Occupancy and Air Quality Model for Outdoor Events: A Strategy for Preventing Disease Transmission at Mass Events
Abstract
1. Introduction
1.1. Background
1.1.1. CO2 Concentration
Type of Activity | Metabolism (W/m2) | Type of Associated Activity |
---|---|---|
Sedentary work | 70 | Rest/Low activity |
Light standing work | 100 | Low activity |
Walking (1.6 Km/h) | 100 | Low activity |
Light work | 130 | Low/Moderate activity |
Dancing | 165 | Moderate activity |
Moderate work | 165 | Moderate activity |
Walking (5 Km/h) | 200 | Moderate/High activity |
Heavy work | 230 | High activity |
Gym/swimming recreation | 260 | High/Very high activity |
Gym/team sport | 300 | Very high activity |
1.1.2. Reference Values
1.1.3. Climatology
2. Materials and Methods
2.1. Required Ventilation Flow Rate
2.2. Natural Outdoor Ventilation
2.3. Application of Outdoor Ventilation Parameters and Obtaining Theoretical Occupancy
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pannia, P.G. Effects of Air Pollution on Children’s Health. Arch. Argent. Pediatr. 2023, 121, e202202847. [Google Scholar] [CrossRef]
- Jerrett, M. Air Pollution as a Risk for Death from Infectious Respiratory Disease. Am. J. Respir. Crit. Care Med. 2022, 205, 1374–1375. [Google Scholar] [CrossRef]
- Sharma, A.K.; Sharma, M.; Sharma, A.K.; Sharma, M.; Sharma, M. Mapping the Impact of Environmental Pollutants on Human Health and Environment: A Systematic Review and Meta-Analysis. J. Geochem. Explor. 2023, 255, 107325. [Google Scholar] [CrossRef]
- Goshua, A.; Akdis, C.A.; Nadeau, K.C. World Health Organization Global Air Quality Guideline Recommendations: Executive Summary. Allergy 2022, 77, 1955–1960. [Google Scholar] [CrossRef]
- Keswani, A.; Akselrod, H.; Anenberg, S.C. Health and Clinical Impacts of Air Pollution and Linkages with Climate Change. NEJM Evid. 2022, 1, EVIDra2200068. [Google Scholar] [CrossRef]
- Arribas, J. Humanity Is Facing Its Sustainability: Will Technological Progress Make the Future Unsustainable? In Science, Technology and Innovation in the History of Economic Thought; Springer Nature: Cham, Switzerland, 2023; pp. 241–256. [Google Scholar] [CrossRef]
- Rafaj, P.; Kiesewetter, G.; Gül, T.; Schöpp, W.; Cofala, J.; Klimont, Z.; Pueohit, P.; Heyes, C.; Amann, M.; Borken, J.; et al. Outlook for Clean Air in the Context of Sustainable Development Goals. Glob. Environ. Change 2018, 53, 1–11. [Google Scholar] [CrossRef]
- Medina, E.K. La Contaminación del Aire, un Problema de Todos. Rev. Fac. Med. Univ. Nac. Col. 2019, 67, 189–191. [Google Scholar] [CrossRef]
- Hao, Y.; Guo, Y.; Li, S.; Luo, S.; Jiang, X.; Shen, Z.; Wu, H. Towards Achieving the Sustainable Development Goal of Industry: How Does Industrial Agglomeration Affect Air Pollution? Innov. Green Develop. 2022, 1, 100003. [Google Scholar] [CrossRef]
- Jiřík, V.; Římanová, V.; Janulková, T.; Siemiatkowski, G.; Osrodka, L.; Krajny, E. Lifetime Losses Due to Cardiovascular and Respiratory Diseases Attributable to Air Pollution in Polluted and Unpolluted Areas. Int. J. Environ. Health Res. 2024, 34, 1525–1539. [Google Scholar] [CrossRef] [PubMed]
- European Union. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008L0050 (accessed on 10 May 2023).
