | EN | R | S | SP | |
---|---|---|---|---|---|---|---|
C1 | 0.803 | ||||||
C2 | 0.758 | ||||||
C3 | 0.884 | ||||||
EC1 * | 0.697 | ||||||
EC2 | 0.832 | ||||||
EC3 | 0.858 | ||||||
EC4 | 0.886 | ||||||
E.I.1 | 0.880 | ||||||
E.I.2 | 0.897 | ||||||
E.I.3 | 0.908 | ||||||
E.I.4 | 0.841 | ||||||
E.N.1 * | 0.573 | ||||||
E.N.2 | 0.854 | ||||||
E.N.3 | 0.822 | ||||||
E.N.4 | 0.808 | ||||||
R.1 | 0.777 | ||||||
R.2 | 0.883 | ||||||
R.3 | 0.894 | ||||||
R.4 | 0.864 | ||||||
S.1 | 0.831 | ||||||
S.2 | 0.747 | ||||||
S.3 | 0.906 | ||||||
S.4 | 0.864 | ||||||
SP1 | 0.857 | ||||||
SP2 | 0.902 | ||||||
SP3 | 0.724 |
VIF | |
---|---|
C1 | 1.682 |
C2 | 1.427 |
C3 | 1.563 |
EC1 | 1.645 |
EC2 | 1.720 |
EC3 | 2.237 |
EC4 | 2.581 |
EI1 | 3.049 |
EI2 | 3.323 |
EI3 | 3.600 |
EI4 | 2.680 |
EN1 | 1.319 |
EN2 | 1.878 |
EN3 | 1.742 |
EN4 | 1.538 |
R.1 | 1.843 |
R.2 | 2.710 |
R.3 | 2.812 |
R.4 | 2.388 |
S1 | 1.870 |
S2 | 1.906 |
S3 | 2.954 |
S4 | 2.225 |
SP1 | 2.367 |
SP2 | 3.332 |
SP3 | 1.424 |
SP4 | 1.896 |
α | CR | |
---|---|---|
C | 0.758 | 0.857 |
EC | 0.843 | 0.892 |
EI | 0.905 | 0.933 |
EN | 0.777 | 0.853 |
R | 0.878 | 0.916 |
S | 0.861 | 0.904 |
SP | 0.826 | 0.884 |
Average Variance Extracted (AVE) | |
---|---|
C | 0.667 |
EC | 0.675 |
EI | 0.778 |
EN | 0.597 |
R | 0.733 |
S | 0.704 |
SP | 0.658 |
C | EC | EI | EN | R | S | SP | |
---|---|---|---|---|---|---|---|
C | 0.817 | ||||||
EC | 0.584 | 0.821 | |||||
EI | 0.567 | 0.491 | 0.882 | ||||
EN | 0.571 | 0.611 | 0.578 | 0.772 | |||
R | 0.556 | 0.564 | 0.709 | 0.430 | 0.856 | ||
S | 0.469 | 0.722 | 0.408 | 0.596 | 0.420 | 0.839 | |
SP | 0.555 | 0.625 | 0.456 | 0.360 | 0.552 | 0.616 | 0.811 |
C | EC | EI | EN | R | S | SP | |
---|---|---|---|---|---|---|---|
C1 | 0.803 | 0.287 | 0.341 | 0.299 | 0.370 | 0.271 | 0.339 |
C2 | 0.758 | 0.458 | 0.383 | 0.386 | 0.332 | 0.377 | 0.386 |
C3 | 0.884 | 0.610 | 0.597 | 0.626 | 0.593 | 0.462 | 0.573 |
EC1 | 0.345 | 0.697 | 0.136 | 0.449 | 0.139 | 0.503 | 0.363 |
EC2 | 0.390 | 0.832 | 0.375 | 0.361 | 0.585 | 0.652 | 0.618 |
EC3 | 0.553 | 0.858 | 0.480 | 0.663 | 0.475 | 0.553 | 0.464 |
EC4 | 0.595 | 0.886 | 0.504 | 0.558 | 0.495 | 0.647 | 0.548 |
EI1 | 0.513 | 0.580 | 0.880 | 0.497 | 0.680 | 0.482 | 0.472 |
EI2 | 0.491 | 0.402 | 0.897 | 0.466 | 0.687 | 0.424 | 0.453 |
EI3 | 0.518 | 0.421 | 0.908 | 0.495 | 0.648 | 0.225 | 0.340 |
EI4 | 0.479 | 0.318 | 0.841 | 0.590 | 0.471 | 0.301 | 0.337 |
EN1 | 0.280 | 0.384 | 0.155 | 0.573 | 0.167 | 0.271 | 0.186 |
EN2 | 0.548 | 0.547 | 0.445 | 0.854 | 0.420 | 0.433 | 0.381 |
