Climate-Responsive Design for Sustainable Housing: Thermal Comfort, Spatial Configuration, and Environmental Satisfaction in Subtropical Void Decks
Abstract
1. Introduction
1.1. Background
1.2. Literature Review
2. Materials and Methods
2.1. Site Study
2.2. Microclimate Measurement
2.3. Occupants Survey
3. Results
3.1. Microclimate Condition
3.1.1. Comparison Between Diverse Typologies
3.1.2. Correlation of Microclimate Parameters
3.2. Thermal Perception and Environmental Satisfaction
3.2.1. Thermal Perception
3.2.2. Environmental Satisfaction
3.2.3. Correlation Analysis
3.3. Regression of Spatial Attributes
4. Discussion
4.1. Association Between Spatial Attributes and Microclimate Performance
4.1.1. Void Deck Typological Classification and Microclimatic Performance
4.1.2. Morphological Characteristics and Thermal Comfort Relationships
4.2. Evaluation of Thermal Perceptions and Overall Environmental Quality
4.2.1. Adaptation in Thermal Perception
4.2.2. Variations in Environmental Satisfaction
4.3. Spatial Configuration for Thermal Comfort Promotion
4.3.1. The Comparison of Spatial Configuration
4.3.2. Optimal Void Deck Typologies for Diverse Microclimates
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| Ta | Air temperature (°C) |
| RH | Relative humidity (%) |
| Va | Wind speed (m/s) |
| Tmrt | Mean radiant temperature (°C) |
| UTCI | Universal Thermal Climate Index |
| TSV | Thermal sensation vote |
| TCV | Thermal comfort vote |
| TSAT | Thermal satisfaction |
| MTSV | Mean TSV |
| TCV | Mean TCV |
| OEQ | Overall environmental quality |
| ASV | Area sensation vote |
| HSV | Height sensation vote |
| GPQSV | Ground paving quality sensation vote |
| OSRSV | Open space ratio sensation vote |
| LSV | Landscape sensation vote |
| RAFSV | Rest and activity facilities sensation vote |
Appendix A
Appendix A.1. Hierarchical Clustering

| Variables | Cluster Typology (Mean Value ± Standard Error) | F | p | ||
|---|---|---|---|---|---|
| Cluster 1 (NS-VD) | Cluster 2 (SD-VD) | Cluster 3 (OO-VD) | |||
| Area | 128.11 ± 51.84 | 77.80 ± 49.16 | 33.25 ± 8.64 | 117.380 | 0.000 ** |
| Height-to-depth ratio (HDR) | 0.31 ± 0.16 | 0.50 ± 0.06 | 0.44 ± 0.03 | 80.976 | 0.000 ** |
| width-to-depth ratio (WDR) | 0.75 ± 0.45 | 1.17 ± 0.72 | 0.56 ± 0.17 | 32.295 | 0.000 ** |
| Orientation | 0.00 ± 0.00 | 54.00 ± 66.51 | 45.00 ± 0.00 | 83.883 | 0.000 ** |
| Angle with the wind(AW) | 22.50 ± 0.00 | 31.50 ± 18.10 | 67.50 ± 0.00 | 563.979 | 0.000 ** |
| Open space ratio(OSR) | 2.67 ± 0.47 | 1.80 ± 0.75 | 1.50 ± 0.50 | 130.060 | 0.000 ** |
| Number of open sides(NOS) | 0.59 ± 0.18 | 0.33 ± 0.13 | 0.21 ± 0.06 | 193.757 | 0.000 ** |
| Green view factor (GVF) | 0.37 ± 0.20 | 0.28 ± 0.14 | 0.04 ± 0.06 | 99.443 | 0.000 ** |
| Sky view factor (SVF) | 0.13 ± 0.11 | 0.11 ± 0.05 | 0.26 ± 0.16 | 44.101 | 0.000 ** |
| Height from ground (HFG) | 7.67 ± 6.15 | 7.80 ± 4.78 | 8.00 ± 0.00 | 0.111 | 0.895 |
| Interval space (IS) | 42.22 ± 38.50 | 45.00 ± 20.85 | 45.00 ± 25.18 | 0.311 | 0.733 |
Appendix A.2. Ridge Regression
| Variables | Unstandardized Coefficients | Standardized Coefficient | t | p-Value (p) | VIF | |
|---|---|---|---|---|---|---|
| Coefficients | Std. Error | |||||
| (Intercept) | 31.209 | 0.693 | - | 45.014 | 0.000 ** | - |
| HDR | −0.033 | 0.589 | −0.004 | −0.057 | 0.955 | 2.545 |
| WDR | −0.256 | 0.151 | −0.131 | −1.699 | 0.09 | 2.483 |
| Orientation | 0.25 | 0.078 | 0.29 | 3.187 | 0.002 ** | 3.447 |
| AW | 0.135 | 0.166 | 0.071 | 0.811 | 0.418 | 3.193 |
| NOS | −0.066 | 0.104 | −0.047 | −0.632 | 0.528 | 2.274 |
| OSR | −0.736 | 0.497 | −0.15 | −1.481 | 0.14 | 4.269 |
| GVF | 1.018 | 0.55 | 0.195 | 1.851 | 0.065 | 4.61 |
| SVF | 3.465 | 0.783 | 0.396 | 4.423 | 0.000 ** | 3.33 |
| HFG | 0.029 | 0.018 | 0.133 | 1.585 | 0.114 | 2.933 |
| IS | −0.002 | 0.002 | −0.069 | −0.97 | 0.333 | 2.115 |
| R2 | 0.248 | |||||
| Adjusted R2 | 0.224 | |||||
| F | F (10,313) = 10.350, p = 0.000 | |||||
| K | 0.2 | |||||
| Variables | Unstandardized Coefficients | Standardized Coefficient | t | p-Value (p) | VIF | |
|---|---|---|---|---|---|---|
| Coefficients | Std. Error | |||||
| (Intercept) | 72.601 | 3.779 | - | 19.209 | 0.000 ** | 2.545 |
| HDR | 10.438 | 3.211 | 0.249 | 3.251 | 0.001 ** | 2.483 |
| WDR | −5.006 | 0.822 | −0.46 | −6.092 | 0.000 ** | 3.447 |
| Orientation | −1.726 | 0.427 | −0.36 | −4.042 | 0.000 ** | 3.193 |
| AW | 3.068 | 0.905 | 0.291 | 3.392 | 0.001 ** | 2.274 |
| NOS | −2.959 | 0.566 | −0.378 | −5.224 | 0.000 ** | 4.269 |
| OSR | 4.201 | 2.708 | 0.154 | 1.551 | 0.122 | 4.61 |
| GVF | −15.66 | 2.997 | −0.538 | −5.225 | 0.000 ** | 3.33 |
| SVF | −9.402 | 4.27 | −0.193 | −2.202 | 0.028 * | 2.933 |
| HFG | −0.344 | 0.098 | −0.288 | −3.504 | 0.001 ** | 2.115 |
| IS | −0.018 | 0.013 | −0.093 | −1.339 | 0.182 | 2.545 |
| R2 | 0.28 | |||||
| Adjusted R2 | 0.257 | |||||
| F | F (10,313) = 12.164, p = 0.000 | |||||
| K | 0.2 | |||||
| Variables | Unstandardized Coefficients | Standardized Coefficient | t | p-Value (p) | VIF | |
|---|---|---|---|---|---|---|
| Coefficients | Std. Error | |||||
| (Intercept) | −2.38 | 0.294 | - | −8.084 | 0.000 ** | - |
| HDR | 3.645 | 0.25 | 0.642 | 14.572 | 0.000 ** | 2.545 |
| WDR | 0.017 | 0.064 | 0.012 | 0.269 | 0.788 | 2.483 |
| Orientation | 0.315 | 0.033 | 0.486 | 9.47 | 0.000 ** | 3.447 |
| AW | −0.587 | 0.07 | −0.412 | −8.338 | 0.000 ** | 3.193 |
| NOS | 0.43 | 0.044 | 0.406 | 9.75 | 0.000 ** | 2.274 |
| OSR | 0.178 | 0.211 | 0.048 | 0.843 | 0.4 | 4.269 |
| GVF | 1.266 | 0.233 | 0.322 | 5.426 | 0.000 ** | 4.61 |
| SVF | −2.005 | 0.333 | −0.304 | −6.027 | 0.000 ** | 3.33 |
| HFG | 0.154 | 0.008 | 0.952 | 20.111 | 0.000 ** | 2.933 |
| IS | 0.007 | 0.001 | 0.258 | 6.413 | 0.000 ** | 2.115 |
| R2 | 0.761 | |||||
| Adjusted R2 | 0.753 | |||||
| F | F (10,313) = 99.622, p = 0.000 | |||||
| K | 0.2 | |||||
| Variables | Unstandardized Coefficients | Standardized Coefficient | t | p-Value (p) | VIF | |
|---|---|---|---|---|---|---|
| Coefficients | Std. Error | |||||
| (Intercept) | 29.275 | 0.693 | - | 42.257 | 0.000 ** | - |
| HDR | 1.926 | 0.589 | 0.235 | 3.272 | 0.001 ** | 2.545 |
| WDR | −0.254 | 0.151 | −0.12 | −1.686 | 0.093 | 2.483 |
| Orientation | 0.253 | 0.078 | 0.27 | 3.227 | 0.001 ** | 3.447 |