- European Union. Decision (EU) 2022/591 of the European Parliament and of the Council of 6 April 2022 on a General Union Environment Action Programme to 2030. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32022D0591 (accessed on 12 May 2023).
- Estrategia Española de Calidad del Aire. Ministerio de Medio Ambiente, Gobierno de España: Madrid, España. 2004. Available online: https://salud-ambiental.com/wp-content/uploads/2009/04/estrategia-nacional-de-calidad-de-aire.pdf (accessed on 12 May 2023).
- Ley 34/2007, de 15 de Noviembre, de Calidad del Aire y Protección de la Atmósfera; Jefatura del Estado, Gobierno de España: Madrid, Spain. 2007. Available online: https://www.boe.es/buscar/pdf/2007/BOE-A-2007-19744-consolidado.pdf (accessed on 12 May 2023).
- Real Decreto 102/2011, de 28 de Enero, Relativo a la Mejora de la Calidad del Aire; Ministerio de la Presidencia, Gobierno de España: Madrid, Spain. 2011. Available online: https://www.boe.es/buscar/pdf/2011/BOE-A-2011-1645-consolidado.pdf (accessed on 19 June 2023).
- Plan Estratégico de Salud y Medio Ambiente 2022–2026; Ministerio de Sanidad and Ministerio para la Transición Ecológica y Reto Demográfico, Gobierno de España: Madrid, Spain. 2021. Available online: https://www.sanidad.gob.es/organizacion/planesEstrategias/pesma/docs/241121_PESMA.pdf (accessed on 20 June 2023).
- Kelly, F.J.; Fusell, J.C. Improving Indoor Air Quality, Health and Performance within Environments Where People Live, Travel, Learn and Work. Atmos. Environ. 2019, 200, 90–109. [Google Scholar] [CrossRef]
- Mentese, S.; Mirici, N.A.; Elbir, T.; Palaz, E.; Mumcuoğlu, D.T.; Cotuker, O.; Kakar, C.; Oymak, S.; Otkun, M.T. A Long-Term Multi-Parametric Monitoring Study: Indoor Air Quality (IAQ) and the Sources of the Pollutants, Prevalence of Sick Building Syndrome (SBS) Symptoms, and Respiratory Health Indicators. Atmos. Pollut. Res. 2020, 11, 2270–2281. [Google Scholar] [CrossRef]
- Yang, S.; Mahecha, S.D.; Moreno, S.A.; Licina, D. Integration of Indoor Air Quality Prediction into Healthy Building Design. Sustainability 2022, 14, 7890. [Google Scholar] [CrossRef]
- Kumar, P.; Singh, A.B.; Arora, T.; Singh, S.; Singh, R. Critical Review on Emerging Health Effects Associated with the Indoor Air Quality and Its Sustainable Management. Sci. Total Environ. 2023, 872, 162163. [Google Scholar] [CrossRef] [PubMed]
- Maury-Micolier, A.; Huang, L.; Taillandier, F.; Sonnemann, G.; Jolliet, O. A Life Cycle Approach to Indoor Air Quality in Designing Sustainable Buildings: Human Health Impacts of Three Inner and Outer Insulations. Build. Environ. 2023, 230, 109994. [Google Scholar] [CrossRef]
- European Union, Scientific Committee on Health and Environmental Risks (SCHER). European Commission: Brussels, Belgium. Available online: https://ec.europa.eu/health/scientific_committees/opinions_layman/es/contaminacion-aire-interior/index.htm (accessed on 23 May 2023).
- United States Environmental Protection Agency. Available online: https://www.epa.gov/ (accessed on 23 May 2023).
