Eco-Friendly Synthesis of Geopolymer Foams from Natural Zeolite Tuffs and Silica Fume: Effects of H2O2 and Calcium Stearate on Foam Properties
Abstract
:Highlights
- Eco-friendly geopolymer foams are developed from silica fume, natural zeolite, and H2O2.
- The addition of a stabilizer produces smaller and more homogeneous pore sizes.
- The technical properties highly depend on porosity and pore size distribution.
- The samples produced showed good compressive strength and low thermal conductivity.
- These foams could be a sustainable substitute for thermal insulation.
Abstract
1. Introduction
2. Materials and Method
2.1. Materials
2.2. Development of the Geopolymer Foams
3. Results and Discussion
3.1. Phase Identification of the Cured Samples
3.2. FT-IR
3.3. Characterization of the Produced Geopolymer Foams
3.3.1. The Influence of Zeolite (Clinoptilolite) and Silica Fume in the Development of Geopolymer Foams
3.3.2. Effects of the Concentration of Hydrogen Peroxide
3.3.3. Influence of the Addition of the Surfactant
3.4. Technical Properties of the Produced Geopolymer Foams
3.4.1. Density
3.4.2. Porosity
3.4.3. Thermal Conductivity
3.4.4. Compressive Strength
3.4.5. The Connection Between Density, Thermal Conductivity, and Compressive Strength
3.5. Fundamental Technical Features of the Created Geopolymer Foams Compared to Those Documented in the Literature
4. Conclusions
- XRD analysis confirms the occurrence of dissolution and subsequent geopolymerization reactions, resulting in the formation of an amorphous structure. The observed peak shift towards lower wavelengths further validates the geopolymerization process.
- Compressive strength measurements of the samples falling within the range of 1.60 to 3.39 MPa, alongside thermal conductivity values spanning from 0.19 to 0.06 W/m·K, underscore the improved performance of the geopolymer foams synthesized in this investigation.
- The introduction of foaming agents and stabilizers significantly impacts porosity and pore size, thereby influencing the technological characteristics of the produced foams.
- The development of high strength is found to be highly affected by the size and uniformity of pores, emphasizing their crucial role in the overall strength characteristics.
- Zeolite’s high porosity and reactive sites improve the polymerization and structural integrity, while a high Si content strengthens the foam through Si–O–Si bonds. The result is a geopolymer foam with superior mechanical and thermal performance.
- The eco-friendly synthesis of these materials presents a sustainable approach to waste reduction while offering the potential for producing thermal insulation materials that contribute to energy conservation in building applications.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Voumik, L.C.; Sultana, T. Impact of urbanization, industrialization, electrification and renewable energy on the environment in BRICS: Fresh evidence from novel CS-ARDL model. Heliyon 2022, 8, e11457. [Google Scholar] [CrossRef] [PubMed]
- Schiller, G.; Roscher, J. Impact of urbanization on construction material consumption: A global analysis. J. Ind. Ecol. 2023, 27, 1021–1036. [Google Scholar] [CrossRef]
- Chen, L.; Hu, Y.; Wang, R.; Li, X.; Chen, Z.; Hua, J.; Osman, A.I.; Farghali, M.; Huang, L.; Li, J.; et al. Green building practices to integrate renewable energy in the construction sector: A review. Environ. Chem. Lett. 2024, 22, 751–784. [Google Scholar] [CrossRef]
