Study on Eccentric Compression Behavior of Precast Stratified Concrete Composite Column with Inserted Steel Tube
Abstract
:1. Introduction
2. Experimental Programs
2.1. Specimens and Material
2.2. Test Setup and Measuring Instrumentation
3. Test Results and Discussion
3.1. Crack Propagation and Failure State
- PSCCST-80-20 specimen:
- 2.
- PSCCST-80-130 specimen:
- 3.
- PSCCST-80-200 specimen:
- 4.
- PSCCST-100-40 specimen:
- 5.
- PSCCST-100-150 specimen:
- 6.
- PSCCST-100-220 specimen:
3.2. Ultimate Bearing Capacity of Specimens
3.3. Load-Strain Relationships
3.4. Load-Deflection Relationships
3.5. Summary of Failure Type
3.5.1. Failure Type 1
3.5.2. Failure Type 2
3.5.3. Failure Type 3
3.6. Failure Mode Deduction
3.6.1. Compressive-Type Failure Mode
- Further extended analysis based on failure type 1
- 2.
- Extended analysis of failure type 2
- 3.
- Further extended analysis based on failure type 1 and 2
- 4.
- Compressive-type failure mode deduction
3.6.2. Total-Yield-Type Failure Mode
4. Calculation Methods of Eccentric Compression Bearing Capacity
4.1. Basic Assumptions
4.2. Establishment of Equations
4.2.1. Calculation Equations for Compressive-Type Failure Mode
- Case 1 (the neutral axis appears in the lower precast part, h2 + t1 ≤ xc < h1)
- (a)
- Sub-case 1 (h0 ≤ xc < h1):
- (b)
- Sub-case 2 (h2 + t1 ≤ xc < h0):
- 2.
- Case 2 (the neutral axis appears in the lower post-cast part, h3 + t1 + t2 ≤ xc < h2 + t1)
- 3.
- Case 3 (the neutral axis appears in the middle steel tube web, xt ≤ xc < h3 + t1 + t2)
4.2.2. Calculation Equations for Total-Yield-Type Failure Mode
4.3. Verification of Calculation Methods
4.3.1. PSCCST-100-X Specimens
4.3.2. PSCCST-80-X Specimens
4.4. Error Analysis Between Nc and Nt
4.5. Sensitivity Analysis of Calculation Methods
4.6. Comparison with Another Method
5. Further Expanded Analysis
5.1. Tensile-Type Failure Mode
5.2. Calculation Equations for Tensile-Type Failure Mode
6. Conclusions
- There are three typical failure modes, including the compressive-type failure mode, total-yield-type failure mode, and tensile-type failure mode, which are primarily dependent on the eccentricity e. As e increased, there was a noticeable decrease in the ultimate eccentric compression capacity of the PSCCST column Nu.
- The PSCCST column has good ductility. With the increase of e, the horizontal lateral deflection corresponding to Nu increased, indicating that the deformation capacity increased.
- A set of calculation formulas for predicting Nu was proposed, which can serve as the design basis for the PSCCST column.