- Cincinelli, A.; Martellini, T. Indoor Air Quality and Health. Int. J. Environ. Res. Public Health 2017, 14, 1286. [Google Scholar] [CrossRef] [PubMed]
- Steinemann, A.; Wargocki, P.; Rismanchi, B. Ten Questions Concerning Green Buildings and Indoor Air Quality. Build. Environ. 2017, 112, 351–358. [Google Scholar] [CrossRef]
- Johnson, D.L.; Lynch, R.A.; Floyd, E.L.; Wang, J.; Bartels, J.N. Indoor Air Quality in Classrooms: Environmental Measures and Effective Ventilation Rate Modeling in Urban Elementary Schools. Build. Environ. 2018, 136, 185–197. [Google Scholar] [CrossRef]
- Lu, X.; Pang, Z.; Fu, Y.; O’Neill, Z. The Nexus of the Indoor CO2 Concentration and Ventilation Demands Underlying CO2-Based Demand-Controlled Ventilation in Commercial Buildings: A Critical Review. Build. Environ. 2022, 218, 109116. [Google Scholar] [CrossRef]
- Touati, K.; Benzaama, M.H.; El Mendili, Y.; Le Guern, M.; Streiff, F.; Goodhew, S. Indoor Air Quality in Cob Buildings: In Situ Studies and Artificial Neural Network Modeling. Buildings 2023, 13, 2892. [Google Scholar] [CrossRef]
- Real Decreto 1027/2007, de 20 de Julio, Por El Que se Aprueba el Reglamento de Instalaciones Térmicas en los Edificios; Ministerio de la Presidencia, Gobierno de España: Madrid, Spain. 2007. Available online: https://www.boe.es/boe/dias/2007/08/29/pdfs/A35931-35984.pdf (accessed on 18 January 2023).
- Recomendaciones de Operación y Mantenimiento de los Sistemas de Climatización y Ventilación de Edificios y Locales para la Prevención de la Propagación del SARS-CoV-2; Ministerio para la Transición Ecológica y el Reto Demográfico, Gobierno de España: Madrid, Spain. 2020. Available online: https://www.miteco.gob.es/content/dam/miteco/es/ministerio/medidas-covid19/sistemas-climatizacion-ventilacion/guiaderecomendacionesporcovid19ensistemasdeclimatizacion_tcm30-509985.pdf (accessed on 18 January 2023).
- Consejo Superior de Investigaciones Científicas (CSIC). Guía para la Ventilación en Aulas; Instituto de Diagnóstico Ambiental y Estudios del Agua, IDAEA-CSIC; Ministerio de Ciencia e Innovación: Madrid, Spain. 2020; Available online: https://digital.csic.es/handle/10261/221538 (accessed on 18 January 2023).
- Grupo de Trabajo de Ventilación en Centros Educativos. Recomendaciones de Ventilación para Centros Educativos; Asociación de Fabricantes de Equipos de Climatización (AFEC): Madrid, Spain, 2021; Available online: https://www.afec.es/documentos/recomendaciones-centros-educativos-junio-2021.pdf (accessed on 20 January 2023).
- Allen, J.; Spengler, J.; Jones, E.; Cedeno-Laurent, J. How School Buildings Influence Student Health, Thinking and Performance. Harvard T.H. Chan Healthy Buildings Program. 2020. Available online: https://schools.forhealth.org/ (accessed on 18 January 2023).
- EN 16798-3:2018; Energy Performance of Buildings—Ventilation for Buildings—Part 3: For Non-Residential Buildings—Performance Requirements for Ventilation and Room-Conditioning Systems (Modules M5-1, M5-4). European Committee for Standardization (CEN): Brussels, Belgium, 2018.