- Ibrahim, J.E.F.; Gömze, L.A.; Koncz-Horvath, D.; Filep, Á.; Kocserha, I. Preparation, characterization, and physicomechanical properties of glass-ceramic foams based on alkali-activation and sintering of zeolite-poor rock and eggshell. Ceram. Int. 2022, 48, 25905–25917. [Google Scholar] [CrossRef]
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Bakker, D.C.E.; Hauck, J.; Landschützer, P.; Le Quéré, C.; Luijkx, I.T.; Peters, G.P.; et al. Global Carbon Budget 2023. Earth Syst. Sci. Data 2023, 15, 5301–5369. [Google Scholar] [CrossRef]
- Osman, A.I.; Farghali, M.; Dong, Y.; Kong, J.; Yousry, M.; Rashwan, A.K.; Chen, Z.; Al-Fatesh, A.; Rooney, D.W.; Yap, P.-S. Reducing the carbon footprint of buildings using biochar-based bricks and insulating materials: A review. Environ. Chem. Lett. 2024, 22, 71–104. [Google Scholar] [CrossRef]
- Ibrahim, J.E.F.; Tihtih, M.; Gömze, L.A. Environmentally-friendly ceramic bricks made from zeolite-poor rock and sawdust. Constr. Build. Mater. 2021, 297, 123715. [Google Scholar] [CrossRef]
- Ali, K.A.; Ahmad, M.I.; Yusup, Y. Issues, impacts, and mitigations of carbon dioxide emissions in the building sector. Sustainability 2020, 12, 7427. [Google Scholar] [CrossRef]
- Fei, W.; Opoku, A.; Agyekum, K.; Oppon, J.A.; Ahmed, V.; Chen, C.; Lok, K.L. The critical role of the construction industry in achieving the sustainable development goals (SDGs): Delivering projects for the common good. Sustainability 2021, 13, 9112. [Google Scholar] [CrossRef]
- Schiavoni, S.; D׳Alessandro, F.; Bianchi, F.; Asdrubali, F. Insulation materials for the building sector: A review and comparative analysis. Renew. Sustain. Energy Rev. 2016, 62, 988–1011. [Google Scholar] [CrossRef]
- Wang, X.; Cui, H.; Zhou, H.; Song, T.; Zhang, H.; Liu, H.; Liu, Y. Mechanical properties and energy absorption performance of foamed geopolymer under quasi-static and dynamic compression. Constr. Build. Mater. 2023, 404, 133296. [Google Scholar] [CrossRef]
- Stochero, N.P.; Chami, J.O.R.d.S.; Souza, M.T.; de Moraes, E.G.; de Oliveira, A.P.N. Green Glass Foams from Wastes Designed for Thermal Insulation. Waste Biomass Valorization 2021, 12, 1609–1620. [Google Scholar] [CrossRef]
- Jin, F.-L.; Zhao, M.; Park, M.; Park, S.-J. Recent trends of foaming in polymer processing: A review. Polymers 2019, 11, 953. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, J.E.F.; Tihtih, M.; Kurovics, E.; Gömze, L.A.; Kocserha, I. Innovative glass-ceramic foams prepared by alkali activation and reactive sintering of clay containing zeolite (zeolite-poor rock) and sawdust for thermal insulation. J. Build. Eng. 2022, 59, 105160. [Google Scholar] [CrossRef]
- Anggarini, U.; Pratapa, S.; Purnomo, V.; Sukmana, N.C. A comparative study of the utilization of synthetic foaming agent and aluminum powder as pore-forming agents in lightweight geopolymer synthesis. Open Chem. 2019, 17, 629–638. [Google Scholar] [CrossRef]
- Huang, Y.; Gong, L.; Shi, L.; Cao, W.; Pan, Y.; Cheng, X. Experimental investigation on the influencing factors of preparing porous fly ash-based geopolymer for insulation material. Energy Build. 2018, 168, 9–18. [Google Scholar] [CrossRef]
- Bai, C.; Ni, T.; Wang, Q.; Li, H.; Colombo, P. Porosity, mechanical and insulating properties of geopolymer foams using vegetable oil as the stabilizing agent. J. Eur. Ceram. Soc. 2018, 38, 799–805. [Google Scholar] [CrossRef]
- Hassan, H.S.; Abdel-Gawwad, H.; García, S.V.; Israde-Alcántara, I. Fabrication and characterization of thermally-insulating coconut ash-based geopolymer foam. Waste Manag. 2018, 80, 235–240. [Google Scholar] [CrossRef]
