Impact of Echo Interference on Speech Intelligibility in Extra-Large Spaces
Abstract
1. Introduction
2. Methods
2.1. Survey Site and Questionnaire
2.2. Experiment Design
2.2.1. Speech Materials
2.2.2. Experimental Conditions
2.2.3. Subjects
2.2.4. Experimental Procedure
3. Results
3.1. Subjective Perceptions of the Acoustic Environment in Extra-Large Spaces
3.2. Effects of Echo Interference on Speech Intelligibility
3.3. The Relation Between Speech Intelligibility and STI
4. Discussion
4.1. The Impact of Mandarin Characteristics on Echo Interference
4.2. STI Rating for Extra-Large Spaces
4.3. Comparison Between Listening Satisfaction and Speech Intelligibility
4.4. Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Data Collected from the Questionnaire Survey
Question | Option | Number of Respondents |
---|---|---|
Q1 | Not at all | 0 |
Not important | 2 | |
Moderately | 15 | |
Important | 110 | |
Very important | 66 | |
Q2 | Not at all | 5 |
Not satisfy | 18 | |
Moderately | 70 | |
Satisfy | 78 | |
Very satisfy | 22 | |
Q3 | Not at all | 5 |
Not clear | 25 | |
Moderately | 49 | |
Clear | 96 | |
Very clear | 18 | |
Q4 | Not at all | 2 |
Not loud | 30 | |
Moderately | 64 | |
Loud | 81 | |
Very loud | 16 | |
Q5 | No | 46 |
Uncertainly | 79 | |
Yes | 68 | |
Q7 | Male | 105 |
Female | 88 | |
Q9 | <20 | 21 |
20–40 | 89 | |
40–60 | 81 | |
>60 | 2 | |
Q10 | <15 min | 61 |
15–60 min | 110 | |
>60 min | 22 |
Option | Frequencies of Being Ranked | |||
---|---|---|---|---|
First | Second | Third | Fourth | |
people talking | 72 | 24 | 18 | 10 |
echoes within the space | 27 | 27 | 16 | 10 |
low sound level of the system | 37 | 34 | 8 | 6 |
interference from multiple sound sources | 30 | 40 | 27 | 6 |
noise from air conditioning | 0 | 0 | 3 | 4 |
noise from airplanes/trains | 3 | 8 | 3 | 4 |
noise from advertisements | 1 | 3 | 8 | 5 |
noise from elevators | 0 | 1 | 2 | 3 |
Appendix B. Details of Acoustic Simulation
Model | Surface | Frequency (Hz) | Scattering Coefficient | |||||
---|---|---|---|---|---|---|---|---|
125 Hz | 250 Hz | 500 Hz | 1000 Hz | 2000 Hz | 4000 Hz | |||
Tuanbo Lake Velodrome | Ceiling | 0.32 | 0.38 | 0.48 | 0.60 | 0.60 | 0.58 | 0.3 |
Wall | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.3 | 0.25 | |
Stand | 0.02 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.05 | |
Audience seats | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.5 | |
Side windows | 0.18 | 0.06 | 0.04 | 0.05 | 0.02 | 0.02 | 0.05 | |
Lounge area | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | 0.25 | |
Track surface | 0.15 | 0.18 | 0.25 | 0.25 | 0.2 | 0.15 | 0.05 | |
Terminal 2 of Tianjin Binhai International Airport | Ceiling | 0.36 | 0.36 | 0.58 | 0.68 | 0.58 | 0.38 | 0.3 |
Interior walls | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.25 | |
Seating area | 0.27 | 0.28 | 0.36 | 0.37 | 0.35 | 0.34 | 0.5 | |
Office area walls | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.05 | |
Commercial area walls | 0.2 | 0.2 | 0.25 | 0.25 | 0.25 | 0.25 | 0.05 | |
Floor | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.02 | 0.05 | |
Glass curtain wall | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
Model | Measurement Point | T30 (s) | D50 (%) | C80 (dB) | |||
---|---|---|---|---|---|---|---|
Simulated | Measured | Simulated | Measured | Simulated | Measured | ||
Tuanbo Lake Velodrome | R1 | 3.095 | 3.055 | 62.5 | 60.4 | 3.6 | 3.995 |
R2 | 3.055 | 3.135 | 59.0 | 60.7 | 3.3 | 2.96 | |
Terminal 2 of Tianjin Binhai International Airport | R3 | 1.14 | 1.105 | 87.0 | 87.5 | 10.0 | 11.45 |
R4 | 1.765 | 1.69 | 73.0 | 73.65 | 6.8 | 6.3 | |
R5 | 1.525 | 1.585 | 88.0 | 86.1 | 9.5 | 9.245 |
References
- Shimokura, R.; Soeta, Y. Evaluation of Speech Intelligibility of Sound Fields in Underground Stations. Acoust. Sci. Technol. 2011, 32, 73–75. [Google Scholar] [CrossRef]
- Fujikawa, T.; Aoki, S. An Escape Guiding System Utilizing the Precedence Effect for Evacuation Signal. J. Acoust. Soc. Am. 2013, 133, 3362. [Google Scholar] [CrossRef]
- Kootwijk, P.A.A. The Speech Intelligibility of the Public Address Systems at 14 Dutch Railway Stations. J. Sound Vib. 1996, 193, 433–434. [Google Scholar] [CrossRef]