| AW | 0.168 | 0.166 | 0.081 | 1.013 | 0.312 | 3.193 |
| NOS | 0.064 | 0.104 | 0.042 | 0.613 | 0.54 | 2.274 |
| OSR | −0.094 | 0.496 | −0.018 | −0.189 | 0.85 | 4.269 |
| GVF | 1.28 | 0.549 | 0.225 | 2.33 | 0.020 * | 4.61 |
| SVF | 5.003 | 0.783 | 0.525 | 6.392 | 0.000 ** | 3.33 |
| HFG | 0.08 | 0.018 | 0.342 | 4.439 | 0.000 ** | 2.933 |
| IS | 0.002 | 0.002 | 0.064 | 0.976 | 0.33 | 2.115 |
| R2 | 0.366 | |||||
| Adjusted R2 | 0.346 | |||||
| F | F (10,313) = 18.059, p = 0.000 | |||||
| K | 0.2 | |||||
| Variables | Unstandardized Coefficients | Standardized Coefficient | t | p-Value (p) | VIF | |
|---|---|---|---|---|---|---|
| Coefficients | Std. Error | |||||
| (Intercept) | 36.367 | 0.803 | - | 45.314 | 0.000 ** | - |
| HDR | −2.302 | 0.682 | −0.213 | −3.376 | 0.001 ** | 2.545 |
| WDR | −1.044 | 0.174 | −0.372 | −5.984 | 0.000 ** | 2.483 |
| Orientation | −0.215 | 0.091 | −0.174 | −2.367 | 0.019 * | 3.447 |
| AW | 1.329 | 0.192 | 0.488 | 6.918 | 0.000 ** | 3.193 |
| NOS | −0.923 | 0.12 | −0.457 | −7.672 | 0.000 ** | 2.274 |
| OSR | −0.435 | 0.575 | −0.062 | −0.756 | 0.45 | 4.269 |
| GVF | −1.518 | 0.636 | −0.202 | −2.386 | 0.018 * | 4.61 |
| SVF | 6.697 | 0.907 | 0.532 | 7.385 | 0.000 ** | 3.33 |
| HFG | −0.17 | 0.021 | −0.55 | −8.141 | 0.000 ** | 2.933 |
| IS | −0.012 | 0.003 | −0.256 | −4.453 | 0.000 ** | 2.115 |
| R2 | 0.512 | |||||
| Adjusted R2 | 0.497 | |||||
| F | F (10,313) = 32.859, p = 0.000 | |||||
| K | 0.2 | |||||
References
- Gamero-Salinas, J.; Kishnani, N.; Monge-Barrio, A.; López-Fidalgo, J.; Sánchez-Ostiz, A. The influence of building form variables on the environmental performance of semi-outdoor spaces. A study in mid-rise and high-rise buildings of Singapore. Energy Build. 2021, 230, 110544. [Google Scholar] [CrossRef]
- Hou, G.; Kuai, Y.; Yin, L.; Li, Y.; Shu, P. A comprehensive review of thermal comfort related design strategy of semi-outdoor transitional spaces. Energy Build. 2025, 345, 116116. [Google Scholar] [CrossRef]
- Acero, J.A.; Ruefenacht, L.A.; Koh, E.J.Y.; Tan, Y.S.; Norford, L.K. Measuring and comparing thermal comfort in outdoor and semi-outdoor spaces in tropical Singapore. Urban Clim. 2022, 42, 101122. [Google Scholar] [CrossRef]
- Chew, L.W.; Norford, L.K. Pedestrian-level wind speed enhancement with void decks in three-dimensional urban street canyons. Build. Environ. 2019, 155, 399–407. [Google Scholar] [CrossRef]
- Naghibi, M.; Faizi, M. Temporary reuse in leftover spaces through the preferences of the elderly. Cities 2022, 127, 103769. [Google Scholar] [CrossRef]
- Qi, J.; Mazumdar, S.; Vasconcelos, A.C. Understanding the Relationship between Urban Public Space and Social Cohesion: A Systematic Review. Int. J. Community Well-Being 2024, 7, 155–212. [Google Scholar] [CrossRef]
- Huang, J.; Zhou, C.; Zhuo, Y.; Xu, L.; Jiang, Y. Outdoor thermal environments and activities in open space: An experiment study in humid subtropical climates. Build. Environ. 2016, 103, 238–249. [Google Scholar] [CrossRef]
- Elnabawi, M.H.; Hamza, N. Outdoor Thermal Comfort: Coupling Microclimatic Parameters with Subjective Thermal Assessment to Design Urban Performative Spaces. Buildings 2020, 10, 238. [Google Scholar] [CrossRef]
- Ji, Y.; Feng, X.; Zhao, H.; Xu, X. Study on the elderly’s perception of microclimate and activity time in residential communities. Build. Environ. 2024, 266, 112125. [Google Scholar] [CrossRef]
- Golden, C.D.; Childs, M.L.; Mudele, O.E.; Andriamizarasoa, F.A.; Bouley, T.A.; De Nicola, G.; Fontaine, M.A.; Huybers, P.J.; Mahatante, P.T.; Rabemananjara, R.; et al. Climate-smart public health for global health resilience. Lancet Planet. Health 2025, 9, 101293. [Google Scholar] [CrossRef]
- Tao, Y.; Zhao, F.; Xue, M.; Jiang, B.; Lau, S.S.; Zhang, L. Factors Influencing Seating Preferences in Semi-Outdoor Learning Spaces at Tropical Universities. Buildings 2023, 13, 982. [Google Scholar] [CrossRef]
- Othman, N.E.; Zaki, S.A.; Rijal, H.B.; Ahmad, N.H.; Razak, A.A. Field study of pedestrians’ comfort temperatures under outdoor and semi-outdoor conditions in Malaysian university campuses. Int. J. Biometeorol. 2021, 65, 453–477. [Google Scholar] [CrossRef]
- Xue, F.; Gou, Z.; Lau, S.S.Y. Green open space in high-dense Asian cities: Site configurations, microclimates and users’ perceptions. Sustain. Cities Soc. 2017, 34, 114–125. [Google Scholar] [CrossRef]
- Xie, X.; Liao, H.; Wang, R.; Gou, Z. Thermal Comfort in the Overhead Public Space in Hot and Humid Climates: A Study in Shenzhen. Buildings 2022, 12, 1454. [Google Scholar] [CrossRef]
- Sadakorn, W.; Tetiranont, S.; Prasittisopin, L.; Kaewunruen, S. Assessing thermal comfort in hot and humid (tropical) climates: Urban outdoor and semi-outdoor conditions in waiting areas of railway stations. Build. Environ. 2025, 267, 112240. [Google Scholar] [CrossRef]
- Gamero-Salinas, J.; Kishnani, N.; Monge-Barrio, A.; López-Fidalgo, J.; Sánchez-Ostiz, A. Evaluation of thermal comfort and building form attributes in different semi-outdoor environments in a high-density tropical setting. Build. Environ. 2021, 205, 108255. [Google Scholar] [CrossRef]
- Tan, S.Y. The Practice of Integrated Design: The Case Study of Khoo Teck Puat Hospital, Singapore. Master’s Thesis, University of Nottingham, Singapore, 2012. [Google Scholar]
- Zhou, Y.; Zhu, J.; Ni, E.; Hu, Y. Evaluation and Optimization of Outdoor Thermal Comfort of Block-Style Commercial Complex in Hot Summer and Cold Winter Regions of China. Buildings 2025, 15, 929. [Google Scholar] [CrossRef]
- Wang, Y.; Shaw, D. The complexity of high-density neighbourhood development in China: Intensification, deregulation and social sustainability challenges. Sustain. Cities Soc. 2018, 43, 578–586. [Google Scholar] [CrossRef]
- Spagnolo, J.; de Dear, R. A field study of thermal comfort in outdoor and semi-outdoor environments in subtropical Sydney Australia. Build. Environ. 2003, 38, 721–738. [Google Scholar] [CrossRef]
- Diz-Mellado, E.; Nikolopoulou, M.; López-Cabeza, V.P.; Rivera-Gómez, C.; Galán-Marín, C. Cross-evaluation of thermal comfort in semi-outdoor spaces according to geometry in Southern Spain. Urban Clim. 2023, 49, 101491. [Google Scholar] [CrossRef]