- Maged, A.; El-Fattah, H.A.; Kamel, R.M.; Kharbish, S.; Elgarahy, A.M. A comprehensive review on sustainable clay-based geopolymers for wastewater treatment: Circular economy and future outlook. Environ. Monit. Assess. 2023, 195, 693. [Google Scholar] [CrossRef]
- Sawan, S.A.; Zawrah, M.; Khattab, R.; Abdel-Shafi, A.A. In-situ formation of geopolymer foams through addition of silica fume: Preparation and sinterability. Mater. Chem. Phys. 2020, 239, 121998. [Google Scholar] [CrossRef]
- Matalkah, F.; Ababneh, A.; Aqel, R. Synthesis of calcined kaolin-based geopolymer foam: Assessment of mechanical properties, thermal insulation, and elevated temperature stability. Ceram. Int. 2023, 49, 9967–9977. [Google Scholar] [CrossRef]
- Gu, G.; Xu, F.; Ruan, S.; Huang, X.; Zhu, J.; Peng, C. Influence of precast foam on the pore structure and properties of fly ash-based geopolymer foams. Constr. Build. Mater. 2020, 256, 119410. [Google Scholar] [CrossRef]
- Xu, F.; Gu, G.; Zhang, W.; Wang, H.; Huang, X.; Zhu, J. Pore structure analysis and properties evaluations of fly ash-based geopolymer foams by chemical foaming method. Ceram. Int. 2018, 44, 19989–19997. [Google Scholar] [CrossRef]
- Zheng, J.; Li, X.; Bai, C.; Zheng, K.; Wang, X.; Sun, G.; Zheng, T.; Zhang, X.; Colombo, P. Rapid fabrication of porous metakaolin-based geopolymer via microwave foaming. Appl. Clay Sci. 2024, 249, 107238. [Google Scholar] [CrossRef]
- Eshghabadi, F.; Javanbakht, V. Preparation of porous metakaolin-based geopolymer foam as an efficient adsorbent for dye removal from aqueous solution. J. Mol. Struct. 2024, 1295, 136639. [Google Scholar] [CrossRef]
- Candamano, S.; Coppola, G.; Mazza, A.; Caranqui, J.C.; Bhattacharyya, S.; Chakraborty, S.; Alexis, F.; Algieri, C. Batch and fixed bed adsorption of methylene blue onto foamed metakaolin-based geopolymer: A preliminary investigation. Chem. Eng. Res. Des. 2023, 197, 761–773. [Google Scholar] [CrossRef]
- Su, L.; Fu, G.; Liang, B.; Sun, Q.; Zhang, X. Mechanical properties and microstructure evaluation of fly ash—Slag geopolymer foaming materials. Ceram. Int. 2022, 48, 18224–18237. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Li, X.; Ma, M.; Zhang, Z.; Ji, X. Slurry rheological behaviors and effects on the pore evolution of fly ash/metakaolin-based geopolymer foams in chemical foaming system with high foam content. Constr. Build. Mater. 2023, 379, 131259. [Google Scholar] [CrossRef]
- Shao, Z.; Ma, B.; Wang, J.; Cai, Q.; Jiang, J.; Qian, B.; Cheng, G.; Hu, Y.; Ma, F.; Sun, J.; et al. The influence of ZSM-5 waste on the properties of fly ash-based foamed geopolymer. J. Clean. Prod. 2022, 355, 131800. [Google Scholar] [CrossRef]
- Li, X.; Bai, C.; Qiao, Y.; Wang, X.; Yang, K.; Colombo, P. Preparation, properties and applications of fly ash-based porous geopolymers: A review. J. Clean. Prod. 2022, 359, 132043. [Google Scholar] [CrossRef]
- Ramos, F.J.H.T.V.; Marques, M.d.F.V.; Aguiar, V.d.O.; Jorge, F.E. Performance of geopolymer foams of blast furnace slag covered with poly(lactic acid) for wastewater treatment. Ceram. Int. 2022, 48, 732–743. [Google Scholar] [CrossRef]
- Ramos, F.J.T.V.; Vieira, M.d.F.M.; Tienne, L.G.P.; Aguiar, V.d.O. Evaluation and characterization of geopolymer foams synthesized from blast furnace with sodium metasilicate. J. Mater. Res. Technol. 2020, 9, 12019–12029. [Google Scholar] [CrossRef]
- Pasupathy, K.; Ramakrishnan, S.; Sanjayan, J. Formulating eco-friendly geopolymer foam concrete by alkali-activation of ground brick waste. J. Clean. Prod. 2021, 325, 129180. [Google Scholar] [CrossRef]