- Liu, H.; Ma, H.; Wang, C.; Kang, J. Prediction Model of Crowd Noise in Large Waiting Halls. J. Acoust. Soc. Am. 2022, 152, 2001. [Google Scholar] [CrossRef]
- Kotus, J.; Szwoch, G. Speech Intelligibility Improvement for Public Address Systems in Noisy Environments Based on Automatic Gain Selection in Octave Bands. Appl. Acoust. 2025, 235, 110683. [Google Scholar] [CrossRef]
- Huang, W.; Peng, J.; Xie, T. Study on Chinese Speech Intelligibility Under Different Low-Frequency Characteristics of Reverberation Time Using a Hybrid Method. Arch. Acoust. 2023, 48, 151–157. [Google Scholar] [CrossRef]
- Li, X.; Zhao, Y. Exploring Factors Influencing Speech Intelligibility in Airport Terminal Pier-Style Departure Lounges. Buildings 2025, 15, 426. [Google Scholar] [CrossRef]
- Pan, L.; Lu, W. The Discussions of the Code for Acoustical Design of Gymnasiums. Audio Eng. 2016, 30, 11–14. [Google Scholar] [CrossRef]
- Haas, H. The Influence of a Single Echo on the Audibility of Speech. J. Audio Eng. Soc. 1972, 20, 146–159. [Google Scholar]
- Wang, C.; Ma, H.; Wu, Y.; Kang, J. Characteristics and Prediction of Sound Level in Extra-Large Spaces. Appl. Acoust. 2018, 134, 1–7. [Google Scholar] [CrossRef]
- Lochner, J.P.A.; Burger, J.F. The Influence of Reflections on Auditorium Acoustics. J. Sound Vib. 1964, 1, 426–448,IN15,449–454. [Google Scholar] [CrossRef]
- Warzybok, A.; Rennies, J.; Brand, T.; Doclo, S.; Kollmeier, B. Effects of Spatial and Temporal Integration of a Single Early Reflection on Speech Intelligibility. J. Acoust. Soc. Am. 2013, 133, 269–282. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, S.; Cui, Z.; Miyashita, T.; Morimoto, M.; Suzuki, Y.; Sato, H. Effects of Inter-Word Pauses on Speech Intelligibility under Long-Path Echo Conditions. Appl. Acoust. 2018, 140, 263–274. [Google Scholar] [CrossRef]
- Sun, G. Main Points of Public-Address System Designing on Gymnasium and Stadium. Audio Eng. 2012, 36, 1–2+20. [Google Scholar] [CrossRef]
- Cui, Z.; Sakamoto, S.; Morimoto, M.; Suzuki, Y.; Sato, H. Effect of Word Familiarity on Word Intelligibility of Four Continuous Words under Long-Path Echo Conditions. Appl. Acoust. 2017, 124, 30–37. [Google Scholar] [CrossRef]
- Houtgast, T.; Steeneken, H.J.M. The Modulation Transfer Function in Room Acoustics as a Predictor of Speech Intelligibility. J. Acoust. Soc. Am. 1973, 54, 557. [Google Scholar] [CrossRef]
- Houtgast, T.; Steeneken, H.J.M. A Review of the MTF Concept in Room Acoustics and Its Use for Estimating Speech Intelligibility in Auditoria. J. Acoust. Soc. Am. 1985, 77, 1069–1077. [Google Scholar] [CrossRef]
- Steeneken, H.J.; Houtgast, T. A Physical Method for Measuring Speech-Transmission Quality. J. Acoust. Soc. Am. 1980, 67, 318–326. [Google Scholar] [CrossRef] [PubMed]
- Kang, J. Comparison of Speech Intelligibility between English and Chinese. J. Acoust. Soc. Am. 1998, 103, 1213–1216. [Google Scholar] [CrossRef]
- Kang, J. Acoustics of Long Spaces: Theory and Design Guidance; Thomas Telford: London, UK, 2002; ISBN 978-0-7277-3013-8. [Google Scholar]
- Zhu, P.; Mo, F.; Kang, J. Relationship Between Chinese Speech Intelligibility and Speech Transmission Index Under Reproduced General Room Conditions. Acta Acust. United Acust. 2014, 100, 880–887. [Google Scholar] [CrossRef]
- Liu, H.; Hui, M.; Jian, K.; Chao, W. The Speech Intelligibility and Applicability of the Speech Transmission Index in Large Spaces. Appl. Acoust. 2020, 167, 107400. [Google Scholar] [CrossRef]
- Hu, H.; Xi, X.; Wong, L.L.N.; Hochmuth, S.; Warzybok, A.; Kollmeier, B. Construction and Evaluation of the Mandarin Chinese Matrix (CMNmatrix) Sentence Test for the Assessment of Speech Recognition in Noise. Int. J. Audiol. 2018, 57, 838–850. [Google Scholar] [CrossRef]
- Li, H.; Chen, J. Acoustic Design of the Dome. Build. Entertain. Stad. 2023, 2023, 33–39. [Google Scholar] [CrossRef]
- GB/T 12060.16-2017; Sound System Equipment. Part 16: Objective Rating of Speech Intelligibility by Speech Transmission Index. Standards Press of China: Beijing, China, 2018.