- Suñer, C.; Coma, E.; Ouchi, D.; Hermosilla, E.; Baro, B.; Rodríguez-Arias, M.À.; Puig, J.; Clotet, B.; Medina, M.; Mitjà, O. Association between Two Mass-Gathering Outdoor Events and Incidence of SARS-CoV-2 Infections during the Fifth Wave of COVID-19 in North-East Spain: A Population-Based Control-Matched Analysis. Lancet Reg. Health Eur. 2022, 15, 100337. [Google Scholar] [CrossRef] [PubMed]
- Burdzik, R.; Chema, W.; Celiński, I. A Study on Passenger Flow Model and Simulation in Aspect of COVID-19 Spreading on Public Transport Bus Stops. J. Public Transp. 2023, 25, 100063. [Google Scholar] [CrossRef]
- García-Sánchez, C.; Bluyssen, P.M. Assessing Indoor Air Quality and Ventilation to Limit Aerosol Dispersion—Literature Review. Buildings 2023, 13, 742. [Google Scholar] [CrossRef]
- Dimitroulopoulou, S.; Dudzinska, M.R.; Gunnarsen, L.; Hägerhed, L.; Maula, H.; Singh, R.; Toyinbo, O.; Haverinen-Shaughnessy, U. Indoor Air Quality Guidelines from Across the World: An Appraisal Considering Energy Saving, Health, Productivity, and Comfort. Environ. Int. 2023, 178, 108127. [Google Scholar] [CrossRef] [PubMed]
- Esau, I.; Belda, M.; Miles, V.; Geletič, J.; Resler, J.; Krč, P.; Bauerová, P.; Bureš, M.; Eben, K.; Fuka, V.; et al. A City-Scale Turbulence-Resolving Model as an Essential Element of Integrated Urban Services. Urban Climate 2024, 56, 102059. [Google Scholar] [CrossRef]
- Kajjoba, D.; Kasedde, H.; Kirabira, J.B.; Wesonga, R.; Mugwanya, R.; Lwanyaga, J.D.; Olupot, P.W. Impact of Natural Ventilation and Outdoor Environment on Indoor Air Quality and Occupant Health in Low-Income Tropical Housing. Energy Rep. 2024, 12, 4184–4194. [Google Scholar] [CrossRef]
- Blocken, B. Computational Fluid Dynamics for Urban Physics: Importance, Scales, Possibilities, Limitations and Ten Tips and Tricks towards Accurate and Reliable Simulations. Build. Environ. 2015, 91, 219–245. [Google Scholar] [CrossRef]
- Ramponi, R.; Blocken, B.; de Coo, L.B.; Janssen, W.D. CFD Simulation of Outdoor Ventilation of Generic Urban Configurations with Different Urban Densities and Equal and Unequal Street Widths. Build. Environ. 2015, 92, 152–166. [Google Scholar] [CrossRef]
- Carpentieri, M.; Robins, A.G. Influence of Urban Morphology on Air Flow over Building Arrays. J. Wind Eng. Ind. Aerodyn. 2015, 145, 61–74. [Google Scholar] [CrossRef]
- Miao, C.; Yu, S.; Zhang, Y.; Hu, Y.; He, X.; Chen, W. Assessing Outdoor Air Quality Vertically in an Urban Street Canyon and Its Response to Microclimatic Factors. J. Environ. Sci. 2023, 124, 923–932. [Google Scholar] [CrossRef] [PubMed]
- Duong, V.M.; Murana, O.O. Comparative Assessment of Ground-Level Air Quality in the Metropolitan Area of Prague Using Local Street Canyon Modelling. Build. Environ. 2023, 236, 110293. [Google Scholar] [CrossRef]
- Braniš, M.; Řezáčová, P.; Domasová, M. The Effect of Outdoor Air and Indoor Human Activity on Mass Concentrations of PM10, PM25, and PM1 in a Classroom. Environ. Res. 2005, 99, 143–149. [Google Scholar] [CrossRef]
- Hang, J.; Wang, Q.; Chen, X.; Sandberg, M.; Zhu, W.; Buccolieri, R.; Di Sabatino, S. City Breathability in Medium Density Urban-Like Geometries Evaluated through the Pollutant Transport Rate and the Net Escape Velocity. Build. Environ. 2015, 94, 166–182. [Google Scholar] [CrossRef]
- Wierzbicka, A.; Bohgard, M.; Pagels, J.H.; Dahl, A.; Löndahl, A.; Hussein, T.; Swietlicki, E.; Gudmundsson, A. Quantification of Differences between Occupancy and Total Monitoring Periods for Better Assessment of Exposure to Particles in Indoor Environments. Atmos. Environ. 2015, 106, 419–428. [Google Scholar] [CrossRef]
- Malki-Epshtein, L.; Cook, M.; Hathway, A.; Adzic, F.; Iddon, C.; Roberts, B.M.; Mustafa, M. Application of CO₂ Monitoring Methods for Post-Occupancy Evaluation of Ventilation Effectiveness to Mitigate Airborne Disease Transmission at Events; Conference Contribution; Loughborough University: Loughborough, UK, 2022; Available online: https://hdl.handle.net/2134/19484264.v1 (accessed on 25 May 2023).