- Ozcelikci, E.; Ozdogru, E.; Tugluca, M.S.; Ilcan, H.; Sahmaran, M. Comprehensive investigation of performance of construction and demolition waste based wood fiber reinforced geopolymer composites. J. Build. Eng. 2024, 84, 108682. [Google Scholar] [CrossRef]
- Singh, R.J.; Raut, A.; Murmu, A.L.; Jameel, M. Influence of Glass Powder Incorporated Foamed Geopolymer Blocks on Thermal and Energy Analysis of Building Envelope. J. Build. Eng. 2021, 43, 102520. [Google Scholar] [CrossRef]
- Polat, D.; Güden, M. Processing and characterization of geopolymer and sintered geopolymer foams of waste glass powders. Constr. Build. Mater. 2021, 300, 124259. [Google Scholar] [CrossRef]
- Bian, Z.; Huang, Y.; Lu, J.-X.; Ou, G.; Yang, S.; Poon, C.S. Development of self-foaming cold-bonded lightweight aggregates from waste glass powder and incineration bottom ash for lightweight concrete. J. Clean. Prod. 2023, 428, 139424. [Google Scholar] [CrossRef]
- Shakouri, S.; Bayer, Ö.; Erdoğan, S.T. Development of silica fume-based geopolymer foams. Constr. Build. Mater. 2020, 260, 120442. [Google Scholar] [CrossRef]
- Luna-Galiano, Y.; Leiva, C.; Arenas, C.; Fernández-Pereira, C. Fly ash based geopolymeric foams using silica fume as pore generation agent. Physical, mechanical and acoustic properties. J. Non-Cryst. Solids 2018, 500, 196–204. [Google Scholar] [CrossRef]
- Papa, E.; Medri, V.; Kpogbemabou, D.; Morinière, V.; Laumonier, J.; Vaccari, A.; Rossignol, S. Porosity and insulating properties of silica-fume based foams. Energy Build. 2016, 131, 223–232. [Google Scholar] [CrossRef]
- Ricciotti, L.; Occhicone, A.; Petrillo, A.; Ferone, C.; Cioffi, R.; Roviello, G. Geopolymer-based hybrid foams: Lightweight materials from a sustainable production process. J. Clean. Prod. 2020, 250, 119588. [Google Scholar] [CrossRef]
- Nadia, N.F.J.; Gharzouni, A.; Nait-Ali, B.; Ouamara, L.; Ndassa, I.M.; Bebga, G.; Elie, K.; Rossignol, S. New laterite-based geopolymer foam resistance under drastic conditions: A comparative study with a metakaolin model. Ceram. Int. 2023, 49, 13050–13057. [Google Scholar] [CrossRef]
- Kozub, B.; Bazan, P.; Gailitis, R.; Korniejenko, K.; Mierzwiński, D. Foamed geopolymer composites with the addition of glass wool waste. Materials 2021, 14, 4978. [Google Scholar] [CrossRef]
- Jouin, J.; Fekoua, J.N.; Ouamara, L.; Piolet, E.; Gharzouni, A.; Rossignol, S. Insulating phosphoric acid-based geopolymer foams with water and high temperature resistance. Constr. Build. Mater. 2023, 398, 132406. [Google Scholar] [CrossRef]
- Kovářík, T.; Hájek, J.; Hervert, T.; Deshmukh, K.; Pola, M.; Jansa, Z.; Beneš, J.; Svoboda, M. Silica-based geopolymer spherical beads: Influence of viscosity on porosity architecture. Cem. Concr. Compos. 2021, 124, 104261. [Google Scholar] [CrossRef]
- Ibrahim, J.F.M.; Kurovics, E.; Tihtih, M.; Somdee, P.; Gerezgiher, A.G.; Nuilek, K.; E Khine, E.; Sassi, M. Preparation and Investigation of Alumina-Zeolite Composite Materials. J. Phys. Conf. Ser. 2020, 1527, 012029. [Google Scholar] [CrossRef]
- Ibrahim, J.E.F.; Kotova, O.B.; Sun, S.; Kurovics, E.; Tihtih, M.; Gömze, L.A. Preparation of innovative eco-efficient composite bricks based on zeolite-poor rock and Hen’s eggshell. J. Build. Eng. 2022, 45, 103491. [Google Scholar] [CrossRef]
- Villa, C.; Pecina, E.; Torres, R.; Gómez, L. Geopolymer synthesis using alkaline activation of natural zeolite. Constr. Build. Mater. 2010, 24, 2084–2090. [Google Scholar] [CrossRef]
- Nikolov, A. Geopolymers Based on Natural Zeolite Clinoptilolite with Addition of Metakaolin. Available online: https://hal.science/hal-04176504 (accessed on 3 August 2023).