- Nikolopoulou, M.; Lykoudis, S. Thermal comfort in outdoor urban spaces: Analysis across different European countries. Build. Environ. 2006, 41, 1455–1470. [Google Scholar] [CrossRef]
- Li, Y.; Du, H.; Sezer, C. Sky Gardens, Public Spaces and Urban Sustainability in Dense Cities: Shenzhen, Hong Kong and Singapore. Sustainability 2022, 14, 9824. [Google Scholar] [CrossRef]
- Zhen, M.; Zhou, J.; He, Y.; Geng, Z.; Shang, D.; Zhang, M.; Nan, K. Study on thermal comfort and optimization strategies in outdoor open spaces of hospitals in cold regions of China during summer. Urban Clim. 2024, 58, 102135. [Google Scholar] [CrossRef]
- Omrani, S.; Garcia-Hansen, V.; Capra, B.R.; Drogemuller, R. On the effect of provision of balconies on natural ventilation and thermal comfort in high-rise residential buildings. Build. Environ. 2017, 123, 504–516. [Google Scholar] [CrossRef]
- Tao, Y.Q.; Lau, S.S.Y.; Gou, Z.H.; Zhang, J.; Tablada, A. An investigation of semi-outdoor learning spaces in the tropics: Spatial settings, thermal environments and user perceptions. Indoor Built Environ. 2019, 28, 1368–1382. [Google Scholar] [CrossRef]
- Gamero-Salinas, J.; Kishnani, N.; Sánchez-Ostiz, A.; Monge-Barrio, A.; Benitez, E. Porosity, openness, and exposure: Identification of underlying factors associated with semi-outdoor spaces’ thermal performance and clustering in tropical high-density Singapore. Energy Build. 2022, 272, 112339. [Google Scholar] [CrossRef]
- Su, Y.; Li, Z.; Meng, Q.; Zhao, Q.; Wu, X.; Liu, Q.; Wu, Z.; Wang, C. Simulation and optimization of thermal comfort in residential areas based on outdoor morphological parameters. Build. Environ. 2023, 245, 110837. [Google Scholar] [CrossRef]
- Weng, J.; Luo, B.; Xiang, H.L.; Gao, B. Effects of Bottom-Overhead Design Variables on Pedestrian-Level Thermal Comfort during Summertime in Different High-Rise Residential Buildings: A Case Study in Chongqing, China. Buildings 2022, 12, 265. [Google Scholar] [CrossRef]
- Li, J.; Sun, R.; Chen, L. A review of thermal perception and adaptation strategies across global climate zones. Urban Clim. 2023, 49, 101559. [Google Scholar] [CrossRef]
- Applications of the Universal Thermal Climate Index UTCI in Biometeorology: Latest Developments and Case Studies; Krüger, E.L., Ed.; Springer: Cham, Switzerland, 2021; p. 228. [Google Scholar]
- Bröde, P.; Fiala, D.; Błażejczyk, K.; Holmér, I.; Jendritzky, G.; Kampmann, B.; Tinz, B.; Havenith, G. Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). Int. J. Biometeorol. 2012, 56, 481–494. [Google Scholar] [CrossRef]
- Ribeiro, K.F.A.; Justi, A.C.A.; Novais, J.W.Z.; Santos, F.M.d.M.; Nogueira, M.C.d.J.A.; Miranda, S.A.; Marques, J.B. Calibration of the Physiological Equivalent Temperature (PET) index range for outside spaces in a tropical climate city. Urban Clim. 2022, 44, 101196. [Google Scholar] [CrossRef]
- Liu, Y.; Song, C.; Ye, S.; Lv, J.; Gao, P. Daily Max Simplified Wet-Bulb Globe Temperature and its Climate Networks for Teleconnection Study, 1940–2022. Sci. Data 2025, 12, 584. [Google Scholar] [CrossRef]
- Jian, H.; Yan, Z.; Fan, X.; Zhan, Q.; Xu, C.; Bei, W.; Xu, J.; Huang, M.; Du, X.; Zhu, J.; et al. A high temporal resolution global gridded dataset of human thermal stress metrics. Sci. Data 2024, 11, 1116. [Google Scholar] [CrossRef]
- Li, N.; Guo, Z.; Geng, W.; Li, L.; Li, Z. Design strategies for renovation of public space in Beijing’s traditional communities based on measured microclimate and thermal comfort. Sustain. Cities Soc. 2023, 99, 104927. [Google Scholar] [CrossRef]
- Fiala, D.; Havenith, G.; Bröde, P.; Kampmann, B.; Jendritzky, G. UTCI-Fiala multi-node model of human heat transfer and temperature regulation. Int. J. Biometeorol. 2012, 56, 429–441. [Google Scholar] [CrossRef]
- Chen, W.-A.; Fang, P.-L.; Hwang, R.-L. Calibrating the UTCI scale for hot and humid climates through comprehensive year-round field surveys to improve the adaptability. Urban Clim. 2025, 59, 102267. [Google Scholar] [CrossRef]
- Yang, Y.; Lyu, J.; Lian, Z.; Xie, Y.; Jiang, Y.; Lin, J.; Niu, J. Subjective information in thermal comfort evaluation methods: A critical review. Energy Build. 2024, 325, 115019. [Google Scholar] [CrossRef]
- Schweiker, M.; André, M.; Al-Atrash, F.; Al-Khatri, H.; Alprianti, R.R.; Alsaad, H.; Amin, R.; Ampatzi, E.; Arsano, A.Y.; Azar, E.; et al. Evaluating assumptions of scales for subjective assessment of thermal environments—Do laypersons perceive them the way, we researchers believe? Energy Build. 2020, 211, 109761. [Google Scholar] [CrossRef]
- Wang, Y.; Yin, L.; Dong, Q.; Fei, F.; Yao, W.; Sun, J.; Jiang, Z. From thermal demand characterization to accurate evaluation: Exploring seasonal differences in outdoor thermal comfort of the elderly in China’s communities. Urban Clim. 2024, 58, 102220. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Ren, C. Diversity of summertime thermal and environmental perceptions in residential public spaces: A walking-based assessment in Hong Kong’s public housing estates. Build. Environ. 2025, 271, 112594. [Google Scholar] [CrossRef]
- Cui, G.; Wang, M.; Fan, Y.; Xue, F.; Chen, H. Assessment of Health-Oriented Layout and Perceived Density in High-Density Public Residential Areas: A Case Study of Shenzhen. Buildings 2024, 14, 3626. [Google Scholar] [CrossRef]
- Fukawa, Y.; Watanabe, Y.; Ogawa, Y.; Hisayama, R.; Nomoto, A.; Nakano, J.; Nakagawa, J.; Tanabe, S.-i. Effects of various environmental grades on thermal comfort in semi-outdoor spaces. Jpn. Archit. Rev. 2023, 6, e12414. [Google Scholar] [CrossRef]
- Amirtham, L.R.; K C, K.A. Impact of semi-private open spaces on outdoor thermal comfort in a residential neighbourhood in warm humid climate. Geol. Ecol. Landsc. 2024, 9, 921–932. [Google Scholar] [CrossRef]
- Zhang, W.; Zeng, H. Spatial differentiation characteristics and influencing factors of the green view index in urban areas based on street view images: A case study of Futian District, Shenzhen, China. Urban For. Urban Green. 2024, 93, 128219. [Google Scholar] [CrossRef]
- ANSI/ASHRAE Standard 55; Thermal Environmental Conditions for Human Occupancy. ASHRAE: Peachtree Corners, GA, USA, 2023.
