Granular Pumice Stone: A Natural Double-Porosity Sound-Absorbing Material
Abstract
1. Introduction
2. Materials and Methods
2.1. Theoretical Approach
2.2. Experimental Approach
3. Results and Discussion
Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Arenas, J.P.; Asdrubali, F. Eco-materials with noise reduction properties. In Handbook of Ecomaterials; Martínez, L.M.T., Kharissova, O.V., Kharisov, B.I., Eds.; Springer Nature: Cham, Switzerland, 2019; pp. 3031–3056. [Google Scholar]
- Schiavoni, S.; Bianchi, F.; Asdrubali, F. Insulation materials for the building sector: A review and comparative analysis. Renew. Sustain. Energy Rev. 2016, 62, 988–1011. [Google Scholar] [CrossRef]
- Mohanta, N.R.; Murmu, M. Alternative coarse aggregate for sustainable and eco-friendly concrete—A review. J. Build. Eng. 2022, 59, 105079. [Google Scholar] [CrossRef]
- Tanyildizi, M.; Gökalp, I. Utilization of pumice as aggregate in the concrete: A state of art. Const. Build. Mater. 2023, 377, 131102. [Google Scholar] [CrossRef]
- Hossain, K.M.A. Development of volcanic pumice-based cement and lightweight concrete. Mag. Concr. Res. 2004, 56, 99–109. [Google Scholar] [CrossRef]
- Cifci, D.I.; Meric, S. A review on pumice for water and wastewater treatment. Desalin. Water Treat. 2016, 57, 18131–18143. [Google Scholar] [CrossRef]
- Rashad, A.M. A short manual on natural pumice as a lightweight aggregate. J. Build. Eng. 2019, 25, 100802. [Google Scholar] [CrossRef]
- Olny, X.; Boutin, C. Acoustic wave propagation in double porosity media. J. Acoust. Soc. Am. 2003, 114, 73–89. [Google Scholar] [CrossRef]
- Barguet, L.; Romero-García, V.; Jiménez, N.; Garcia-Raffi, L.M.; Sánchez-Morcillo, V.J.; Groby, J.-P. Natural sonic crystal absorber constituted of seagrass (Posidonia Oceanica) fibrous spheres. Sci. Rep. 2021, 11, 711. [Google Scholar] [CrossRef] [PubMed]
- Pompoli, F. Acoustical characterization and modeling of sustainable Posidonia fibers. Appl. Sci. 2023, 13, 4562. [Google Scholar] [CrossRef]
- Venegas, R.; Umnova, O. Acoustical properties of double porosity granular materials. J. Acoust. Soc. Am. 2011, 130, 2765–2776. [Google Scholar] [CrossRef]
- Fleischer, C.A.; Zupan, M. Mechanical performance of pumice-reinforced epoxy composites. J. Compos. Mater. 2010, 44, 2679–2696. [Google Scholar] [CrossRef]
- Sevinc, A.H.; Durgun, M.Y.; Eken, M. Taguchi approach for investigating the engineering properties of concretes incorporating barite, colemanite, basaltic pumice and ground blast furnace slag. Const. Build. Mater. 2017, 135, 343–351. [Google Scholar] [CrossRef]
- Sultan, M.A.; Gaus, A.; Hakim, R.; Imran. Review of the flexural strength of lightweight concrete beam using pumice stone as of substitution partial coarse aggregate. Int. J. Geomate 2021, 21, 154–159. [Google Scholar] [CrossRef]
- Mahmoud, H.A.; Tawfik, T.A.; Abd El-razik, M.M.; Faried, A.S. Mechanical and acoustic absorption properties of lightweight fly ash/slag-based geopolymer concrete with various aggregates. Ceram. Int. 2023, 49, 21142–21154. [Google Scholar] [CrossRef]
- Onoue, K.; Tamai, H.; Suseno, H. Shock-absorbing capability of lightweight concrete utilizing volcanic pumice aggregate. Const. Build. Mater. 2015, 83, 261–274. [Google Scholar] [CrossRef]
- Sariisik, A.; Sariisik, G. New production process for insulation blocks composed of EPS and lightweight concrete containing pumice aggregate. Mater. Struct. 2012, 45, 1345–1357. [Google Scholar] [CrossRef]
- Canbolat, S.; Kut, D.; Dayioglu, H. Investigation of pumice stone powder coating of multilayer surfaces in relation to acoustic and thermal insulation. J. Ind. Text. 2015, 44, 639–661. [Google Scholar] [CrossRef]
- Bozkurt, T.S.; Demirkale, S.Y. Investigation and development of sound absorption of plasters prepared with pumice aggregate and natural hydraulic lime binder. Appl. Acoust. 2020, 170, 107521. [Google Scholar] [CrossRef]
- Soyaslan, I.I. Thermal and sound insulation properties of pumice/polyurethane composite material. Emerg. Mater. Res. 2020, 9, 859–867. [Google Scholar] [CrossRef]
- Kapicová, A.; Bílý, P.; Fládr, J.; Seps, K.; Chylík, R.; Trtík, T. Development of sound-absorbing pervious concrete for interior applications. J. Build. Eng. 2024, 85, 108697. [Google Scholar] [CrossRef]
- Giraldo, J.R.; Colorado, H.A. Evaluation of noise mitigation by different materials and balcony configurations in urban street canyon facades: Casework in Aburrá Valley, Colombia. J. Arch. Eng. 2024, 30, 04024012. [Google Scholar]
- Boutin, C.; Geindreau, C. Estimates and bounds of dynamic permeability of granular media. J. Acoust. Soc. Am. 2008, 124, 3576–3593. [Google Scholar] [CrossRef] [PubMed]
- Arenas, J.P.; Rebolledo, J.; Nuñez, G.; Venegas, R. Sound absorption characterization of pumice stone. In Proceedings of the 29th International Congress on Sound and Vibration, Prague, Czech Republic, 9–13 July 2023. [Google Scholar]
- ASTM E11-24; Standard Specification for Woven Wire Test Sieve Cloth and Test Sieves. ASTM International: West Conshohocken, PA, USA, 2024.