- Nikolov, A.; Rostovsky, I.; Nugteren, H. Geopolymer materials based on natural zeolite. Case Stud. Constr. Mater. 2017, 6, 198–205. [Google Scholar] [CrossRef]
- Bazan, P.; Figiela, B.; Kozub, B.; Łach, M.; Mróz, K.; Melnychuk, M.; Korniejenko, K. Geopolymer Foam with Low Thermal Conductivity Based on Industrial Waste. Materials 2024, 17, 6143. [Google Scholar] [CrossRef]
- Boros, A.; Korim, T. Development of Geopolymer Foams for Multifunctional Applications. Crystals 2022, 12, 386. [Google Scholar] [CrossRef]
- Raut, A.; Murmu, A.L. Building a Sustainable Future with Geopolymer Thermal Insulation: Availability and Opportunities. In Development of Sustainable Thermal Insulators from Waste Materials: A Circular Economy Approach; Verma, S., Khan, M.A., Srivastava, A.K., Eds.; Springer Nature: Singapore, 2024; pp. 53–72. [Google Scholar] [CrossRef]
- Febriana, E.; Mayangsari, W.; Yudanto, S.D.; Sulistiyono, E.; Handayani, M.; Firdiyono, F.; Maksum, A.; Prasetyo, A.B.; Soedarsono, J. Novel method for minimizing reactant in the synthesis of sodium silicate solution from mixed-phase quartz-amorphous SIO2. Case Stud. Chem. Environ. Eng. 2024, 9, 100656. [Google Scholar] [CrossRef]
- Siddika, A.; Hajimohammadi, A.; Sahajwalla, V. Alkali-activated foam: Understanding the relationship between rheology, activator-precursor interaction, and pore characteristics. Constr. Build. Mater. 2023, 409, 134111. [Google Scholar] [CrossRef]
- Jurado-Contreras, S.; Bonet-Martínez, E.; Sánchez-Soto, P.J.; Gencel, O.; Eliche-Quesada, D. Synthesis and characterization of alkali-activated materials containing biomass fly ash and metakaolin: Effect of the soluble salt content of the residue. Arch. Civ. Mech. Eng. 2022, 22, 121. [Google Scholar] [CrossRef]
- Mukhametkaliyev, T.; Ali, H.; Kutugin, V.; Savinova, O.; Vereschagin, V. Influence of Mixing Order on the Synthesis of Geopolymer Concrete. Polymers 2022, 14, 4777. [Google Scholar] [CrossRef]
- Fansuri, H.; Supriadi, W.; Ediati, R.; Utomo, W.P.; Hidayati, R.E.; Iqbal, R.M.; Sulistiono, D.O.; Abdullah, M.M.A.B. Subaer Immobilization and leaching behavior of Cd2+ and Pb2+ heavy metal ions in Indonesian fly ash-based geopolymers. Environ. Adv. 2024, 15, 100510. [Google Scholar] [CrossRef]
- Poggetto, G.D.; D’angelo, A.; Blanco, I.; Piccolella, S.; Leonelli, C.; Catauro, M. FT-IR study, thermal analysis, and evaluation of the antibacterial activity of a MK-Geopolymer mortar using glass waste as fine aggregate. Polymers 2021, 13, 2970. [Google Scholar] [CrossRef]
- Yahya, Z.; Abdullah, M.M.A.; Hussin, K.; Ismail, K.N.; Abd Razak, R.; Sandu, A.V. Effect of solids-to-liquids, Na2SiO3-to-NaOH and curing temperature on the palm oil boiler ash (Si + Ca) geopolymerisation system. Materials 2015, 8, 2227–2242. [Google Scholar] [CrossRef]
- Eliche-Quesada, D.; Ruiz-Molina, S.; Pérez-Villarejo, L.; Castro, E.; Sánchez-Soto, P. Dust filter of secondary aluminium industry as raw material of geopolymer foams. J. Build. Eng. 2020, 32, 101656. [Google Scholar] [CrossRef]
