A Hybrid POA-VMD–Attention-BiLSTM Model for Deformation Prediction of Concrete Dams and Buildings
Abstract
1. Introduction
2. Methodology
2.1. Pelican Optimization Algorithm (POA)
2.1.1. Moving Towards Prey (Exploration Stage)
2.1.2. Spreading Wings over Water Surface (Exploitation Stage)
2.2. Variational Mode Decomposition
2.3. Attention Mechanism
2.4. Bidirectional Long Short-Term Memory Model (BiLSTM)
2.5. Model Construction Process
3. Engineering Examples
3.1. Project Overview
3.2. POA-VMD
3.3. Model Prediction
3.4. Results and Discussion
4. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Carloni, C.; Verre, S.; Sneed, L.H.; Ombres, L. Open Issues on the Investigation of PBO FRCM-Concrete Debonding. Compos. Struct. 2022, 299, 116062. [Google Scholar] [CrossRef]
- Luo, Y.; Sun, H.; Wang, X.; Chen, A.; Zuo, L. Parametric Optimization of Electromagnetic Tuned Inerter Damper for Structural Vibration Suppression. Struct. Control Health Monit. 2021, 28, e2711. [Google Scholar] [CrossRef]
- Bao, Z.Q.; Ji, J.; Xu, S.; Tian, J.F. Big data in dam safety monitoring: Progress, challenges, and future trends. Water Resour. Plann. Des. 2024, 2, 84–87. [Google Scholar] [CrossRef]
- Song, H.; Shin, G.W.; Yoon, Y.; Bahn, S. The Effects of Ear Dimensions and Product Attributes on the Wearing Comfort of Wireless Earphones. Appl. Sci. 2020, 10, 8890. [Google Scholar] [CrossRef]
- Liu, X.; Wang, H.; Chen, J. Concrete dam displacement prediction based on random forest regression and input variable selection. J. Comput. Civ. Eng. 2021, 35, 04020060. [Google Scholar]
- Tao, W.; Zhao, Z.; Wang, Y. An SVR-based hybrid model for deformation prediction of high dams considering environmental effects. KSCE J. Civ. Eng. 2021, 25, 1395–1406. [Google Scholar]
- Li, Y.; Wang, J.; Zheng, Y. Application of KNN in dam deformation prediction based on real-time monitoring data. Water Resour. Power 2020, 38, 68–72. [Google Scholar]
- Zhao, Y.; Zhang, C. Study on dam displacement prediction using decision tree algorithm. J. Hydraul. Eng. 2019, 50, 566–573. [Google Scholar]
- Lai, G.L.; Liu, X S. A CNN-based model for dam deformation prediction using monitoring data. Energy Sci. Eng. 2024, 42, 157–161. [Google Scholar] [CrossRef]
- Wang, R.Y.; Lin, S.Y.; Fang, W.H.; Zhao, K.W. A hybrid CNN-LSTM model for concrete dam deformation prediction with monitoring data fusion. Water Power 2024, 50, 37–41. [Google Scholar] [CrossRef]
- Li, W.; Wang, K.; Zhang, J. GRU-based dam deformation prediction under complex environmental conditions. Autom. Constr. 2022, 133, 103990. [Google Scholar]
- Wang, J.; Lei, Y.; Yang, X.; Zhang, F. A refinement network embedded with attention mechanism for computer vision based post-earthquake inspections of railway viaduct. Eng. Struct. 2023, 279, 115572. [Google Scholar] [CrossRef]
- Yu, H.G.; Gu, D.; Xu, L.Y.; Hou, H.W. A multivariate LSTM model for dam deformation pre-diction based on monitoring data fusion. J. Anhui Univ. Technol. (Nat. Sci.) 2023, 40, 89–96. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, N. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Yeh, J.R.; Shieh, J.S.; Huang, N.E. Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method. Adv. Adapt. Data Anal. 2010, 2, 135–156. [Google Scholar] [CrossRef]