- ISO 9053; Acoustics—Determination of Airflow Resistance, Part 1: Static Airflow Method. International Organization for Standardization: Geneva, Switzerland, 2018.
- Iannace, G.; Ianniello, C.; Maffei, L.; Romano, R. Steady-state air-flow and acoustic measurementof the resistivity of loose granular materials. J. Acoust. Soc. Am. 1999, 106, 1416–1419. [Google Scholar]
- ISO 10534; Acoustics—Determination of Acoustic Properties in Impedance Tubes, Part 2: Two-Microphone Technique for Normal Sound Absorption Coefficient and Normal Surface Impedance. International Organization for Standardization: Geneva, Switzerland, 2023.
- Crangle, R.D. Pumice and Pumicite. In Mineral Commodity Summaries; U.S. Department of the Interior and U.S. Geological Survey: Washington, DC, USA, 2024; pp. 140–141. [Google Scholar]
- Arenas, J.P.; Marin, V.; Venegas, R. Membrane sound absorber with a granular activated carbon infill. Appl. Acoust. 2023, 202, 109180. [Google Scholar] [CrossRef]
- Begum, H.; Horoshenkov, K.V.; Conte, M.; Malfait, W.J.; Zhao, S.; Koebel, M.M.; Bonfiglio, P.; Venegas, R. The acoustical properties of tetraethyl orthosilicate based granular silica aerogels. J. Acoust. Soc. Am. 2021, 149, 4149–4158. [Google Scholar] [PubMed]
- Venegas, R.; Parra, C.C.; Cuevas, V.; Alarcón, E.; Rebolledo, J. Hygroscopic effects on sound absorption of multiscale bio-based porous materials. In Proceedings of the INTER-NOISE 2024, Nantes, France, 25–29 August 2024. [Google Scholar]
- Venegas, R.; Boutin, C.; Umnova, O. Acoustics of multiscale sorptive porous materials. Phys. Fluids 2017, 29, 082006. [Google Scholar]
Label | Grain Size, mm | Density, |
---|---|---|
A | >2.36 | 383.45 ± 7.85 |
B | 2.0–2.36 | 397.98 ± 9.26 |
C | 1.0–2.0 | 393.68 ± 16.13 |
Label | Grain Size, mm | Airflow Resistivity, kPa |
---|---|---|
A | >2.36 | 5.3507 ± 0.3714 |
B | 2.0–2.36 | 7.0546 ± 0.8071 |
C | 1.0–2.0 | 7.8314 ± 1.0161 |
Label | , | , m | ||
---|---|---|---|---|
A | 1.21 | 0.3482 | 22.58 | 0.3668 |
B | 1.04 | 0.3421 | 26.58 | 0.5571 |
C | 0.82 | 0.3682 | 25.23 | 0.5402 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arenas, J.P.; Parra, C.C.; Rebolledo, J.; Venegas, R. Granular Pumice Stone: A Natural Double-Porosity Sound-Absorbing Material. Buildings 2025, 15, 557. https://doi.org/10.3390/buildings15040557
Arenas JP, Parra CC, Rebolledo J, Venegas R. Granular Pumice Stone: A Natural Double-Porosity Sound-Absorbing Material. Buildings. 2025; 15(4):557. https://doi.org/10.3390/buildings15040557
Chicago/Turabian StyleArenas, Jorge P., Claudio C. Parra, Juan Rebolledo, and Rodolfo Venegas. 2025. "Granular Pumice Stone: A Natural Double-Porosity Sound-Absorbing Material" Buildings 15, no. 4: 557. https://doi.org/10.3390/buildings15040557
APA StyleArenas, J. P., Parra, C. C., Rebolledo, J., & Venegas, R. (2025). Granular Pumice Stone: A Natural Double-Porosity Sound-Absorbing Material. Buildings, 15(4), 557. https://doi.org/10.3390/buildings15040557