- Walsh, K.A.; Tyner, B.; Broderick, N.; Harrington, P.; O’Neill, M.; Fawsitt, C.G.; Cardwell, K.; Smith, S.M.; Connolly, M.A.; Ryan, M. Effectiveness of Public Health Measures to Prevent the Transmission of SARS-CoV-2 at Mass Gatherings: A Rapid Review. Rev. Med. Virol. 2022, 32, e2285. [Google Scholar] [CrossRef]
- Azar, E.; O’Brien, W.; Carlucci, S.; Hong, T.; Sonta, A.; Kim, J.; Andargie, M.S.; Avuimara, T.; El Asmar, M.; Jain, R.K.; et al. Simulation-Aided Occupant-Centric Building Design: A Critical Review of Tools, Methods, and Applications. Energy Build. 2020, 224, 110292. [Google Scholar] [CrossRef]
- Megahed, N.A.; Ghoneim, E.M. Indoor Air Quality: Rethinking Rules of Building Design Strategies in Post-Pandemic Architecture. Environ. Res. 2021, 193, 110471. [Google Scholar] [CrossRef]
- Álvarez, J.M.; Romero, A.; Villena, B.M.; Rodríguez, A.; González-Gaya, C. Investigating the Effectiveness of a New Indoor Ventilation Model in Reducing the Spread of Disease: A Case of Sports Centres Amid the COVID-19 Pandemic. Heliyon 2024, 10, e27877. [Google Scholar] [CrossRef] [PubMed]
- EN ISO 7730:2006; Ergonomics of the Thermal Environment—Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria (ISO 7730:2005). European Committee for Standardization (CEN): Brussels, Belgium, 2006.
- Marques, G.; Ferreira, C.R.; Pitarma, R. Indoor Air Quality Assessment Using a CO2 Monitoring System Based on Internet of Things. J. Med. Syst. 2019, 43, 67. [Google Scholar] [CrossRef]
- Hattori, S.; Iwamatsu, T.; Miura, T.; Tsutsumi, F.; Tanaka, N. Investigation of Indoor Air Quality in Residential Buildings by Measuring CO2 Concentration and a Questionnaire Survey. Sensors 2022, 22, 7331. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, S.; Kim, M.K.; Srebric, J. A Review of CFD Analysis Methods for Personalized Ventilation (PV) in Indoor Built Environments. Sustainability 2019, 11, 4166. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Y.; Hang, J.; Lin, Y.; Mattsson, M.; Sandberg, M.; Zhang, M.; Wang, K. Integrated Assessment of Indoor and Outdoor Ventilation in Street Canyons with Naturally-Ventilated Buildings by Various Ventilation Indexes. Build. Environ. 2020, 169, 106528. [Google Scholar] [CrossRef]
- Li, M.; Bekö, G.; Zannoni, N.; Pugliese, G.; Carrito, M.; Cera, N.; Moura, C.; Wargocki, P.; Vasconcelos, P.; Nobre, P.; et al. Human Metabolic Emissions of Carbon Dioxide and Methane and Their Implications for Carbon Emissions. Sci. Total Environ. 2022, 833, 155241. [Google Scholar] [CrossRef] [PubMed]
- Zuraimi, M.S.; Pantazaras, A.; Chaturvedi, K.A.; Yang, J.J.; Tham, K.W.; Lee, S.E. Predicting Occupancy Counts Using Physical and Statistical CO₂-Based Modeling Methodologies. Build. Environ. 2017, 123, 517–528. [Google Scholar] [CrossRef]
- Wolf, S.; Calì, D.; Krogstie, J.; Madsen, H. Carbon Dioxide-Based Occupancy Estimation Using Stochastic Differential Equations. Appl. Energy 2019, 236, 32–41. [Google Scholar] [CrossRef]
- UNE-EN 8996:21; Ergonomics of the Thermal Environment—Determination of Metabolic Rate (ISO 8996:2021). European Committee for Standardization (CEN): Brussels, Belgium, 2021.