EN3 | 0.377 | 0.459 | 0.451 | 0.822 | 0.344 | 0.549 | 0.264 |
EN4 | 0.500 | 0.493 | 0.604 | 0.808 | 0.335 | 0.532 | 0.253 |
R1 | 0.520 | 0.452 | 0.515 | 0.388 | 0.777 | 0.294 | 0.302 |
R2 | 0.406 | 0.553 | 0.586 | 0.265 | 0.883 | 0.305 | 0.418 |
R3 | 0.556 | 0.483 | 0.683 | 0.392 | 0.894 | 0.360 | 0.546 |
R4 | 0.428 | 0.447 | 0.626 | 0.427 | 0.864 | 0.467 | 0.589 |
S1 | 0.255 | 0.621 | 0.337 | 0.419 | 0.444 | 0.831 | 0.493 |
S2 | 0.395 | 0.438 | 0.193 | 0.557 | 0.080 | 0.747 | 0.410 |
S3 | 0.463 | 0.635 | 0.336 | 0.544 | 0.343 | 0.906 | 0.677 |
S4 | 0.470 | 0.681 | 0.453 | 0.521 | 0.443 | 0.864 | 0.450 |
S.P.1 | 0.696 | 0.592 | 0.595 | 0.372 | 0.528 | 0.542 | 0.857 |
S.P.2 | 0.471 | 0.462 | 0.424 | 0.319 | 0.425 | 0.500 | 0.902 |
S.P.3 | 0.224 | 0.638 | 0.129 | 0.210 | 0.322 | 0.568 | 0.724 |
S.P.4 | 0.306 | 0.296 | 0.232 | 0.234 | 0.505 | 0.372 | 0.749 |
C | EC | EI | EN | R | S | SP | |
---|---|---|---|---|---|---|---|
C | |||||||
EC | 0.672 | ||||||
EI | 0.648 | 0.516 | |||||
EN | 0.664 | 0.761 | 0.641 | ||||
R | 0.647 | 0.603 | 0.786 | 0.497 | |||
S | 0.561 | 0.822 | 0.443 | 0.720 | 0.447 | ||
SP | 0.628 | 0.709 | 0.491 | 0.428 | 0.632 | 0.710 |
Original Sample (O) | Standard Deviation (STDEV) | T Statistics (|O/STDEV|) | p Values | |
---|---|---|---|---|
S_C -> R | 0.324 | 0.076 | 4.279 | 0.000 |
COST x R -> EI | −0.486 | 0.046 | 10.522 | 0.000 |
COST x SP -> EI | 0.201 | 0.038 | 5.341 | 0.000 |
Beta | SE | T—Values | p Values | |
---|---|---|---|---|
COST x R -> EI | −0.486 | 0.046 | 10.522 | 0.000 |
Beta | SE | T—Values | p values | |
---|---|---|---|---|
COST x SP -> EI | 0.201 | 0.038 | 5.341 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, L.; Musonda, J.; Ali, A. Innovation and Cost Influence of Environmental Regulation Policies on Megaprojects. Buildings 2025, 15, 1012. https://doi.org/10.3390/buildings15071012
Ma L, Musonda J, Ali A. Innovation and Cost Influence of Environmental Regulation Policies on Megaprojects. Buildings. 2025; 15(7):1012. https://doi.org/10.3390/buildings15071012
Chicago/Turabian StyleMa, Li, Jonathan Musonda, and Azhar Ali. 2025. "Innovation and Cost Influence of Environmental Regulation Policies on Megaprojects" Buildings 15, no. 7: 1012. https://doi.org/10.3390/buildings15071012
APA StyleMa, L., Musonda, J., & Ali, A. (2025). Innovation and Cost Influence of Environmental Regulation Policies on Megaprojects. Buildings, 15(7), 1012. https://doi.org/10.3390/buildings15071012