- ISO 7726; Ergonomics of the Thermal Environment—Instruments for Measuring Physical Quantities. ISO: Geneva, Switzerland, 1998.
- Cheung, P.K.; Jim, C.Y. Determination and application of outdoor thermal benchmarks. Build. Environ. 2017, 123, 333–350. [Google Scholar] [CrossRef]
- Miller, A.; Panneerselvam, J.; Liu, L. A review of regression and classification techniques for analysis of common and rare variants and gene-environmental factors. Neurocomputing 2022, 489, 466–485. [Google Scholar] [CrossRef]
- Muniz, G.; Kibria, B.M.G. On Some Ridge Regression Estimators: An Empirical Comparisons. Commun. Stat.-Simul. Comput. 2009, 38, 621–630. [Google Scholar] [CrossRef]
- Tao, Y.; Zhang, Z.; Ou, W.; Guo, J.; Pueppke, S.G. How does urban form influence PM2.5 concentrations: Insights from 350 different-sized cities in the rapidly urbanizing Yangtze River Delta region of China, 1998–2015. Cities 2020, 98, 102581. [Google Scholar] [CrossRef]
- Binarti, F.; Koerniawan, M.D.; Triyadi, S.; Utami, S.S.; Matzarakis, A. A review of outdoor thermal comfort indices and neutral ranges for hot-humid regions. Urban Clim. 2020, 31, 100531. [Google Scholar] [CrossRef]
- Vatani, J.; Golbabaei, F.; Dehghan, S.F.; Yousefi, A. Applicability of Universal Thermal Climate Index (UTCI) in occupational heat stress assessment: A case study in brick industries. Ind. Health 2016, 54, 14–19. [Google Scholar] [CrossRef]
- Lam, C.K.C.; Lau, K.K.-L. Effect of long-term acclimatization on summer thermal comfort in outdoor spaces: A comparative study between Melbourne and Hong Kong. Int. J. Biometeorol. 2018, 62, 1311–1324. [Google Scholar] [CrossRef]
- Potchter, O.; Cohen, P.; Lin, T.P.; Matzarakis, A. Outdoor human thermal perception in various climates: A comprehensive review of approaches, methods and quantification. Sci. Total Environ. 2018, 631–632, 390–406. [Google Scholar] [CrossRef]
- Xu, T.; Yao, R.; Du, C.; Li, B. Outdoor thermal perception and heatwave adaptation effects in summer—A case study of a humid subtropical city in China. Urban Clim. 2023, 52, 101724. [Google Scholar] [CrossRef]
- Nguyen, A.T.; Singh, M.K.; Reiter, S. An adaptive thermal comfort model for hot humid South-East Asia. Build. Environ. 2012, 56, 291–300. [Google Scholar] [CrossRef]
- Cheng, V.; Ng, E.; Chan, C.; Givoni, B. Outdoor thermal comfort study in a sub-tropical climate: A longitudinal study based in Hong Kong. Int. J. Biometeorol. 2012, 56, 43–56. [Google Scholar] [CrossRef]
- Xu, X.; Wu, Y.; Wang, W.; Hong, T.; Xu, N. Performance-driven optimization of urban open space configuration in the cold-winter and hot-summer region of China. Build. Simul. 2019, 12, 411–424. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, J.; Liu, S.; Liang, S.; Zhang, Y.; Fu, S. The spatial configuration of buildings: A vital consideration impossible to ignore in regulating urban land surface temperature? Evidence from 35 Chinese cities. Sci. Total Environ. 2023, 865, 160946. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Li, J.; Xie, Y.; Niu, J.; Mak, C.M. Simultaneous environmental parameter monitoring and human subject survey regarding outdoor thermal comfort and its modelling. Build. Environ. 2017, 125, 502–514. [Google Scholar] [CrossRef]
- Li, L.; Wang, Z.; Zhen, M.; Nan, K. Study on outdoor thermal comfort of older people in age-friendly communities in cold regions. Energy Build. 2025, 329, 115265. [Google Scholar] [CrossRef]
- Wei, R.; Yan, J.; Cui, Y.; Song, D.; Yin, X.; Sun, N. Studies on the Specificity of Outdoor Thermal Comfort during the Warm Season in High-Density Urban Areas. Buildings 2023, 13, 2473. [Google Scholar] [CrossRef]
- He, Y.E.; Zhong, H.F.; Fan, Y.; Lau, S.S.Y.; Cui, G.X. A calibration framework for outdoor thermal comfort index and neutral range: Application in subtropical hot-humid campus. Indoor Built Environ. 2025, 34, 554–568. [Google Scholar] [CrossRef]
- Cheung, P.K.; Jim, C.Y. Subjective outdoor thermal comfort and urban green space usage in humid-subtropical Hong Kong. Energy Build. 2018, 173, 150–162. [Google Scholar] [CrossRef]
- Cao, B.; Luo, M.; Li, M.; Zhu, Y. Thermal comfort in semi-outdoor spaces within an office building in Shenzhen: A case study in a hot climate region of China. Indoor Built Environ. 2018, 27, 1431–1444. [Google Scholar] [CrossRef]
- Yin, S.; Xiao, Y. Scale Study of Traditional Shophouse Street in South of China Based on Outdoor Thermal Comfort. Procedia Eng. 2016, 169, 232–239. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.; Jin, L. Thermal comfort in interior and semi-open spaces of rural folk houses in hot-humid areas. Build. Environ. 2018, 128, 336–347. [Google Scholar] [CrossRef]
- Spence, C. Senses of place: Architectural design for the multisensory mind. Cogn. Res. Princ. Implic. 2020, 5, 46. [Google Scholar] [CrossRef]
- Lai, D.; Zhou, C.; Huang, J.; Jiang, Y.; Long, Z.; Chen, Q. Outdoor space quality: A field study in an urban residential community in central China. Energy Build. 2014, 68, 713–720. [Google Scholar] [CrossRef]