- Gutschalk, A.; Micheyl, C.; Oxenham, A.J. Neural Correlates of Auditory Perceptual Awareness under Informational Masking. PLoS Biol. 2008, 6, e138. [Google Scholar] [CrossRef]
- Steeneken, H.J.M.; Houtgast, T. Validation of the Revised STIr Method. Speech Commun. 2002, 38, 413–425. [Google Scholar] [CrossRef]
- Wen, M.; Ma, H.; Wang, C. Older Adults’ Perception of Urgency: Effects of Simple Temporal Patterns in Auditory Signals. J. Acoust. Soc. Am. 2025, 158, 2319–2330. [Google Scholar] [CrossRef]
- Winkler, A.; Warkentin, L.; Denk, F.; Husstedt, H.; Sankowksy-Rothe, T.; Blau, M.; Holube, I. Reference Speech-Recognition Curves for a German Monosyllabic Test in Noise: Effects of Loudspeaker Configuration and Room Acoustics. Int. J. Audiol. 2025, 64, 695–704. [Google Scholar] [CrossRef] [PubMed]
- Hodoshima, N. Effects of Urgent Speech and Congruent/Incongruent Text on Speech Intelligibility for Older Adults in the Presence of Noise and Reverberation. Speech Commun. 2021, 134, 12–19. [Google Scholar] [CrossRef]
- ISO 3382-1:2009; Acoustics—Measurement of Room Acoustic Parameters—Part 1: Performance Spaces. International Organization for Standardization: Geneva, Switzerland, 2009.
Survey Locations | Gender | Age | Length of Stay (min) | ||||||
---|---|---|---|---|---|---|---|---|---|
Male | Female | <20 | 20–40 | 40–60 | >60 | <15 | 15–60 | >60 | |
Tianjin Railway Station | 55.5% | 44.5% | 38.8% | 55.7% | 4.4% | 1.1% | 12.3% | 57.7% | 30.0% |
Binhai International Airport | 52.9% | 47.1% | 25.4% | 58.8% | 13.8% | 2.0% | 10.0% | 36.1% | 53.9% |
Total | 54.5% | 45.5% | 31.6% | 56.9% | 10.0% | 1.5% | 10.8% | 46.2% | 43.0% |
Measurements Locations | SPL | SNR | ||
---|---|---|---|---|
with Broadcast Sound | Without Broadcast Sound | |||
Tianjin Railway Station | R1 | 67.2 | 75 | 7.0 |
R2 | 68.2 | 71.8 | 1.1 | |
R3 | 68 | 72.8 | 3.1 | |
R4 | 68.5 | 76.3 | 7.0 | |
R5 | 67.3 | 71.2 | 1.6 | |
R6 | 67 | 78.6 | 11.3 | |
R7 | 61.2 | 70.5 | 8.8 | |
R8 | 59.6 | 64.6 | 3.3 | |
R9 | 60.2 | 69.3 | 8.5 | |
Binhai International Airport | R1 | 66.2 | 70.7 | 2.6 |
R2 | 68.2 | 71.8 | 1.1 | |
R3 | 66.2 | 69.5 | 0.6 | |
R4 | 61.6 | 67.8 | 5.0 | |
R5 | 60.1 | 68.7 | 8.0 | |
R6 | 59.7 | 68.6 | 8.3 | |
R7 | 63.1 | 69.2 | 4.9 |
Name | Verb | