Experimental and Finite Element Analysis of Bending Performance of Web-Embedded Double Inverted T-Shaped Steel–Concrete Composite Beams
Abstract
1. Introduction
2. Experimental Program
2.1. Test Specimens
2.2. Material Properties
- (1)
- Mechanical properties of steel
- (2)
- Mechanical properties of concrete
2.3. Loading Scheme
2.4. Arrangement of the Strain Gauges
3. Experimental Results and Discussion
3.1. Bending Resistance and Failure Mode
3.2. Load–Deflection Analysis
Load and Mid-Span Deflection
4. Finite Element Analysis
4.1. Material Constitutive Relationship
- (1)
- Constitutive relationship of steel
- is the elastic modulus of steel;
- is the steel strain;
- is the steel stress;
- is the yield strength of steel;
- is the yield strain of steel, ;
- is the slope of hardened section of steel, ;
- is the peak strain of steel.
- (2)
- Constitutive relationship of concrete
- is the parameter value of the descending section of the uniaxial tensile stress–strain curve of concrete, detailed in reference [10];
- is the representative value of the uniaxial tensile strength of concrete, which can be taken as , , or based on the actual structural analysis needs;
- is the peak tensile strain of concrete—see reference [10];
- is the evolution parameter of concrete uniaxial tensile damage.
- is the parameter value for the descending section of the stress–strain curve of concrete under uniaxial compression, detailed in reference [10];
- is the representative value of the uniaxial compressive strength of concrete, which can be taken as , , or based on the actual structural analysis needs;
- is the peak compressive strain of concrete—see reference [10];
- is the damage evolution parameter of concrete under uniaxial compression.
4.2. Element Selection
4.3. Geometry Establishment and Mesh Division
4.4. Interaction
- (1)
- Merge
- (2)
- Tie
- (3)
- Coupling
- (4)
- Contact
- (5)
- Embedded Region
4.5. Boundary Conditions and Loading Control
- (1)
- Boundary
- (2)
- Load
4.6. Finite Element Simulation Verification
- (1)
- Comparison of load and deflection curves
- (2)
- Comparison of failure mechanisms
- ①
- Concrete slab
- ②
- Double inverted T-shaped steel beam
- ③
- Steel truss
5. Conclusions
- Structural Response and Failure Mechanisms:
- 2.
- Effect of Structural Parameters:
- 3.
- Ductility and Material Efficiency:
- 4.
- Reliability of FEA Simulations:
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cui, B.; Wu, H.; Zhao, C.; Liu, J.; Guo, Z. Steel–Concrete Composite Cable-Stayed Bridge—Main Bridge of the Jiangxinzhou Yangtze River Bridge at Nanjing. Struct. Eng. Int. 2023, 33, 107–114. [Google Scholar] [CrossRef]
- Wu, F.; Fan, Z.; He, L.; Liu, S.; Zuo, J.; Yang, F. Comparative study of the negative bending behaviour of corrugated web steel–concrete composite beams using NC, ECC and UHPC. Eng. Struct. 2023, 283, 115925. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, J.; Gao, X. Construction management and technical innovation of the main project of Hong Kong–Zhuhai–Macao Bridge. Front. Eng. Manag. 2018, 5, 128–132. [Google Scholar] [CrossRef]
- Degée, H.; Elghazouli, A.; Somja, H.; Bogdan, T.; Plumier, A. Recent advances in steel-concrete composite and hybrid structures: Concrete elements reinforced by steel profiles. ce/papers 2017, 1, 285–290. [Google Scholar] [CrossRef]
- Nguyen, H.; Mutsuyoshi, H.; Zatar, W. Flexural Behavior of Hybrid Composite Beams. Transp. Res. Rec. J. Transp. Res. Board 2013, 2332, 53–63. [Google Scholar] [CrossRef]
- Yang, Y.; Liang, W.; Yang, Q.; Cheng, Y. Flexural behavior of web embedded steel-concrete composite beam. Eng. Struct. 2021, 240, 112345. [Google Scholar] [CrossRef]
- Yang, Y.; Han, J.; Zhao, Y.; Yu, Y.; Chen, Y.F. Shear behavior of web-embedded steel-concrete composite beam. Adv. Struct. Eng. 2023, 26, 842–857. [Google Scholar] [CrossRef]
- Gao, X.; Wang, M.; Guo, J.; Li, H. Flexural behaviors of a novel precast hollow UHPC composite beam reinforced with inverted T-shaped steel: Experimental investigation and theoretical analysis. J. Build. Eng. 2024, 86, 108893. [Google Scholar] [CrossRef]
- Eurocode 4—Design of composite steel and concrete structures. In Dictionary Geotechnical Engineering/Wörterbuch GeoTechnik; Herrmann, H., Bucksch, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; p. 486. [Google Scholar] [CrossRef]
- GB/T 228–2010; Metallic Materials Tensile Method at Room Temperature. Standardization Administration of China: Beijing, China, 2010.
- Yuan, F.; Hu, R. Flexural behaviour of ECC and ECC–concrete composite beams reinforced with hybrid FRP and steel bars. Adv. Struct. Eng. 2021, 24, 3171–3183. [Google Scholar] [CrossRef]
- Ge, W.J.; Ashour, A.F.; Yu, J.; Gao, P.; Cao, D.F.; Cai, C.; Ji, X. Flexural Behavior of ECC–Concrete Hybrid Composite Beams Reinforced with FRP and Steel Bars. J. Compos. Constr. 2019, 23, 04018069. [Google Scholar] [CrossRef]
- Han, S.; Zhou, A.; Ou, J. Relationships between interfacial behavior and flexural performance of hybrid steel-FRP composite bars reinforced seawater sea-sand concrete beams. Compos. Struct. 2021, 277, 114672. [Google Scholar] [CrossRef]
- Yang, J.; Chen, H.; Hu, S.; Gan VJ, L. Experimental studies on the flexural behaviour of steel-concrete composite beams with transverse and longitudinal hidden girders. Eng. Struct. 2019, 179, 583–594. [Google Scholar] [CrossRef]
- Stylianidis, P.M.; Petrou, M.F. Study of the flexural behaviour of FRP-strengthened steel-concrete composite beams. Structures 2019, 22, 124–138. [Google Scholar] [CrossRef]
- Hakeem, I.Y.; Rahman, M.K.; Althoey, F. Experimental Investigation of Hybrid Beams Utilizing Ultra-High Performance Concrete (UHPC) as Tension Reinforcement. Materials 2022, 15, 5619. [Google Scholar] [CrossRef] [PubMed]
- Momeni, M.; Demetriou, D.; Papadakis, L.; Bedon, C.; Petrou, M.F.; Nicolaides, D. Damage investigation of blast loaded UHPFRC panels with optimized mixture design using advanced material models. Results Eng. 2024, 23, 102518. [Google Scholar] [CrossRef]
- Xia, J. Flexural Behavior of High-Strength Steel and Ultra-High-Performance Fiber-Reinforced Concrete Composite Beams. Buildings 2024, 14, 131. [Google Scholar] [CrossRef]
- Yoo, D.Y.; Yoon, Y.S. Structural performance of ultra-high-performance concrete beams with different steel fibers. Eng. Struct. 2015, 102, 409–423. [Google Scholar] [CrossRef]
- Tong, L.; Chen, L.; Wang, X.; Zhu, J.; Shao, X.; Zhao, Z. Experiment and finite element analysis of bending behavior of high strength steel-UHPC composite beams. Eng. Struct. 2022, 266, 114594. [Google Scholar] [CrossRef]
- Sivasuriyan, A.; Vijayan, D.S.; Sankaran, N.; Parthiban, D. Finite element analysis of RC beams using static experimental data to predict static and dynamic behaviors. Sci. Rep. 2024, 14, 31238. [Google Scholar] [CrossRef] [PubMed]
- Gong, W.; Li, X.; Ge, Z.; Liu, H.; Lin, Z.; Liu, X.; Yang, G. Steel-concrete composite beams strengthened with NSM CFRP systems at the hogging-moment regions. Eng. Struct. 2023, 292, 116576. [Google Scholar] [CrossRef]
- Rahnavard, R.; Craveiro, H.D.; Simões, R.A.; Laím, L.; Santiago, A. Test and design of built-up cold-formed steel-lightweight concrete (CFS-LWC) composite beams. Thin-Walled Struct. 2023, 193, 111211. [Google Scholar] [CrossRef]
- Fan, J.; Gou, S.; Ding, R.; Zhang, J.; Shi, Z. Experimental and analytical research on the flexural behaviour of steel–ECC composite beams under negative bending moments. Eng. Struct. 2020, 210, 110309. [Google Scholar] [CrossRef]
- Ban, H.; Bradford, M.A. Flexural Strength of High-Strength Steel-Concrete Composite Beams with Varying Steel Grades. In Proceedings of the Composite Construction in Steel and Concrete VII, North Queensland, Australia, 28–31 July 2016; American Society of Civil Engineers: Reston, VA, USA, 2016; pp. 120–130. [Google Scholar] [CrossRef]
- Hai, N.D.; Mutsuyoshi, H.; Asamoto, S.; Matsui, T. Structural behavior of hybrid FRP composite I-beam. Constr. Build. Mater. 2010, 24, 956–969. [Google Scholar] [CrossRef]
- Badache, H.; Mezhoud, S.; Melhem, A.Q. Evaluation of Behavior of Hybrid Beam Combining Steel Inverted T-Section and RC Flange. Civ. Environ. Eng. Rep. 2022, 32, 166–181. [Google Scholar] [CrossRef]
- EN 1992-1-1:2004; Eurocode 2: Design of Concrete Structures—Part 1-1: General Rules and Rules for Buildings. European Committee for Standardization (CEN): Brussels, Belgium, 2004.
- He, H.; Liang, X.; Shang, J.; Long, Y. Experimental study on residual mechanical properties after cyclic loading of steel-concrete composite-laminated beams. Case Stud. Constr. Mater. 2023, 19, e02257. [Google Scholar] [CrossRef]
- Lesmana, C.; Hu, H.T.; Pan, T.C.; Lin, Z.S. Parametric Study on Nonlinear Finite Element Analysis of Prestressed Reinforced Concrete Beam Strengthened by Fiber-Reinforced Plastics. Math. Probl. Eng. 2022, 2022, 9646889. [Google Scholar] [CrossRef]
- GB50010-2010; Code for Design of Concrete Structures. Standardization Administration of China: Beijing, China, 2010.
- Śledziewski, K.; Górecki, M. Finite Element Analysis of the Stability of a Sinusoidal Web in Steel and Composite Steel-Concrete Girders. Materials 2020, 13, 1041. [Google Scholar] [CrossRef] [PubMed]
Test Piece Number | L (mm) | L0 (mm) | B (mm) | t (mm) | be (mm) | bu (mm) | bl (mm) | bt (mm) |
---|---|---|---|---|---|---|---|---|
WDTSCB-1-SS | 3200 | 3000 | 640 | 4 | 50 | 100 | 88 | 200 |
WDTSCB-2-B760 | 3200 | 3000 | 760 | 4 | 50 | 100 | 88 | 200 |
WDTSCB-3-T6 | 3200 | 3000 | 640 | 6 | 50 | 100 | 88 | 200 |
WDTSCB-4-J300 | 3200 | 3000 | 640 | 4 | 31 | 150 | 138 | 300 |
Material Type | Specimen Number | Thicknesses (mm) | Yield Strength (MPa) | Tensile Strength (MPa) | Elastic Modulus (GPa) | Yield Ratio |
---|---|---|---|---|---|---|
plate | S4 | 4 | 421.0 | 530.9 | 211.6 | 1.3 |