- Xue, F.; Gou, Z.; Lau, S. The Green Open Space Development Model and Associated Use Behaviors in Dense Urban Settings: Lessons from Hong Kong and Singapore. Urban Des. Int. 2017, 22, 287–302. [Google Scholar] [CrossRef]
- Wen, C.Y.; Juan, Y.H.; Yang, A.S. Enhancement of city breathability with half open spaces in ideal urban street canyons. Build. Environ. 2017, 112, 322–336. [Google Scholar] [CrossRef]
- Berkovic, S.; Yezioro, A.; Bitan, A. Study of thermal comfort in courtyards in a hot arid climate. Sol. Energy 2012, 86, 1173–1186. [Google Scholar] [CrossRef]
- Loche, I.; Bre, F.; Gimenez, J.M.; Loonen, R.; Neves, L.O. Balcony design to improve natural ventilation and energy performance in high-rise mixed-mode office buildings. Build. Environ. 2024, 258, 111636. [Google Scholar] [CrossRef]
- Taleghani, M.; Kleerekoper, L.; Tenpierik, M.; van den Dobbelsteen, A. Outdoor thermal comfort within five different urban forms in the Netherlands. Build. Environ. 2015, 83, 65–78. [Google Scholar] [CrossRef]
- Turner, V.K.; Middel, A.; Vanos, J.K. Shade is an essential solution for hotter cities. Nature 2023, 619, 694–697. [Google Scholar] [CrossRef]
- Zhang, X.; Weerasuriya, A.U.; Wang, J.; Li, C.Y.; Chen, Z.; Tse, K.T.; Hang, J. Cross-ventilation of a generic building with various configurations of external and internal openings. Build. Environ. 2022, 207, 108447. [Google Scholar] [CrossRef]
- Ai, Z.T.; Mak, C.M. Wind-induced single-sided natural ventilation in buildings near a long street canyon: CFD evaluation of street configuration and envelope design. J. Wind Eng. Ind. Aerodyn. 2018, 172, 96–106. [Google Scholar] [CrossRef]
- Ren, Z.; Chen, W.; Wang, L.; Chen, S.; Piao, J. Comparative analysis of east Asian summer monsoon northern boundary indices: Variability, climate anomalies and driving mechanisms. Clim. Dyn. 2024, 63, 35. [Google Scholar] [CrossRef]
- Li, L.; Lu, Y.; Fang, W.; Fan, C.; Zhou, T.; Zhou, X.; Pang, Y. Shading or ventilation: Optimal design for enhancing thermal comfort in university courtyards in hot and humid regions. Archit. Eng. Des. Manag. 2025, 1–24. [Google Scholar] [CrossRef]
- Deng, J.-Y.; Wong, N.H. Impact of urban canyon geometries on outdoor thermal comfort in central business districts. Sustain. Cities Soc. 2020, 53, 101966. [Google Scholar] [CrossRef]
- Ge, J.; Zhao, J.; Wu, Z.; Zhang, H. Investigation into the Impact of Enclosure Retrofit on Thermal Comfort in Semi-Open University Space. Buildings 2025, 15, 2883. [Google Scholar] [CrossRef]








| Morphological Parameters | Tangxuan Estate (TE) | Shangxuan Estate (SE) | Longhai Estate (LE) | Huafu Estate (HE) |
|---|---|---|---|---|
| FAR | 2 | 4 | 4.5 | 5.2 |
| Completion time | 2004 | 2004 | 2014 | 2023 |
| Building type | slab | slab | Slab-tower | tower |
| Height from ground (HFG) | ground | 8 m | 12 m | 8 m |
| Height of residential buildings(HRB) | 36 m | 80 m | 100 m | 150 m |
| Tangxuan Estate (TE) | |||
| VD 1 | VD 2 | ||
![]() | ![]() | ![]() | ![]() |
| VD 3 | VD 4 | ||
![]() | ![]() | ![]() | ![]() |
| Longhai Estate (LE) | |||
| VD 5 | VD 6 | ||
![]() | ![]() | ![]() | ![]() |
| VD 7 | VD 8 | ||
![]() | ![]() | ![]() | ![]() |
| Shangxuan Estate (SE) | |||
| VD 9 | VD 10 | ||
![]() | ![]() | ![]() | ![]() |
| VD 11 | VD 12 | ||
![]() | ![]() | ![]() | ![]() |
| Huafu Estate (HE) | |||
| VD 13 | VD 14 | ||
![]() | ![]() | ![]() | ![]() |
| VD 15 | VD 16 | ||
![]() | ![]() | ![]() | ![]() |
| VD 17 | VD 18 | ||
![]() | ![]() | ![]() | ![]() |
| List | Geometrical Configuration | Measurement Method |
|---|---|---|
| 1 | Area | Projected floor area of the void deck [44] |
| 2 | Height-to-depth ratio (HDR) | To measure the ratio between height and depth [21,26] |
| 3 | width-to-depth ratio (WDR) | To measure the ratio between width and depth [28] |
| 4 | Orientation | To measure the cardinal point a building or space is facing, in relation to the north up to south (0–180°) [16] |
| 5 | Angle with the wind (AW) | To measure the angle between a building or space and the prevailing wind direction (0–180°) [25] |
| 6 | Open space ratio (OSR) | To measure the ratio between the frontage exposed to outdoor space and the total perimeter of the void deck [45]. |
| 7 | Number of open sides (NOS) | To measure the number of open sides. |
| 8 | Sky view factor (SVF) | To measure the ratio between the visible sky at the center point of the semi-outdoor space [3] |
| 9 | Green view factor (GVF) | To measure the ratio between visible greenery at the center point of the semi-outdoor space [46] |
| 10 | Height from ground (HFG) | It measures the distance of a semi-outdoor space from ground level. |
| 11 | Interval space (IS) | It measures the average distance between the open sides and surrounding buildings. |
| Equipment | Measurement Content | Operation Range | Accuracy |
|---|---|---|---|
| Delta OHM 32.3TD Weather Station | Air temperature (Ta) | −30–120 °C | 0.1 °C |
| Relative humidity (RH) | 0–100% | 0.1% | |
| Wind speed (m/s) (Va) | 0.02–5 m/s | 0.01 m/s | |
| Black globe temperature (Tg) | 4–80 °C | 0.1 °C |
| Case List | Void Decks | Measure Schedule | Ta | RH | Va | Tmrt | UTCI | |||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Min | Max | Mean | SD | Min | Max | Mean | SD | Min | Max | Mean | SD | Min | Max | Mean | SD | Min | Max | Mean | SD | |||
| Tang xuan Estate (TE) | 01 | 23 August | 30.0 | 32.2 | 31.2 | 0.68 | 58.4 | 71 | 64.7 | 3.98 | 0.27 | 0.76 | 0.54 | 0.15 | 30.3 | 32.8 | 31.7 | 0.80 | 32.3 | 33.9 | 33.1 | 0.47 |
| 02 | 23 August | 30.1 | 32.3 | 31.2 | 0.64 | 60.1 | 72.4 | 66.3 | 3.75 | 0.18 | 0.66 | 0.34 | 0.11 | 30.7 | 32.9 | 31.8 | 0.80 | 32.8 | 34.2 | 33.6 | 0.46 | |
| 03 | 24 August | 30.1 | 33.3 | 32.1 | 1.15 | 41.9 | 69.1 | 56.3 | 8.84 | 0.5 | 0.85 | 0.67 | 0.12 | 30.4 | 33.6 | 32.2 | 1.01 | 31.8 | 34 | 33.0 | 0.66 | |
| 04 | 24 August | 30.1 | 33.3 | 32.0 | 1.17 | 43.4 | 71.5 | 57.9 | 9.13 | 0.31 | 0.69 | 0.47 | 0.09 | 30.5 | 33.4 | 32.3 | 1.07 | 32.2 | 34.5 | 33.4 | 0.66 | |
| Mean of TE | 30.1 | 32.8 | 31.6 | 0.91 | 51.0 | 71.0 | 61.3 | 6.43 | 0.32 | 0.74 | 0.51 | 0.12 | 30.5 | 33.2 | 32.0 | 0.92 | 32.3 | 34.2 | 33.3 | 0.56 | ||
| Longhai Estate (LE) | 05 | 8 July | 31.5 | 33 | 32.4 | 0.39 | 53.8 | 67.0 | 58.2 | 0.39 | 0.38 | 1.66 | 1.05 | 0.37 | 32 | 34.4 | 33.6 | 0.71 | 31.9 | 35.1 | 33.2 | 0.94 |
| 06 | 8 July | 30.8 | 33.1 | 32.3 | 0.74 | 54.5 | 72.0 | 60.1 | 4.31 | 1.22 | 3.18 | 2.17 | 0.66 | 31.3 | 35.4 | 33.1 | 1.31 | 30.2 | 34.1 | 32.1 | 1.08 | |
| 07 | 27 August | 30.0 | 33.2 | 32 | 1.11 | 55.8 | 73.4 | 61.9 | 5.26 | 0.65 | 1.51 | 1.13 | 0.25 | 30.2 | 33 | 32.1 | 0.98 | 30.9 | 34.6 | 32.8 | 1.28 | |
| 08 | 27 August | 30.0 | 33.3 | 32.1 | 1.16 | 55.9 | 74.6 | 62.3 | 5.61 | 0.55 | 3.54 | 1.92 | 0.82 | 31 | 34.3 | 33.0 | 1.09 | 29.6 | 34.9 | 32.5 | 1.59 | |
| Mean of LE | 30.3 | 33.2 | 32.13 | 1.00 | 55.4 | 73.3 | 61.4 | 5.06 | 0.81 | 2.74 | 1.74 | 0.58 | 30.8 | 34.2 | 32.7 | 1.13 | 30.2 | 34.5 | 32.5 | 1.32 | ||
| Shang xuan Estate (SE) | 09 | 25 August | 30.8 | 34.3 | 32.3 | 1.08 | 45.3 | 66.4 | 55.1 | 6.46 | 0.34 | 1.06 | 0.71 | 0.19 | 30.9 | 34.5 | 32.4 | 1.16 | 31.9 | 34.8 | 33.1 | 0.91 |
| 10 | 25 August | 30.8 | 33.4 | 32.0 | 0.86 | 48.7 | 67.5 | 56.5 | 6.17 | 0.31 | 1.05 | 0.63 | 0.20 | 30.8 | 33.4 | 32.1 | 0.85 | 31.8 | 33.9 | 33.0 | 0.71 | |
| 11 | 26 August | 29.9 | 32.2 | 31.3 | 0.73 | 62 | 72.4 | 65.8 | 2.76 | 0.35 | 0.68 | 0.47 | 0.09 | 30.1 | 32 | 31.2 | 0.61 | 32.1 | 34.2 | 33.3 | 0.72 | |
| 12 | 26 August | 30.0 | 32.5 | 31.5 | 0.79 | 60.2 | 70.9 | 64.4 | 2.74 | 0.27 | 0.9 | 0.56 | 0.18 | 30.7 | 32.4 | 31.63 | 0.55 | 31.4 | 34.4 | 33.2 | 0.98 | |
| Mean of SE | 30.4 | 33.1 | 31.8 | 0.87 | 54.1 | 69.3 | 60.5 | 4.53 | 0.32 | 0.92 | 0.59 | 0.17 | 30.6 | 33.1 | 31.83 | 0.79 | 31.8 | 34.3 | 33.2 | 0.83 | ||
| Huafu Estate (HE) | 13 | 5 August | 32.0 | 34.8 | 33.4 | 0.88 | 59 | 69.8 | 64.8 | 3.72 | 0.83 | 1.9 | 1.33 | 0.33 | 32.1 | 34.8 | 33.7 | 0.82 | 33.4 | 37 | 35 | 1.15 |
| 14 | 5 August | 32.0 | 34.2 | 33.1 | 0.73 | 59.9 | 70.5 | 65.7 | 3.46 | 0.39 | 1.36 | 0.81 | 0.25 | 31.9 | 34 | 33.1 | 0.75 | 33.3 | 37.4 | 35.4 | 1.10 | |
| 15 | 6 August | 32.5 | 34.1 | 33.0 | 0.42 | 63.6 | 68.7 | 65.6 | 1.33 | 0.03 | 0.27 | 0.13 | 0.07 | 32.4 | 34.4 | 33.2 | 0.52 | 35.2 | 37.6 | 36.0 | 0.72 | |
| 16 | 6 August | 32.7 | 34.2 | 33.4 | 0.40 | 60.5 | 67.7 | 63.1 | 2.04 | 0.03 | 0.18 | 0.10 | 0.04 | 32.8 | 34.8 | 33.9 | 0.60 | 35.3 | 37.6 | 36.2 | 0.64 | |
| 17 | 9 August | 30.6 | 33.6 | 32.5 | 1.00 | 56.6 | 68.7 | 62.2 | 3.56 | 2.19 | 3.46 | 2.79 | 0.38 | 32.1 | 34.6 | 33.3 | 0.97 | 29.9 | 33.5 | 32.2 | 1.18 | |
| 18 | 9 August | 30.4 | 33.5 | 32.3 | 1.03 | 57.8 | 70.9 | 63.5 | 3.94 | 1.51 | 2.51 | 2.07 | 0.26 | 30.9 | 34.7 | 32.8 | 1.24 | 29.7 | 33.9 | 32.4 | 1.25 | |
| Mean of HE | 31.7 | 34.01 | 33 | 0.74 | 59.6 | 69.4 | 64.2 | 3.01 | 0.83 | 1.61 | 1.21 | 0.22 | 32.0 | 34.6 | 33.3 | 0.82 | 32.8 | 36.2 | 34.5 | 1.01 | ||
| Part 1 Demographic Information | Record Data | Date Time Location |
| Gender | ☐ Male ☐ Female | |
| Age | ☐ 14–18 ☐ 19–29 ☐ 30–39 ☐ 40–49 ☐ 50–59 ☐ 60–69 ☐ 70 and above | |
| The length of time stay in Shenzhen per Year | ☐ Within 1 month ☐ 1–3 months ☐ 4–6 months ☐ 7–9 months ☐ 10–12 months | |
| The duration spent in residential semi-open space every day | ☐ 0–2 h ☐ 2–4 h ☐ 4–6 h ☐ 6 hours and above | |
| The duration spent in the void decks every day | ☐ 0–2 h ☐ 2–4 h ☐ 4–6 h ☐ 6 hours and above | |
| Schedule of activities at void decks (Multi choice) | ☐ 8:00–10:00 ☐ 10:00–12:00 ☐ 12:00–14:00 ☐ 14:00–16:00 ☐ 16:00–18:00 ☐ 18:00–20:00 | |
| Climate adaptive behavior (Multi-choice) | ☐ Seeking shade ☐ Wearing a hat ☐ Fanning ☐ Wearing less clothes ☐ Having cold drinks ☐ Do Nothing | |
| Part 2 Thermal Perception | Thermal sensation vote (TSV) | ☐ Cold (−3) ☐ Cool (−2) ☐ Slightly cool (−1) ☐ Neutral (0) ☐ Slightly warm (1) ☐ Warm (2) ☐ Hot (3) |
| Thermal comfort vote (TCV) | ☐ Very comfortable (2) ☐ Slightly comfortable (1) ☐ Comfortable (0) ☐ Slightly uncomfortable (−1) ☐ Very uncomfortable (−2) | |
| Part 3 Environmental Satisfaction | Area Satisfaction Vote (Asv) | ☐ very dissatisfied (−2) ☐ dissatisfied (−1) ☐ Neutral (0) ☐ satisfied (1) ☐ very satisfied(2) |
| Height Satisfaction Vote (Hsv) | ☐ very dissatisfied (−2) ☐ dissatisfied (−1) ☐ Neutral (0) ☐ satisfied (1) ☐ very satisfied (2) | |
| Ground Paving Quality Satisfaction Vote (Gpqsv) | ☐ very dissatisfied (−2) ☐ dissatisfied (−1) ☐ Neutral (0) ☐ satisfied (1) ☐ very satisfied (2) | |
| Open Space Ratio Satisfaction Vote (OSRSV) | ☐ very dissatisfied (−2) ☐ dissatisfied (−1) ☐ Neutral (0) ☐ satisfied (1) ☐ very satisfied (2) | |
| Landscape Satisfaction Vote (LSV) | ☐ very dissatisfied (−2) ☐ dissatisfied (−1) ☐ Neutral (0) ☐ satisfied (1) ☐ very satisfied (2) | |
| Rest And Activity Facilities Satisfaction Vote (RAFSV) | ☐ very dissatisfied (−2) ☐ dissatisfied (−1) ☐ Neutral (0) ☐ satisfied (1) ☐ very satisfied (2) | |
| Thermal Satisfaction (TSAT) | ☐ very dissatisfied (−2) ☐ dissatisfied (−1) ☐ Neutral (0) ☐ satisfied (1) ☐ very satisfied (2) | |
| Overall Environmental Quality(OEQ) | ☐ very dissatisfied (−2) ☐ dissatisfied (−1) ☐ Neutral (0) ☐ satisfied (1) ☐ very satisfied (2) |
| Demographic Information | Overall (N = 279) | Percentage (%) | |
|---|---|---|---|
| Gender | Male | 133 | 47.67% |
| Female | 146 | 52.33% | |
| Age | 14–18 | 6 | 2.15% |
| 19–29 | 64 | 22.94% | |
| 30–39 | 52 | 18.64% | |
| 40–49 | 44 | 15.77% | |
| 50–59 | 35 | 12.54% | |
| 60–69 | 51 | 18.28% | |
| 70 and above | 27 | 9.68% | |
| Duration in Shenzhen per Year | Within 1 month | 5 | 1.79% |
| 1–3 months | 9 | 3.23% | |
| 4–6 months | 24 | 8.60% | |
| 7–9 months | 81 | 29.03% | |
| 10–12 months | 160 | 57.35% | |
| Meteorological Parameters | Typology | Measurement | Divergence of Mean Value | Standard Deviation | Sig. | |||
|---|---|---|---|---|---|---|---|---|
| Max | Min | Mean | ||||||
| Ta (°C) | Cluster 1 | 34.3 | 29.9 | 31.877 | Cluster 1 vs. Cluster 2 | −0.179 | 0.122 | 0.145 |
| Cluster 2 | 33.6 | 30.1 | 32.056 | Cluster 1 vs. Cluster 3 | −1.354 | 0.132 | 0.000 ** | |
| Cluster 3 | 34.8 | 32 | 33.231 | Cluster 2 vs. Cluster 3 | −1.175 | 0.147 | 0.000 ** | |
| RH (%) | Cluster 1 | 74.6 | 41.9 | 60.716 | Cluster 1 vs. Cluster 2 | −0.999 | 0.761 | 0.19 |
| Cluster 2 | 72.4 | 48.7 | 61.715 | Cluster 1 vs. Cluster 3 | −4.093 | 0.82 | 0.000 ** | |
| Cluster 3 | 70.5 | 59 | 64.808 | Cluster 2 vs. Cluster 3 | −3.094 | 0.915 | 0.001 ** | |
| Va (m/s) | Cluster 1 | 3.54 | 0.27 | 0.836 | Cluster 1 vs. Cluster 2 | −0.766 | 0.094 | 0.000 ** |
| Cluster 2 | 3.46 | 0.18 | 1.602 | Cluster 1 vs. Cluster 3 | 0.242 | 0.101 | 0.017 * | |
| Cluster 3 | 1.9 | 0.03 | 0.594 | Cluster 2 vs. Cluster 3 | 1.008 | 0.113 | 0.000 ** | |
| Tmrt (°C) | Cluster 1 | 34.5 | 30.1 | 32.225 | Cluster 1 vs. Cluster 2 | −0.403 | 0.14 | 0.004 ** |
| Cluster 2 | 35.4 | 30.7 | 32.628 | Cluster 1 vs. Cluster 3 | −1.245 | 0.151 | 0.000 ** | |
| Cluster 3 | 34.8 | 31.9 | 33.469 | Cluster 2 vs. Cluster 3 | −0.842 | 0.169 | 0.000 ** | |
| UTCI (°C) | Cluster 1 | 35.1 | 29.6 | 33.078 | Cluster 1 vs. Cluster 2 | 0.453 | 0.135 | 0.001 ** |
| Cluster 2 | 34.2 | 29.7 | 32.624 | Cluster 1 vs. Cluster 3 | −2.572 | 0.146 | 0.000 ** | |
| Cluster 3 | 37.6 | 33.3 | 35.65 | Cluster 2 vs. Cluster 3 | −3.026 | 0.163 | 0.000 ** | |
| Meteorological Parameters | UTCI | Ta | RH | Va | Tmrt |
|---|---|---|---|---|---|
| UTCI | 1.00 | ||||
| Ta | 0.709 ** | 1.00 | |||
| RH | −0.036 | −0.524 ** | 1.00 | ||
| Va | −0.522 ** | 0.065 | −0.057 | 1.00 | |
| Tmrt | 0.581 ** | 0.894 ** | −0.432 ** | 0.232 ** | 1.00 |
| Environmental Satisfaction | Typology | Measurement | Divergence of Mean Value | Standard Deviation | Sig. | |||
|---|---|---|---|---|---|---|---|---|
| Max | Min | Mean | ||||||
| Area satisfaction vote (ASV) | Cluster 1 | 2 | −1 | 0.776 | Cluster 1 vs. Cluster 2 | −0.016 | 0.154 | 0.917 |
| Cluster 2 | 2 | −1 | 0.792 | Cluster 1 vs. Cluster 3 | 0.683 | 0.148 | 0.000 ** | |
| Cluster 3 | 2 | −1 | 0.093 | Cluster 2 vs. Cluster 3 | 0.699 | 0.184 | 0.000 ** | |
| Height satisfaction vote (HSV) | Cluster 1 | 2 | −1 | 0.844 | Cluster 1 vs. Cluster 2 | −0.073 | 0.141 | 0.603 |
| Cluster 2 | 2 | −1 | 0.917 | Cluster 1 vs. Cluster 3 | 0.121 | 0.135 | 0.368 | |
| Cluster 3 | 2 | −1 | 0.722 | Cluster 2 vs. Cluster 3 | 0.194 | 0.168 | 0.248 | |
| Ground paving quality satisfaction vote (GPQSV) | Cluster 1 | 2 | −1 | 0.68 | Cluster 1 vs. Cluster 2 | −0.091 | 0.145 | 0.533 |
| Cluster 2 | 2 | −1 | 0.771 | Cluster 1 vs. Cluster 3 | −0.023 | 0.139 | 0.866 | |
| Cluster 3 | 2 | −1 | 0.704 | Cluster 2 vs. Cluster 3 | 0.067 | 0.173 | 0.699 | |
| Open space ratio satisfaction vote (OSRSV) | Cluster 1 | 2 | −1 | 0.837 | Cluster 1 vs. Cluster 2 | 0.253 | 0.138 | 0.067 |
| Cluster 2 | 2 | −1 | 0.583 | Cluster 1 vs. Cluster 3 | 0.726 | 0.132 | 0.000 ** | |
| Cluster 3 | 1 | −1 | 0.111 | Cluster 2 vs. Cluster 3 | 0.472 | 0.164 | 0.004 ** | |
| Landscape satisfaction vote (LSV) | Cluster 1 | 2 | −1 | 0.796 | Cluster 1 vs. Cluster 2 | 0.192 | 0.15 | 0.203 |