- Smith, J.S. The local mean decomposition and its application to EEG perception data. J. R. Soc. Interface 2005, 2, 443–454. [Google Scholar] [CrossRef]
- Dragomiretskiy, K.; Zosso, D. Variational mode decomposition. IEEE Trans. Signal Process. 2014, 62, 531–544. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, C.; Li, Y. Prediction of dam displacement using VMD and improved LSTM neural network. Measurement 2020, 163, 108046. [Google Scholar]
- Wang, X.; Wang, Y.; Yuan, P.; Wang, L.; Cheng, D. An adaptive daily runoff forecast model using VMD-LSTM-PSO hybrid approach. Hydrol. Sci. J. 2021, 66, 1488–1502. [Google Scholar] [CrossRef]
- Li, S.J. A Hybrid Model Based on Variational Mode Decomposition and Grid Search Optimized Lstm for Wind Speed Prediction. Master’s Thesis, Wuhan University of Science and Technology, Wuhan, China, 2023. [Google Scholar]
- Neupane, B.; Vereide, K.; Panthi, K.K. Operation of Norwegian Hydropower Plants and Its Effect on Block Fall Events in Unlined Pressure Tunnels and Shafts. Water 2021, 13, 1567. [Google Scholar] [CrossRef]
- Askarzadeh, A. Pelican optimization algorithm (POA): A novel nature-inspired me-taheuristic for optimization problems. Knowl.-Based Syst. 2023, 264, 110264. [Google Scholar]
- Civera, M.; Surace, C. Instantaneous Spectral Entropy: An Application for the Online Monitoring of Multi-Storey Frame Structures. Buildings 2022, 12, 310. [Google Scholar] [CrossRef]
- Bradshaw, J.; Si, W.; Khan, M.; McNally, C. Emerging Insights into the Durability of 3D-Printed Concrete: Recent Advances in Mix Design Parameters and Testing. Designs 2025, 9, 85. [Google Scholar] [CrossRef]
- Mohamad, R.; Wardeh, G.; Kousa, M.A.A.A.; Jahami, A. 1D Finite Element Modeling of Bond-Slip Behavior and Deflection in Reinforced Concrete Flexural Members. Designs 2025, 9, 75. [Google Scholar] [CrossRef]
- Trojovsky, P.; Dehghani, M. Pelican optimization algorithm: A novel nature-inspired algorithm for engineering applications. Sensors 2022, 22, 855. [Google Scholar] [CrossRef]
- Baldini, G.; Bonavitacola, F. Channel identification with improved variational mode decomposition. Phys. Commun. 2022, 55, 101871. [Google Scholar] [CrossRef]
- Zhang, Z.; Hong, W.C. Application of variational mode decomposition and chaotic grey wolf optimizer with support vector regression for forecasting electric loads. Knowl.-Based Syst. 2021, 228, 107297. [Google Scholar] [CrossRef]
- Zhao, L.; Li, Z.; Qu, L.; Zhang, J.; Teng, B. A hybrid VMD-LSTM/GRU model to predict non-stationary and irregular waves on the east coast of China. Ocean Eng. 2023, 276, 114136. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Curran Associates Inc.: Red Hook, NY, USA, 2017; pp. 6000–6010. [Google Scholar]
- Liu, G.; Guo, J. Bidirectional LSTM with attention mechanism and convolutional layer for text classification. Neurocomputing 2019, 337, 325–338. [Google Scholar] [CrossRef]
- Zang, H.; Xu, R.; Cheng, L.; Ding, T.; Liu, L.; Wei, Z.; Sun, G. Residential load forecasting based on LSTM fusing self-attention mechanism with pooling. Energy 2021, 229, 120682. [Google Scholar] [CrossRef]