- PSCCST columns can be employed as new vertical load-bearing components in various structural systems, especially in prefabricated concrete structure systems.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chinnasamy, Y.; Joanna, P.S.; Kothanda, K.; Gurupatham, B.G.A.; Roy, K. Behavior of Pultruded Glass-Fiber-Reinforced Polymer Beam-Columns Infilled with Engineered Cementitious Composites under Cyclic Loading. J. Compos. Sci. 2022, 6, 338. [Google Scholar] [CrossRef]
- Samuel, J.; Nair, S.R.; Joanna, P.S.; Gurupatham, B.G.A.; Roy, K.; Lim, J.B.P. Composite Cold-Formed Steel Beams with Diagonal Rebars for Earthquake-Resistant Buildings. Materials 2023, 16, 3002. [Google Scholar] [CrossRef] [PubMed]
- Reena, G.C.; Gurupatham, A.G.B.; Tsavdaridis, D.K. Column Link Behavior in Eccentrically Braced Composite 3-Dimensional Frames. Buildings 2023, 13, 2970. [Google Scholar] [CrossRef]
- Wu, X.M.; Shi, Y.L.; Zheng, L.; Wang, W.D. Performance of rectangular SRCFST stub columns under long-term loading and preload on steel tube. Structures 2024, 61, 106110. [Google Scholar] [CrossRef]
- Ji, S.H.; Wang, W.D.; Shi, Y.L.; Zheng, L. Residual compressive behaviour and CFRP strengthening of SRCFST columns after combined damage of fire and lateral impact. Thin-Walled Struct. 2025, 207, 112756. [Google Scholar] [CrossRef]
- Wang, S.Y.; Wang, Y.L.; Sheng, D.P.; Wang, Y. Study on new prefabricated reinforced concrete structure technology based on fault-tolerant design. Buildings 2022, 12, 814. [Google Scholar] [CrossRef]
- Hwang, J.H.; Lee, D.H.; Oh, J.Y.; Choi, S.H.; Kim, K.S.; Seo, S.Y. Seismic performances of centrifugally-formed hollow-core precast columns with multi-interlocking spirals. Steel Compos. Struct. 2016, 20, 1259–1274. [Google Scholar] [CrossRef]
- Xue, Y.; Yang, Y.; Yu, Y. Cyclic behavior of partially precast steel reinforced concrete short columns: Experiment and theoretical analysis. Eng. Struct. 2019, 199, 109658. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, Y.; Zhang, J.T.; Xue, Y.C.; Liu, R.Y.; Yu, Y.L. Experimental investigation on shear capacity of partially prefabricated steel reinforced concrete columns. Steel Compos. Struct. 2018, 28, 73–82. [Google Scholar] [CrossRef]
- Zhang, B.J.; Xie, Y.T.; Wang, S.Y.; Feng, J.P.; Gao, Y.; Wang, Y. Eccentric bearing capacity of steel reinforced reactive powder concrete columns after high temperature exposure. Case Stud. Constr. Mat. 2023, 19, e02648. [Google Scholar] [CrossRef]
- Morteza, N.; Mohsen, A.; Mahdi, N. Effect of concrete confinement level on load-bearing capacity of steel-reinforced concrete (SRC) columns under eccentric loading: Experiment and FEA model. Structures 2022, 35, 202–213. [Google Scholar] [CrossRef]
- An, Y.; Han, L. Behaviour of concrete-encased CFST columns under combined compression and bending. J. Constr. Steel. Res. 2014, 101, 314–330. [Google Scholar] [CrossRef]
- Lai, B.; Liew, J.Y.R.; Li, S. Finite element analysis of concrete-encased steel composite columns with off-center steel section. In Proceedings of the 12th International Conference on ‘Advances in Steel-Concrete Composite Structures’, Valencia, Spain, 27–29 June 2018. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, Y.; Zhang, W.; Feng, S.Q. Behavior of partially precast steel reinforced concrete columns under eccentric loading. Eng. Struct. 2019, 197, 109429. [Google Scholar] [CrossRef]
- Ren, Q.; Ding, J.; Wang, Q.; Lou, H.Q. Behavior of slender square hollow steel-reinforced concrete columns under eccentric compression. J. Build. Eng. 2021, 43, 103133. [Google Scholar] [CrossRef]
- Wang, R.; Han, L.H.; Lam, D. Behaviour of octagonal steel-reinforced concrete box columns under compressive load. Mag. Concr. Res. 2018, 70, 838–855. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Li, G.Q. Residual strength of L-shaped steel reinforced concrete columns after exposure to high temperatures. KSCE J. Civ. Eng. 2021, 25, 1369–1384. [Google Scholar] [CrossRef]
- ACI 318-19; Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary. American Concrete Institute: Farmington Hills, MI, USA, 2019.
- ASCE/SEI 41-17; Seismic Evaluation and Retrofit of Existing Buildings. Structural Engineering Institute: Reston, VA, USA; American Society of Civil Engineers: Reston, VA, USA, 2017.
- CEB-FIP Model Code 90; Design Code. Comité Euro-International du Béton (CEB): Lausanne, Switzerland; Fédération Internationale de la Précontrainte (FIP): Lausanne, Switzerland; Thomas Telford Services Ltd.: Westminster, UK, 1993.