- Hu, Y.; Shao, Z.; Wang, J.; Zang, J.; Tang, L.; Ma, F.; Qian, B.; Ma, B.; Wang, L. Investigation into the influence of calcium compounds on the properties of micropore-foamed geopolymer. J. Build. Eng. 2022, 45, 103521. [Google Scholar] [CrossRef]
- Toniolo, N.; Rincon, A.; Roether, J.; Ercole, P.; Bernardo, E.; Boccaccini, A.; Toniolo, N.; Rincon, A.; Roether, J.; Ercole, P.; et al. Extensive reuse of soda-lime waste glass in fly ash-based geopolymers. Constr. Build. Mater. 2018, 188, 1077–1084. [Google Scholar] [CrossRef]
- Adeleke, B.O.; Kinuthia, J.M.; Oti, J.; Ebailila, M. Physico-Mechanical Evaluation of Geopolymer Concrete Activated by Sodium Hydroxide and Silica Fume-Synthesised Sodium Silicate Solution. Materials 2023, 16, 2400. [Google Scholar] [CrossRef]
- Jwaida, Z.; Dulaimi, A.; Mashaan, N.; Mydin, A.O. Geopolymers: The Green Alternative to Traditional Materials for Engineering Applications. Infrastructures 2023, 8, 98. [Google Scholar] [CrossRef]
- Duxson, P.; Fernández-Jiménez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; van Deventer, J.S.J. Geopolymer technology: The current state of the art. J. Mater. Sci. 2007, 42, 2917–2933. [Google Scholar] [CrossRef]
- Barbosa, V.F.; MacKenzie, K.J.; Thaumaturgo, C. Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: Sodium polysialate polymers. Int. J. Inorg. Mater. 2000, 2, 309–317. [Google Scholar] [CrossRef]
- Wattanasiriwech, D.; Yomthong, K.; Wattanasiriwech, S. Characterisation and properties of class C-fly ash based geopolymer foams: Effects of foaming agent content, aggregates, and surfactant. Constr. Build. Mater. 2021, 306, 124847. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Z.; Zhang, Y.; Li, D. Preparation and characterization of ultra-lightweight foamed geopolymer (UFG) based on fly ash-metakaolin blends. Constr. Build. Mater. 2018, 168, 771–779. [Google Scholar] [CrossRef]
- Alves, C.; Pelisser, F.; Labrincha, J.; Novais, R. Effect of Hydrogen Peroxide on the Thermal and Mechanical Properties of Lightweight Geopolymer Mortar Panels. Minerals 2023, 13, 542. [Google Scholar] [CrossRef]
- Aziz, M.A.Z.; Norzeity, A.; Johari, I.; Kasim, S.R. Effect of Adding Hydrogen Peroxide (H2O2) and Sodium Dodecyl Sulphate (SDS) to the Properties of Fly Ash (FA)-Based Geopolymer Mortar. Key Eng. Mater. 2022, 908, 658–663. [Google Scholar] [CrossRef]
- Qiao, Y.; Li, X.; Bai, C.; Li, H.; Yan, J.; Wang, Y.; Wang, X.; Zhang, X.; Zheng, T.; Colombo, P. Effects of surfactants/stabilizing agents on the microstructure and properties of porous geopolymers by direct foaming. J. Asian Ceram. Soc. 2021, 9, 412–423. [Google Scholar] [CrossRef]
- Yu, Q.; Li, X.; Wang, Z.; Xue, J. Characterization and Performance Evaluation of Metakaolin-Based Geopolymer Foams Obtained by Adding Palm Olein as the Foam Stabilizer. Materials 2022, 15, 3570. [Google Scholar] [CrossRef]