| Cluster 2 | 2 | −1 | 0.604 | Cluster 1 vs. Cluster 3 | 0.314 | 0.144 | 0.030 * | |
| Cluster 3 | 2 | −1 | 0.481 | Cluster 2 vs. Cluster 3 | 0.123 | 0.179 | 0.494 | |
| Rest and activity facilities satisfaction vote (RAFSV) | Cluster 1 | 2 | −1 | 0.483 | Cluster 1 vs. Cluster 2 | 0.233 | 0.162 | 0.15 |
| Cluster 2 | 2 | −1 | 0.25 | Cluster 1 vs. Cluster 3 | 0.39 | 0.155 | 0.012 * | |
| Cluster 3 | 1 | −1 | 0.093 | Cluster 2 vs. Cluster 3 | 0.157 | 0.193 | 0.415 | |
| Thermal satisfaction (TSAT) | Cluster 1 | 2 | −1 | 0.599 | Cluster 1 vs. Cluster 2 | 0.286 | 0.143 | 0.047 * |
| Cluster 2 | 2 | −1 | 0.313 | Cluster 1 vs. Cluster 3 | 0.432 | 0.137 | 0.002 ** | |
| Cluster 3 | 2 | −1 | 0.167 | Cluster 2 vs. Cluster 3 | 0.146 | 0.171 | 0.395 | |
| Overall environmental quality (OEQ) | Cluster 1 | 2 | −1 | 0.803 | Cluster 1 vs. Cluster 2 | 0.178 | 0.143 | 0.214 |
| Cluster 2 | 2 | −1 | 0.625 | Cluster 1 vs. Cluster 3 | 0.414 | 0.137 | 0.003 ** | |
| Cluster 3 | 2 | −1 | 0.389 | Cluster 2 vs. Cluster 3 | 0.236 | 0.17 | 0.167 | |
| Variable | OEQ | ASV | HSV | GPQSV | OSRSV | LSV | RAFSV | TSAT | TSV | TCV |
|---|---|---|---|---|---|---|---|---|---|---|
| OEQ | 1.00 | |||||||||
| ASV | 0.544 ** | 1.00 | ||||||||
| HSV | 0.294 ** | 0.355 ** | 1.00 | |||||||
| GPQSV | 0.313 ** | 0.393 ** | 0.410 ** | 1.00 | ||||||
| OSRSV | 0.487 ** | 0.559 ** | 0.365 ** | 0.363 ** | 1.00 | |||||
| LSV | 0.337 ** | 0.383 ** | 0.274 ** | 0.409 ** | 0.506 ** | 1.00 | ||||
| RAFSV | 0.318 ** | 0.313 ** | 0.185 ** | 0.251 ** | 0.342 ** | 0.394 ** | 1.00 | |||
| TSAT | 0.473 ** | 0.325 ** | 0.307 ** | 0.356 ** | 0.388 ** | 0.432 ** | 0.426 ** | 1.00 | ||
| TSV | −0.03 | −0.02 | −0.164 ** | −0.135 * | 0.04 | −0.11 | 0.01 | −0.295 ** | 1.00 | |
| TCV | 0.299 ** | 0.12 | 0.152 * | 0.03 | 0.161 * | 0.07 | −0.06 | 0.403 ** | −0.344 ** | 1.00 |
| Model | Dependent Variable | R2 | Sig. | Impact Variables |
|---|---|---|---|---|
| Model 1 | Ta | 0.248 | p < 0.001 | Orientation, SVF |
| Model 2 | RH | 0.280 | p < 0.001 | HDR, WDR, Orientation, AW, NOS, SVF, GVF, HFG |
| Model 3 | Va | 0.761 | p < 0.001 | HDR, Orientation, AW, NOS, GVF, SVF, HFG, IS |
| Model 4 | Tmrt | 0.366 | p < 0.001 | HDR, Orientation, GVF, SVF, HFG |
| Model 5 | UTCI | 0.512 | p < 0.001 | HDR, WDR, Orientation, AW, NOS, GVF, SVF, HFG, IS |
| List | Variables | Ta | RH | Va | Tmrt | UTCI |
|---|---|---|---|---|---|---|
| 1 | Height-to-depth ratio (HDR) | / | + | + | + | − |
| 2 | width-to-depth ratio (WDR) | / | − | / | / | − |
| 3 | Orientation | + | − | + | + | − |
| 4 | Angle with the wind (AW) | / | + | − | / | + |
| 5 | Open space ratio (OSR) | / | / | / | / | / |
| 6 | Number of open sides (NOS) | / | − | + | / | − |
| 7 | Sky view factor (SVF) | + | − | − | + | + |
| 8 | Green view factor (GVF) | / | − | + | + | − |
| 9 | Height from ground (HFG) | / | − | + | + | − |
| 10 | Interval space (IS) | / | / | + | / | − |
| Microclimate Diversity in the Summer Season | Optimal Typology | Key Performance Metrics | Design Rationale |
|---|---|---|---|
| Clear sky with High Solar Radiation | Cluster 1 (NS-VD) | Mean Tmrt: 32.23 °C; HDR: 0.31 | Higher ceiling height increases ventilation volume. Cross-ventilation compensates for elevated radiant exposure. |
| Low Wind and High Humidity Conditions | Cluster 1 (NS-VD) | Mean Va: 0.836 m/s; Mean RH: 60.72%; OSR: 2.67; NOS: 0.59; North–South Cross-Ventilation | Cross-ventilation through North–South corridors optimizes ambient airflow capture. Enhanced openness accelerates moisture dissipation via improved air exchange. |
| Moderate Wind and Thermal Stress | Cluster 2 (SD-VD) | Mean UTCI: 32.62 °C; Mean Va: 1.602 m/s; HDR: 0.50; Either Southerly or Northerly Orientation | Optimized height-to-depth ratio maximizes vertical air circulation. Single-directional openings accelerate airflow, enhancing wind movement in alignment with prevailing summer winds. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Feng, J.; Xue, F.; Hu, Q. Climate-Responsive Design for Sustainable Housing: Thermal Comfort, Spatial Configuration, and Environmental Satisfaction in Subtropical Void Decks. Buildings 2025, 15, 3846. https://doi.org/10.3390/buildings15213846
Chen S, Feng J, Xue F, Hu Q. Climate-Responsive Design for Sustainable Housing: Thermal Comfort, Spatial Configuration, and Environmental Satisfaction in Subtropical Void Decks. Buildings. 2025; 15(21):3846. https://doi.org/10.3390/buildings15213846
Chicago/Turabian StyleChen, Shan, Jinbo Feng, Fei Xue, and Qiong Hu. 2025. "Climate-Responsive Design for Sustainable Housing: Thermal Comfort, Spatial Configuration, and Environmental Satisfaction in Subtropical Void Decks" Buildings 15, no. 21: 3846. https://doi.org/10.3390/buildings15213846
APA StyleChen, S., Feng, J., Xue, F., & Hu, Q. (2025). Climate-Responsive Design for Sustainable Housing: Thermal Comfort, Spatial Configuration, and Environmental Satisfaction in Subtropical Void Decks. Buildings, 15(21), 3846. https://doi.org/10.3390/buildings15213846





































