Planar Cross-Sectional Fitting of Structural Members to Numerical Simulation Results Obtained from Finite Element Models with Solid or Shell Elements
Abstract
1. Introduction
2. Least Squares Approximation Fitting Method
2.1. Equation for Fitting Planar Cross-Sections
2.2. Explicit Solution of the Cubic Determination Equation
3. Integration over the Deformed Cross-Section Surface
3.1. Integration of Four-Node Finite-Strain Shell Elements
3.2. Integration of Eight-Node Solid Elements
4. Validation and Applications
4.1. Validation
4.2. Symmetrical Mechanical Behavior of a Steel Column
4.3. Shear Deformation of a Tapered I-Section Column
4.4. Moment–Curvature Relationship of a Tapered I-Section Column
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Domaneschi, M.; Cimellaro, G.P.; Scutiero, G. A simplified method to assess generation of seismic debris for masonry structures. Eng. Struct. 2019, 186, 306–320. [Google Scholar] [CrossRef]
- Meguro, K.; Tagel-Din, H. Applied Element Method for Structural Analysis: Theory and Application for Linear Materials. Doboku Gakkai Ronbunshu 2000, 17, 21–35. [Google Scholar] [CrossRef]
- Sediek, O.A.; El-Tawil, S. Impact of Earthquake-Induced Debris on the Seismic Resilience of Road Networks. In Proceedings of the 17th World Conference of Earthquake Engineering, Sendai, Japan, 13–18 September 2020. [Google Scholar]
- Zhang, F.; Wu, C.; Zhao, X.-L.; Li, Z.-X. Numerical derivation of pressure-impulse diagrams for square UHPCFDST columns. Thin-Walled Struct. 2017, 115, 188–195. [Google Scholar] [CrossRef]
- Nawar, M.T.; Arafa, I.T.; Elhosseiny, O.M. Numerical damage evaluation of perforated steel columns subjected to blast loading. Def. Technol. 2022, 18, 735–746. [Google Scholar] [CrossRef]
- El Khouri, I.; Garcia, R.; Mihai, P.; Budescu, M.; Taranu, N.; Toma, I.O.; Guadagnini, M.; Escolano-Margarit, D.; Entuc, I.S.; Oprisan, G.; et al. Behaviour of short columns made with conven-tional or FRP-confined rubberised concrete: An experimental and numerical investigation. Eng. Struct. 2024, 307, 117885. [Google Scholar] [CrossRef]
- Zhou, M.; Song, J.; Yin, S.; Zhu, G.; Lu, W.; Lee, G.C. Cyclic performance of severely earthquake-damaged RC bridge columns repaired using grouted UHPC jacket. Eng. Struct. 2023, 280, 115615. [Google Scholar] [CrossRef]
- Martins, A.D.; Gonçalves, R.; Camotim, D. Numerical simulation and design of stainless steel columns under fire conditions. Eng. Struct. 2021, 229, 111628. [Google Scholar] [CrossRef]
- Lorkowski, P.; Gosowski, B. Experimental and numerical research of the lateral buckling problem for steel two-chord columns with a single lacing plane. Thin-Walled Struct. 2021, 165, 107897. [Google Scholar] [CrossRef]
- Nikolić, Ž.; Živaljić, N.; Smoljanović, H.; Balić, I. Numerical modelling of reinforced-concrete structures under seismic loading based on the finite element method with discrete inter-element cracks. Earthq. Eng. Struct. Dyn. 2017, 46, 159–178. [Google Scholar] [CrossRef]
- Thiagarajan, G.; Kadambi, A.V.; Robert, S.; Johnson, C.F. Experimental and finite element analysis of doubly reinforced concrete slabs subjected to blast loads. Int. J. Impact Eng. 2015, 75, 162–173. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, H.; Wu, J.; Fang, Q. Experimental study on the residual seismic resistance of ultra high performance cementitious composite filled steel tube (UHPCC-FST) after contact explosion. Thin-Walled Struct. 2020, 154, 106852. [Google Scholar] [CrossRef]