S6 | 6 | 477.0 | 567.7 | 219.6 | 1.2 |
Material Type | Specimen Number | Bar Diameter (mm) | Yield Strength (MPa) | Tensile Strength (MPa) | Elastic Modulus (GPa) | Yield Ratio |
---|---|---|---|---|---|---|
rebar | C8 | 8 | 527.6 | 649.8 | 227.2 | 1.2 |
C12 | 12 | 434.9 | 610.4 | 191.6 | 1.4 |
Number | SCT-1 | SCT-2 | SCT-3 | SCT-4 | SCT-5 | SCT-6 |
---|---|---|---|---|---|---|
Compressive strength (N/mm2) | 41.1 | 42.2 | 39.8 | 39.9 | 41.7 | 39.5 |
Average value (N/mm2) | 40.7 |
Name of Test Piece | PCL/PP | PYL/PP | PTY/PP | PP/PP | PD/PP |
---|---|---|---|---|---|
WDTSCB-1-SS | 0.58 | 0.62 | 0.84 | 1 | 0.94 |
WDTSCB-2-B760 | 0.58 | 0.75 | 0.94 | 1 | 0.97 |
WDTSCB-3-T6 | 0.66 | 0.80 | 0.92 | 1 | 0.89 |
WDTSCB-4-J300 | 0.66 | 0.72 | 0.87 | 1 | 0.89 |
Specimen Number | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
(kN) | (kN) | (kN) | (kN) | (kN) | (mm) | (mm) | (mm) | ||||
WDTSCB-1 | 255.0 | 273.1 | 371.4 | 439.8 | 413.2 | 14.0 | 61.6 | 85.7 | 1/35 | 6.1 | 1.5 |
WDTSCB-2 | 253.6 | 326.1 | 409.3 | 435.3 | 422.2 | 18.2 | 58.3 | 68.4 | 1/44 | 3.8 | 1.3 |
WDTSCB-3 | 357.1 | 436.5 | 498.6 | 540.2 | 481.1 | 15.2 | 34.4 | 48.1 | 1/62 | 3.2 | 1.1 |
WDTSCB-4 | 272.0 | 296.4 | 361.8 | 413.7 | 369.7 | 16.3 | 56.8 | 66.4 | 1/45 | 4.1 | 1.2 |
30 | 0.1 | 1.16 | 0.667 | 0.001 |
Test Piece Number | WDTSCB-1-SS | WDTSCB-2-B760 | WDTSCB-3-T6 | WDTSCB-4-J300 |
---|---|---|---|---|
Measured value (kN) | 439.8 | 435.3 | 540.2 | 413.7 |
Analog value FEM (kN) | 446.7 | 443.4 | 565.8 | 420.2 |
|( − FEM)/FEM| (%) | 1.5 | 1.8 | 4.5 | 1.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, J.; Zhang, X.; Wu, P.; Yue, K.; Chen, J. Experimental and Finite Element Analysis of Bending Performance of Web-Embedded Double Inverted T-Shaped Steel–Concrete Composite Beams. Buildings 2025, 15, 717. https://doi.org/10.3390/buildings15050717
Shen J, Zhang X, Wu P, Yue K, Chen J. Experimental and Finite Element Analysis of Bending Performance of Web-Embedded Double Inverted T-Shaped Steel–Concrete Composite Beams. Buildings. 2025; 15(5):717. https://doi.org/10.3390/buildings15050717
Chicago/Turabian StyleShen, Jie, Xiantong Zhang, Peng Wu, Kong Yue, and Jianbing Chen. 2025. "Experimental and Finite Element Analysis of Bending Performance of Web-Embedded Double Inverted T-Shaped Steel–Concrete Composite Beams" Buildings 15, no. 5: 717. https://doi.org/10.3390/buildings15050717
APA StyleShen, J., Zhang, X., Wu, P., Yue, K., & Chen, J. (2025). Experimental and Finite Element Analysis of Bending Performance of Web-Embedded Double Inverted T-Shaped Steel–Concrete Composite Beams. Buildings, 15(5), 717. https://doi.org/10.3390/buildings15050717