- JGJ 138-2016; Code for Design of Composite Structures. Ministry of Housing and Urban-Rural Development (MOHURD): Beijing, China; China Architecture Publishing & Media Co., Ltd.: Beijing, China, 2016. (In Chinese)
- GB 50010-2010; Code for Design of Concrete Structures. Ministry of Housing and Urban-Rural Development (MOHURD): Beijing, China; China Architecture Publishing & Media Co., Ltd.: Beijing, China, 2010. (In Chinese)
- GB 1499.2-2024; Steel for the Reinforcement of Concrete—Part 2: Hot Rolled Ribbed Bars. China Standards Press: Beijing, China, 2024. (In Chinese)
- GB/T 8162-2018; Seamless Steel Tubes for Structural Purposes. China Standards Press: Beijing, China, 2018. (In Chinese)
- Wang, F.; Young, B.; Gardner, L. Testing and numerical modelling of circular CFDST normal sections with stainless steel outer tubes in bending. Eng. Struct. 2021, 247, 113170. [Google Scholar] [CrossRef]
- Ahmed, M.; Liang, Q.Q.; Patel, V.I.; Hadi, M.N.S. Behavior of eccentrically loaded double circular steel tubular short columns filled with concrete. Eng. Struct. 2019, 201, 109790. [Google Scholar] [CrossRef]
- Cao, B.; Zhu, L.; Jiang, X.T.; Wang, C.S. An investigation of compression bearing capacity of concrete-filled rectangular stainless steel tubular columns under axial load and eccentric axial load. Sustainability 2022, 14, 8946. [Google Scholar] [CrossRef]
- Chen, Z.P.; Liao, H.; Zhou, J.; Ye, P. Eccentric compression behavior of reinforced recycled aggregate concrete columns after exposure to elevated temperatures: Experimental and numerical study. Structures 2022, 43, 959–976. [Google Scholar] [CrossRef]
- Ma, H.; Chen, Y.C.; Bai, H.Y.; Zhao, Y.L. Eccentric compression performance of composite columns composed of RAC-filled circular steel tube and profile steel. Eng. Struct. 2019, 201, 109778. [Google Scholar] [CrossRef]
- Zhu, X.H. Behavior of Hollow Steel Reinforced Concrete Columns Under Eccentric Compression. Master’s Thesis, Xi’an University of Architecture and Technology, Xi’an, China, 2015. (In Chinese). [Google Scholar]
- T/CCES 30–2022; Standard for Tolerances for Precast Concrete Components. China Architecture Publishing & Media Co., Ltd.: Beijing, China, 2022. (In Chinese)
- GB 50204–2015; Code for Acceptance of Construction Quality of Concrete Structures. Ministry of Housing and Urban-Rural Development (MOHURD): Beijing, China; China Architecture Publishing & Media Co., Ltd.: Beijing, China, 2015. (In Chinese)
Specimen No. | Size of Precast Concrete Part | Size of Post-Cast Concrete Part | Size of Steel Tube | Load Eccentricity e0 (mm) | ||||
---|---|---|---|---|---|---|---|---|
h1 × b1 (mm × mm) | t1 = t′1 (mm) | as (mm) | h2 × b2 (mm × mm) | t2 = t′2 (mm) | h3 × b3 (mm × mm) | t3 (mm) | ||
PSCCST-80-20 | 240 × 240 | 45 | 27 | 150 × 150 | 35 | 80 × 80 | 5 | 20 |
PSSCT-80-130 | 240 × 240 | 45 | 27 | 150 × 150 | 35 | 80 × 80 | 5 | 130 |
PSCCST-80-200 | 240 × 240 | 45 | 27 | 150 × 150 | 35 | 80 × 80 | 5 | 200 |
PSCCST-100-40 | 240 × 240 | 45 | 27 | 150 × 150 | 25 | 100 × 100 | 5 | 40 |
PSCCST-100-150 | 240 × 240 | 45 | 27 | 150 × 150 | 25 | 100 × 100 | 5 | 150 |
PSCCST-100-220 | 240 × 240 | 45 | 27 | 150 × 150 | 25 | 100 × 100 | 5 | 220 |
Concrte Grade | Water | Cement | Fly Ash | Mineral Fines | Sand | Aggregate | Superplasticizer |