- Blomfors, M.; GBerrocal, C.; Lundgren, K.; Zandi, K. Incorporation of pre-existing cracks in finite element analyses of reinforced concrete beams without transverse reinforcement. Eng. Struct. 2021, 229, 111601. [Google Scholar] [CrossRef]
- Seok, S.; Haikal, G.; Ramirez, J.A.; Lowes, L.N.; Lim, J. Finite element simulation of bond-zone behavior of pullout test of reinforcement embedded in concrete using concrete damage-plasticity model 2 (CDPM2). Eng. Struct. 2020, 221, 110984. [Google Scholar] [CrossRef]
- Nassr, A.A.; Razaqpur, A.G.; Tait, M.J.; Campidelli, M.; Foo, S. Strength and stability of steel beam columns under blast load. Int. J. Impact Eng. 2013, 55, 34–48. [Google Scholar] [CrossRef]
- Remennikov, A.M.; Uy, B. Explosive testing and modelling of square tubular steel columns for near-field detonations. J. Constr. Steel Res. 2014, 101, 290–303. [Google Scholar] [CrossRef]
- Grimsmo, E.L.; Clausen, A.H.; Aalberg, A.; Langseth, M. A numerical study of beam-to-column joints subjected to impact. Eng. Struct. 2016, 120, 103–115. [Google Scholar] [CrossRef]
- Wang, F.; Yang, J.; Pan, Z. Progressive collapse behaviour of steel framed substructures with various beam-column connections. Eng. Fail. Anal. 2020, 109, 104399. [Google Scholar] [CrossRef]
- Heidarpour, A.; Bradford, M.A. Beam–column element for non-linear dynamic analysis of steel members subjected to blast loading. Eng. Struct. 2011, 33, 1259–1266. [Google Scholar] [CrossRef]
- Park, K.; Kim, H.; Kim, D. Generalized Finite Element Formulation of Fiber Beam Elements for Distributed Plasticity in Multiple Regions. Comput.-Aided Civ. Infrastruct. Eng. 2019, 34, 146–163. [Google Scholar] [CrossRef]
- Pang, R.; Sun, Y.-Y.; Xu, Z.; Xu, K.; Cui, J.; Dang, L.-J. Shaking table test and numerical simulation of a precast frame-shear wall structure with innovative untopped precast concrete floors. Eng. Struct. 2024, 300, 117162. [Google Scholar] [CrossRef]
- Sha, H.; Chong, X.; Xie, L.; Huo, P.; Yue, T.; Wei, J. Seismic performance of precast concrete frame with energy dissipative cladding panel system: Half-scale test and numerical analysis. Soil Dyn. Earthq. Eng. 2023, 165, 107712. [Google Scholar] [CrossRef]
- Doeva, O.; Masjedi, P.K.; Weaver, P.M. Static deflection of fully coupled composite Timoshenko beams: An exact analytical solution. Eur. J. Mech. A/Solids 2020, 81, 103975. [Google Scholar] [CrossRef]
- Luo, Y. An Efficient 3D Timoshenko Beam Element with Consistent Shape Functions. Adv. Theor. Appl. Mech. 2008, 1, 95–106. [Google Scholar]
- Pokhrel, M.; Bandelt, M.J. Plastic hinge behavior and rotation capacity in reinforced ductile concrete flexural members. Eng. Struct. 2019, 200, 109699. [Google Scholar] [CrossRef]
- Park, G.-K.; Kwak, H.-G.; Filippou, F.C. Blast Analysis of RC Beams Based on Moment-Curvature Relationship Considering Fixed-End Rotation. J. Struct. Eng. 2017, 143, 04017104. [Google Scholar] [CrossRef]
- Liew, A.; Gardner, L.; Block, P. Moment-Curvature-Thrust Relationships for Beam-Columns. Structures 2017, 11, 146–154. [Google Scholar] [CrossRef]
- Li, W.; Ma, H. A nonlinear cross-section deformable thin-walled beam finite element model with high-order interpolation of warping displacement. Thin-Walled Struct. 2020, 152, 106748. [Google Scholar] [CrossRef]