- Palmero, P.; Formia, A.; Antonaci, P.; Brini, S.; Tulliani, J.-M. Geopolymer technology for application-oriented dense and lightened materials. Elaboration and characterization. Ceram. Int. 2015, 41, 12967–12979. [Google Scholar] [CrossRef]
- Feng, J.; Zhang, R.; Gong, L.; Li, Y.; Cao, W.; Cheng, X. Development of porous fly ash-based geopolymer with low thermal conductivity. Mater. Des. 2015, 65, 529–533. [Google Scholar] [CrossRef]
- Petlitckaia, S.; Poulesquen, A. Design of lightweight metakaolin based geopolymer foamed with hydrogen peroxide. Ceram. Int. 2019, 45, 1322–1330. [Google Scholar] [CrossRef]
- Novais, R.M.; Ascensão, G.; Buruberri, L.; Senff, L.; Labrincha, J. Influence of blowing agent on the fresh- and hardened-state properties of lightweight geopolymers. Mater. Des. 2016, 108, 551–559. [Google Scholar] [CrossRef]
- Yan, S.; Ren, X.; Wang, W.; He, C.; Xing, P. Preparation of eco-friendly porous ceramic with low thermal conductivity by high-temperature treatment of foamed solid waste based geopolymer with cenospheres. Constr. Build. Mater. 2023, 398, 131190. [Google Scholar] [CrossRef]
- Kamseu, E.; Ngouloure, Z.N.; Ali, B.N.; Zekeng, S.; Melo, U.; Rossignol, S.; Leonelli, C. Cumulative pore volume, pore size distribution and phases percolation in porous inorganic polymer composites: Relation microstructure and effective thermal conductivity. Energy Build. 2015, 88, 45–56. [Google Scholar] [CrossRef]
- Hajimohammadi, A.; Ngo, T.; Mendis, P.; Sanjayan, J. Regulating the chemical foaming reaction to control the porosity of geopolymer foams. Mater. Des. 2017, 120, 255–265. [Google Scholar] [CrossRef]
- Shao, N.; Dong, C.; Wei, X.; Su, Y.; Dong, Z.; Zhang, Z. Quantitative characterization and control mechanism of pore structure in geopolymer foams with addition of various surfactants. Cem. Concr. Compos. 2024, 149, 105522. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Li, X.; Tian, D.; Ma, M.; Wang, T. Optimized pore structure and high permeability of metakaolin/fly-ash-based geopolymer foams from Al– and H2O2–sodium oleate foaming systems. Ceram. Int. 2022, 48, 18348–18360. [Google Scholar] [CrossRef]
Mineral Phases | Raw Materials (wt %) | |
---|---|---|
Natural Zeolite | Silica Fume | |
Clinoptilolite | 27.75 | - |
Cristobalite | 27.15 | 5.60 |
Illite | 18.03 | - |
Montmorillonite | 17.45 | - |
Quartz | 1.54 | - |
Calcite | 2.08 | - |
SiC | - | 3.34 |
Amorphous | 5 | 91 |
Oxides Content | Raw Materials (wt %) | |
---|---|---|
Natural Zeolite | Silica Fume | |
SiO2 | 70.66 | 97.23 |
Al2O3 | 12.95 | 0.42 |
MgO | 0.87 | 0.12 |
CaO | 1.38 | 0.51 |
Na2O | 0.55 | 0.40 |
K2O | 2.46 | 0.23 |
Fe2O3 | 1.66 | 0.15 |
MnO | 0.01 | - |
TiO2 | 0.08 | - |
P2O5 | 0.02 | - |
LOI | 8.82 | - |
Samples Code | Mixtures Composition | Activator Concentration | Foaming Agent | Surfactant | Water/ Solid Ratio | |
---|---|---|---|---|---|---|
Zeolite Tuff (wt%) | Silica Fume (wt%) | NaOH (M) | H2O2 (wt% of the Mixture) | Calcium Stearate (wt%) | ||
H0.25S0 | 50 | 50 | 15 | 0.25 | 0 | 0.42 |