- Niu, Z.; Zhong, G.; Yu, H. A review on the attention mechanism of deep learning. Neurocomputing 2021, 452, 48–62. [Google Scholar] [CrossRef]
- Kumar, I.; Tripathi, B.K.; Singh, A. Attention-based LSTM network-assisted time series forecasting models for petroleum production. Eng. Appl. Artif. Intell. 2023, 123, 106440. [Google Scholar] [CrossRef]
- Greff, K.; Srivastava, R.K.; Koutník, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A Search Space Odyssey. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 2222–2232. [Google Scholar] [CrossRef]
- Mellit, A.; Pavan, A.M.; Lughi, V. Deep learning neural networks for short-term photo-voltaic power forecasting. Renew. Energy 2021, 172, 276–288. [Google Scholar] [CrossRef]
- Zheng, H.; Lin, F.; Feng, X.; Chen, Y. A hybrid deep learning model with attention-based Conv-LSTM networks for short-term traffic flow prediction. IEEE Trans. Intell. Transp. Syst. 2020, 22, 6910–6920. [Google Scholar] [CrossRef]
Optimization Algorithm | Optimal Mode Number K | Optimal Penalty Factor α | Min Objective Function Value | RMSE | MAE | R2 |
---|---|---|---|---|---|---|
POA | 5 | 2000 | 0.156 | 0.293 | 0.202 | 0.992 |
PSO | 6 | 1800 | 0.198 | 0.701 | 0.518 | 0.966 |
GA | 7 | 3000 | 0.210 | 0.728 | 0.545 | 0.954 |
Proportion | 70/30 | 75/25 | 80/20 | 85/15 |
---|---|---|---|---|
MAE | 0.241 | 0.219 | 0.202 | 0.220 |
RMSE | 0.313 | 0.307 | 0.293 | 0.315 |
R2 | 0.963 | 0.977 | 0.991 | 0.968 |
Hyperparameter | Learning Rate | Batch Size | Epochs | Dropout Rate |
---|---|---|---|---|
Value | 0.001 | 16 | 200 | 0.3 |
Model | Proposed Model | VMD-BiLSTM with Attention Mechanism | BiLSTM with Attention Mechanism | POA-VMD-BiLSTM | BiLSTM | |
---|---|---|---|---|---|---|
PL5-3 | MAE | 0.202 | 0.622 | 0.562 | 0.569 | 0.495 |
RMSE | 0.293 | 0.768 | 0.693 | 0.682 | 0.667 | |
R2 | 0.991 | 0.910 | 0.923 | 0.941 | 0.899 | |
PL16-2 | MAE | 0.218 | 0.812 | 0.831 | 0.826 | 0.816 |
RMSE | 0.272 | 0.883 | 0.945 | 0.879 | 0.982 | |
R2 | 0.996 | 0.950 | 0.943 | 0.958 | 0.940 | |
PL19-2 | MAE | 0.170 | 0.489 | 0.446 | 0.717 | 0.635 |
RMSE | 0.253 | 0.557 | 0.488 | 0.775 | 0.732 | |
R2 | 0.994 | 0.958 | 0.933 | 0.913 | 0.921 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Fang, C.; Wang, X.; Yang, M.; Zhang, H.; Xu, Z.; Ding, G.; Song, S.; Li, J. A Hybrid POA-VMD–Attention-BiLSTM Model for Deformation Prediction of Concrete Dams and Buildings. Buildings 2025, 15, 3698. https://doi.org/10.3390/buildings15203698
Zhao Z, Fang C, Wang X, Yang M, Zhang H, Xu Z, Ding G, Song S, Li J. A Hybrid POA-VMD–Attention-BiLSTM Model for Deformation Prediction of Concrete Dams and Buildings. Buildings. 2025; 15(20):3698. https://doi.org/10.3390/buildings15203698
Chicago/Turabian StyleZhao, Zeju, Chunhui Fang, Xue Wang, Meng Yang, Huaijun Zhang, Zhengfei Xu, Guoqiang Ding, Sijing Song, and Jinyou Li. 2025. "A Hybrid POA-VMD–Attention-BiLSTM Model for Deformation Prediction of Concrete Dams and Buildings" Buildings 15, no. 20: 3698. https://doi.org/10.3390/buildings15203698
APA StyleZhao, Z., Fang, C., Wang, X., Yang, M., Zhang, H., Xu, Z., Ding, G., Song, S., & Li, J. (2025). A Hybrid POA-VMD–Attention-BiLSTM Model for Deformation Prediction of Concrete Dams and Buildings. Buildings, 15(20), 3698. https://doi.org/10.3390/buildings15203698