- He, X.; Xiang, Y.; Chen, Z. Improved method for shear lag analysis of thin-walled box girders considering axial equilib-rium and shear deformation. Thin Wall Struct 2020, 151, 106732. [Google Scholar] [CrossRef]
- Qin, F.; Shigang, Y.; Li, C.; Jinchun, L.; Yadong, Z. Analysis on the building damage, personnel casualties and blast energy of the“8·12”explosion in Tianjin port. China Civ. Eng. J. 2017, 50, 12–18. [Google Scholar]
- Cannon, L.; Clubley, S.K. Structural response of simple partially-clad steel frames to long-duration blast loading. Structures 2021, 32, 1260–1270. [Google Scholar] [CrossRef]
- Lin, S.-C.; Yang, B.; Kang, S.-B.; Xu, S.-Q. A new method for progressive collapse analysis of steel frames. J. Constr. Steel Res. 2019, 153, 71–84. [Google Scholar] [CrossRef]
- Kumar, A.; Matsagar, V. Blast Fragility and Sensitivity Analyses of Steel Moment Frames with Plan Irregularities. Int. J. Steel Struct. 2018, 18, 1684–1698. [Google Scholar] [CrossRef]
- Denny, J.W.; Clubley, S.K. Long-duration blast loading & response of steel column sections at different angles of incidence. Eng. Struct. 2019, 178, 331–342. [Google Scholar] [CrossRef]
- Xing, Z.; Shen, Y.; Li, X. Performance analysis of grounded three-element dynamic vibration absorber. Chin. J. Theor. Appl. Mech. 2019, 51, 1466–1475. [Google Scholar]
- Zhan, F.; Li, M.; Yang, J.; Huang, W. The finite deformation theory and finite element formulation of plate and shell. Acta. Mech. Solida Sin. 2001, 22, 343–350. [Google Scholar]
- Hasheminejad, S.M.; Rezaei, S.; Shakeri, R. Flexural transient response of elastically supported elliptical plates under in-plane loads using Mathieu functions. Thin-Walled Struct. 2013, 62, 37–45. [Google Scholar] [CrossRef]
- DoD, U.S. Structures to Resist the Effects of Accidental Explosions UFC 3-340; National Institute of Building Sciences: Washington, DC, USA, 2008. [Google Scholar]
- Tyas, A.; Warren, J.A.; Bennett, T.; Fay, S. Prediction of clearing effects in far-field blast loading of finite targets. Shock. Waves 2011, 21, 111–119. [Google Scholar] [CrossRef]
- Zhang, X.; Ding, Y.; Shi, Y. Numerical simulation of far-field blast loads arising from large TNT equivalent explosives. J. Loss Prev. Process. Ind. 2021, 70, 104432. [Google Scholar] [CrossRef]
k | 0 | 1, 2 |
ξk/ηk | 0 | ±0.7745966692 |
Ak | 8/9 | 5/9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Xia, S.; Li, H.; Shi, F.; Deng, E.-F.; Li, M. Planar Cross-Sectional Fitting of Structural Members to Numerical Simulation Results Obtained from Finite Element Models with Solid or Shell Elements. Buildings 2025, 15, 797. https://doi.org/10.3390/buildings15050797
Zhang X, Xia S, Li H, Shi F, Deng E-F, Li M. Planar Cross-Sectional Fitting of Structural Members to Numerical Simulation Results Obtained from Finite Element Models with Solid or Shell Elements. Buildings. 2025; 15(5):797. https://doi.org/10.3390/buildings15050797
Chicago/Turabian StyleZhang, Xuan, Shifa Xia, Huanchen Li, Fengwei Shi, En-Feng Deng, and Meng Li. 2025. "Planar Cross-Sectional Fitting of Structural Members to Numerical Simulation Results Obtained from Finite Element Models with Solid or Shell Elements" Buildings 15, no. 5: 797. https://doi.org/10.3390/buildings15050797
APA StyleZhang, X., Xia, S., Li, H., Shi, F., Deng, E.-F., & Li, M. (2025). Planar Cross-Sectional Fitting of Structural Members to Numerical Simulation Results Obtained from Finite Element Models with Solid or Shell Elements. Buildings, 15(5), 797. https://doi.org/10.3390/buildings15050797