H5S0 | 50 | 50 | 15 | 0.5 | 0 | 0.42 |
H0.75S0 | 50 | 50 | 15 | 0.75 | 0 | 0.42 |
H1S0 | 50 | 50 | 15 | 1 | 0 | 0.42 |
H1.25S0 | 50 | 50 | 15 | 1.25 | 0 | 0.42 |
H1.25S0 | 50 | 50 | 15 | 0.25 | 0 | 0.42 |
H0.25S0.15 | 50 | 50 | 15 | 0.25 | 0.15 | 0.42 |
H5S0.15 | 50 | 50 | 15 | 0.5 | 0.15 | 0.42 |
H0.75S0.15 | 50 | 50 | 15 | 0.75 | 0.15 | 0.42 |
H1S0.15 | 50 | 50 | 15 | 1 | 0.15 | 0.42 |
H1.25S0.15 | 50 | 50 | 15 | 1.25 | 0.15 | 0.42 |
H0.25S0.3 | 50 | 50 | 15 | 0.25 | 0.3 | 0.42 |
H0.5S0.3 | 50 | 50 | 15 | 0.5 | 0.3 | 0.42 |
H0.75S0.3 | 50 | 50 | 15 | 0.75 | 0.3 | 0.42 |
H1S0.3 | 50 | 50 | 15 | 1 | 0.3 | 0.42 |
H1.25S0.3 | 50 | 50 | 15 | 1.25 | 0.3 | 0.42 |
Raw Material | Ref | Foaming Agent | Curing Temperature (°C) | Technical Properties | |||
---|---|---|---|---|---|---|---|
Density (g/cm3) | Porosity (%) | Thermal Conductivity (W/m·K) | Compressive Strength (MPa) | ||||
Silica fume + natural zeolite | This work | H2O2 | 60 | 0.53–0.76 | 66–82.6 | 0.19–0.06 | 1.6–3.39 |
Metakaolin | [74] | H2O2 | 65 | 0.3–0.6 | 0.15–0.17 | 1.8–5.2 | |
Fly ash | [75] | H2O2 | 55, 85 | 0.24–0.35 | 74–81 | 0.07–0.09 | 0.4–1.4 |
Metakaolin | [76] | H2O2 | 60 | 0.23–1.1 | - | - | 0.3–5.9 |
Metakaolin + Fly ash | [77] | H2O2 | 40 | 0.44–0.84 | 60–81 | 0.08–0.17 | 0.3–6 |
Fy ash, slag | [78] | H2O2 | Room temperature | 0.38–0.98 | 27.3–81.1 | 0.1–0.37 | 1–15.5 |
Metakaolin | [79] | Al | 80 | 0.36–0.59 | 75–80 | 0.12–0.17 | - |
Waste glass | [36] | Al | 60 | 0.27–0.55 | 0.07–0.18 | 0.18–1.82 | |
Fly ash | [80] | Al | 60 | 0.65–0.88 | - | - | 0.42–1.59 |
Metakaolin | [21] | H2O2 | 40, 60, 80 | 0.46–1.25 | 45.2–87.4 | 0.13–0.33 | 2.1–11 |
Metakaolin+ blast furnace slag | [45] | Silica fume | 150 | 0.9–1.05 | 61–75 | 0.3–2 | - |
Fly ash + blast furnace slag | [81] | H2O2 | 60 | 0.34–4.0 | 65–71 | 0.3–1.1 | 0.10–0.12 |
Metakaolin + Fly ash | [82] | H2O2 | 40 | 0.4–0.47 | 82.2–85.2 | 1–2.2 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Şahin, E.I.; Ibrahim, J.-E.F.M. Eco-Friendly Synthesis of Geopolymer Foams from Natural Zeolite Tuffs and Silica Fume: Effects of H2O2 and Calcium Stearate on Foam Properties. Buildings 2025, 15, 970. https://doi.org/10.3390/buildings15060970
Şahin EI, Ibrahim J-EFM. Eco-Friendly Synthesis of Geopolymer Foams from Natural Zeolite Tuffs and Silica Fume: Effects of H2O2 and Calcium Stearate on Foam Properties. Buildings. 2025; 15(6):970. https://doi.org/10.3390/buildings15060970
Chicago/Turabian StyleŞahin, Ethem Ilhan, and Jamal-Eldin F. M. Ibrahim. 2025. "Eco-Friendly Synthesis of Geopolymer Foams from Natural Zeolite Tuffs and Silica Fume: Effects of H2O2 and Calcium Stearate on Foam Properties" Buildings 15, no. 6: 970. https://doi.org/10.3390/buildings15060970
APA StyleŞahin, E. I., & Ibrahim, J.-E. F. M. (2025). Eco-Friendly Synthesis of Geopolymer Foams from Natural Zeolite Tuffs and Silica Fume: Effects of H2O2 and Calcium Stearate on Foam Properties. Buildings, 15(6), 970. https://doi.org/10.3390/buildings15060970