---|---|---|---|---|---|---|---|
C30 | 170 | 230 | 80 | 70 | 889 | 925 | 1.8 |
C40 | 170 | 280 | 70 | 60 | 882 | 918 | 1.8 |
Specimen | Eccentricity e0 (mm) | Test Value of Nt (kN) |
---|---|---|
PSCCST-80-20 | 20 mm | 947 |
PSCCST-80-130 | 130 mm | 443 |
PSCCST-80-200 | 200 mm | 258 |
PSCCST-100-40 | 40 mm | 916 |
PSCCST-100-150 | 150 mm | 410 |
PSCCST-100-220 | 220 mm | 256 |
Edge of Concrete Compression Zone | Lower Flange of Steel Tube | Upper Flange of Steel Tube | Web of Steel Tube | Longitudinal Reinforcement Bars | |
---|---|---|---|---|---|
In Tension Zone | In Compression Zone | ||||
Crushed | Just yield under tension | Yield under compression | The webs contain compression and tension zones, with partial webs in the compression zone yield. | Yield | Yield |
Specimen | Eccentricity e0 (mm) | η | Eccentricity e = ηe0 (mm) | Failure Mode | Calculated Value of Nc (kN) | Test Value of Nt (kN) | Nc/Nt |
---|---|---|---|---|---|---|---|
PSCCST-100-40 | 40 | 1.05 | 42 | compression failure (Case 1) | 871 | 916 | 0.95 |
PSCCST-100-150 | 150 | 1.03 | 154 | compression failure (Case 3) | 393 | 410 | 0.96 |
PSCCST-100-220 | 220 | 1.02 | 224 | total yield failure | 242 | 256 | 0.95 |
Specimen No. | Eccentricity e0 (mm) | η | Eccentricity e = ηe0 (mm) | Failure Mode | Calculated Value of Nc (kN) | Test Value of Nt (kN) | Nc/Nt |
---|---|---|---|---|---|---|---|
PSCCST-80-20 | 20 mm | 1.05 | 21 | compression failure (Case 1) | 885 | 947 | 0.93 |
PSCCST-80-130 | 130 mm | 1.03 | 144 | compression failure (Case 3) | 427 | 443 | 0.96 |
PSCCST-80-200 | 200 mm | 1.02 | 204 | total yield failure | 246 | 258 | 0.95 |
Parameter | Deviation Rate/Amount | Parameter Value (mm) | Nc′ (kN) | Nc′/Nt |
---|---|---|---|---|
b2 | −5% | 142.5 | 246.132 | 0.954 |
b2 | +5% | 157.5 | 244.068 | 0.946 |
t1 | −5% | 42.75 | 247.422 | 0.959 |
t1 | +5% | 47.25 | 243.552 | 0.944 |
t2 | −5% | 33.25 | 246.906 | 0.957 |
t2 | +5% | 36.75 | 243.810 | 0.945 |
as | −5 mm | 22 | 245.358 | 0.951 |
as | +5 mm | 32 | 244.842 | 0.949 |
Specimen | PSCCST-80-20 | PSCCST-100-40 | PSCCST-80-130 | PSCCST-100-150 | PSCCST-80-200 | PSCCST-100-220 |
---|---|---|---|---|---|---|
Nc | 885 | 871 | 427 | 393 | 246 | 242 |
Nc2 | 821 | 824 | 405 | 371 | 230 | 222 |
Nc2/Nc | 0.928 | 0.946 | 0.949 | 0.944 | 0.935 | 0.917 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Ma, S.; Wang, S. Study on Eccentric Compression Behavior of Precast Stratified Concrete Composite Column with Inserted Steel Tube. Buildings 2025, 15, 826. https://doi.org/10.3390/buildings15050826
Wang Y, Ma S, Wang S. Study on Eccentric Compression Behavior of Precast Stratified Concrete Composite Column with Inserted Steel Tube. Buildings. 2025; 15(5):826. https://doi.org/10.3390/buildings15050826
Chicago/Turabian StyleWang, Yilin, Shikun Ma, and Shunyao Wang. 2025. "Study on Eccentric Compression Behavior of Precast Stratified Concrete Composite Column with Inserted Steel Tube" Buildings 15, no. 5: 826. https://doi.org/10.3390/buildings15050826
APA StyleWang, Y., Ma, S., & Wang, S. (2025). Study on Eccentric Compression Behavior of Precast Stratified Concrete Composite Column with Inserted Steel Tube. Buildings, 15(5), 826. https://doi.org/10.3390/buildings15050826