- Guía Técnica de Instalaciones de Climatización con Equipos Autónomos. Calificación de Eficiencia Energética de Edificios; Instituto para la Diversificación y Ahorro de la Energía (IDAE), Ministerio para la Transición Ecológica y el Reto Demográfico: Madrid, Spain, 2012. [Google Scholar]
- La Agencia Estatal de Meteorología (AEMET). Datos Climatológicos; Ministerio para la Transición Ecológica y el Reto Demográfico, a Través de la Secretaría de Estado de Medio Ambiente, Spain. Available online: https://www.aemet.es/es/serviciosclimaticos/datosclimatologicos (accessed on 18 January 2023).
- EN IEC 60079-10-1:2022; Explosive Atmospheres—Part 10-1: Classification of Areas—Explosive Gas Atmospheres. European Committee for Standardization (CEN): Brussels, Belgium, 2022.
- EN 60079-10-1:2016; Explosive Atmospheres—Part 10-1: Classification of Areas—Explosive Gas Atmospheres. European Committee for Standardization (CEN): Brussels, Belgium, 2016.
- EN 202007:2006; IN Application Guide of EN 60079-10. Electrical Apparatus for Explosive Gas Atmospheres. Classification of Hazardous Areas. European Committee for Standardization (CEN): Brussels, Belgium, 2006.
- Real Decreto 314/2006, De 17 De Marzo, Por El Que Se Aprueba El Código Técnico De La Edificación; Ministerio de la Vivienda, Gobierno de España: Madrid, España, 2006.
- Karumuna, B.V.; Hao, L. CO₂ Concentration Assessment for Infection Monitoring and Occupancy Analysis in Tanzanian COVID-19 Isolation Centers. Buildings 2024, 14, 2139. [Google Scholar] [CrossRef]
- Asfour, O.S.M. Ventilation Characteristics of Buildings Incorporating Different Configurations of Curved Roofs and Wind Catchers; School of the Built Environment, Institute of Architecture, Universidad de Nottingham: Nottingham, UK, 2006; Available online: https://eprints.nottingham.ac.uk/56210/1/PHD_Omar%20Asfour.pdf (accessed on 27 June 2023).
- Moore, F. Environmental Control Systems: Heating, Cooling, Lighting; McGraw-Hill, Inc.: New York, NY, USA, 1993. [Google Scholar]
- CIBSE. Energy Efficiency in Buildings; The Chartered Institution of Building Services Engineers: London, UK, 1998. [Google Scholar]
Values | 10 September 2022 | 13 September 2022 | 14 September 2022 | 15 September 2022 |
---|---|---|---|---|
Maximum temperature (°C) | 32 | 25 | 23 | 24 |
Minimum temperature (°C) | 20 | 17 | 15 | 17 |
Max. air velocity (Km/h) | 34 | 34 | 30 | 15 |
Min. air velocity (Km/h) | 15 | 7 | 9 | 5 |
Average air velocity (Km/h) | 25 | 16 | 15 | 10 |
Relative humidity (%) | 45 | 60 | 85 | 90 |
Sky condition | Clear | Very cloudy | Very cloudy | Very cloudy |
Precipitations | - | - | Rain | Rain |
Type of Activity | Sedentary Work | Light Standing Work | Walking (1.6 Km/h) | Light Work | Dancing | Moderte Work | Walking (5 Km/h) | Heavy Work | Gym/Swimming Recreation | Gym/Team Sport |
---|---|---|---|---|---|---|---|---|---|---|
Qrequired (L/s·person) | 9 | 12.72 | 12.80 | 16.60 | 21.00 | 21.00 | 25.40 | 29.20 | 33.00 | 38.20 |
qCO2 (L/s·Person) | Qrequired RITE (L/s·Person) | Qrequired 75% (L/s·Person) | Qrequired 50% (L/s·Person) | Qrequired 25% (L/s·Person) | Qrequired [33] (L/s·Person) |
---|---|---|---|---|---|
0.0064 | 12.72 | 27.83 | 23.70 | 20.00 | 15.14 |
Activity | Estimated Air Velocity (m/s) | ||||||
---|---|---|---|---|---|---|---|
0.15 | 0.30 | 0.50 | 0.6 | 1.00 | 2.00 | ||
Number of persons/m2 | Sedentary work | 3.33 | 6.67 | 11.11 | 13.33 | 22.22 | 44.44 |
Light standing work | 2.34 | 4.69 | 7.86 | 9.38 | 15.63 | 31.25 | |
Walking (1.6 Km/h) | 2.34 | 4.69 | 7.86 | 9.38 | 15.63 | 31.25 | |
Light work | 1.81 | 3.61 | 6.02 | 7.23 | 12.05 | 24.10 | |
Dancing | 1.43 | 2.86 | 4.76 | 5.71 | 9.52 | 19.05 | |
Moderate work | 1.43 | 2.86 | 4.76 | 5.71 | 9.52 | 19.05 | |
Walking (5 Km/h) | 1.18 | 2.36 | 3.94 | 4.72 | 7.87 | 15.75 | |
Heavy work | 1.03 | 2.05 | 3.42 | 4.11 | 6.85 | 13.70 | |
Gym/swimming recreation | 0.91 | 1.82 | 3.03 | 3.64 | 6.06 | 12.12 | |
Gym/team sport | 0.79 | 1.57 | 2.62 | 3.14 | 5.24 | 10.47 |
Estimation of Walking Difficulty | CO2 Concentration (ppm) | |
---|---|---|
Min. Value | Max. Value | |
Clear public roads | 460 | 500 |
Walking without difficulty | 600 | 650 |
It is easy to walk, but you have to avoid other pedestrians | 700 | 750 |
It is easy to walk, but walking is hindered | 800 | 900 |
Walking with difficulty | 900 | 1000 |
Walking is not possible, but mobility is maintained | 1000 | 1200 |
Mobility is hindered | 1200 | 1300 |
Mobility is practically impaired | 1300 | 1400 |
Mobility is impaired | 1400 | 1500 |
Total impossibility of mobility | 1500 | 1680 |
CO2 Concentration (ppm) | Estimated Occupancy Density (Persons/m2) | |||
---|---|---|---|---|
Sedentary Activity | Light Activity | |||
EN IEC 60079-10-1 | UNE EN 202007 IN | EN IEC 60079-10-1 | UNE EN 202007 IN | |
480 | 0.5 | 1.8 | 0.4 | 1.3 |
650 | 1.7 | 5.6 | 1.2 | 3.9 |
750 | 2.3 | 7.8 | 1.6 | 5.5 |
850 | 3.0 | 10.0 | 2.1 | 7.0 |
950 | 3.7 | 12.2 | 2.6 | 8.6 |
1100 | 4.7 | 15.6 | 3.3 | 10.9 |
1250 | 5.7 | 18.9 | 4.0 | 13.3 |
1350 | 6.3 | 21.1 | 4.5 | 14.8 |
1450 | 7.0 | 23.3 | 4.9 | 16.4 |
1550 | 7.7 | 25.6 | 5.4 | 18.0 |
Height (m) | CO2 Concentration (ppm) Estimated Occupancy Density of Two Persons/m2 | |||
---|---|---|---|---|
10 September 2022 (21:00 h) | 13 September 2022 (11:00 h) | 14 September 2022 (11:00 h) | 15 September 2022 (20:00 h) | |
2 | 750 | 700 | 700 | 750 |
3 | 750 | 600 | 600 | 600 |
4 | 600 | 500 | 600 | 600 |
5 | 600 | 500 | 500 | 550 |
6 | 550 | 450 | 450 | 500 |
7 | 450 | 450 | 450 | 500 |
8 | 450 | - | 450 | 450 |
Height (m) | Estimated Height (m) Occupancy Density: 2 Persons/m2 | |||||||
---|---|---|---|---|---|---|---|---|
10 September 2022 (21:00 h) | 13 September 2022 (11:00 h) | 14 September 2022 (11:00 h) | 15 September 2022 (20:00 h) | |||||
Light Gas Model | Heavy Gas Model | Light Gas Model | Heavy Gas Model | Light Gas Model | Heavy Gas Model | Light Gas Model | Heavy Gas Model | |
2 | 1.2 | 0.1 | 1.5 | 0.1 | 1.5 | 0.1 | 1.2 | 0.1 |
3 | 1.2 | 0.1 | 2.5 | 0.6 | 2.5 | 0.6 | 2.5 | 0.1 |
4 | 2.5 | 0.6 | 4.1 | 2.8 | 2.5 | 0.6 | 2.5 | 0.6 |
5 | 2.5 | 0.6 | 4.1 | 2.8 | 4.1 | 2.8 | 3.2 | 0.6 |
6 | 3.2 | 1.3 | 5.3 | 5.8 | 5.3 | 5.8 | 4.1 | 1.3 |
7 | 5.3 | 5.8 | 5.3 | 5.8 | 5.3 | 5.8 | 4.1 | 5.8 |
8 | 5.3 | 5.8 | - | - | 5.3 | 5.8 | 5.3 | 5.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero-Barriuso, Á.; Ballesteros-Álvarez, J.M.; Villena-Escribano, B.M.; Rodríguez-Sáiz, Á.; González-Gaya, C. Occupancy and Air Quality Model for Outdoor Events: A Strategy for Preventing Disease Transmission at Mass Events. Buildings 2025, 15, 677. https://doi.org/10.3390/buildings15050677
Romero-Barriuso Á, Ballesteros-Álvarez JM, Villena-Escribano BM, Rodríguez-Sáiz Á, González-Gaya C. Occupancy and Air Quality Model for Outdoor Events: A Strategy for Preventing Disease Transmission at Mass Events. Buildings. 2025; 15(5):677. https://doi.org/10.3390/buildings15050677
Chicago/Turabian StyleRomero-Barriuso, Álvaro, Jesús Manuel Ballesteros-Álvarez, Blasa María Villena-Escribano, Ángel Rodríguez-Sáiz, and Cristina González-Gaya. 2025. "Occupancy and Air Quality Model for Outdoor Events: A Strategy for Preventing Disease Transmission at Mass Events" Buildings 15, no. 5: 677. https://doi.org/10.3390/buildings15050677
APA StyleRomero-Barriuso, Á., Ballesteros-Álvarez, J. M., Villena-Escribano, B. M., Rodríguez-Sáiz, Á., & González-Gaya, C. (2025). Occupancy and Air Quality Model for Outdoor Events: A Strategy for Preventing Disease Transmission at Mass Events. Buildings, 15(5), 677. https://doi.org/10.3390/buildings15050677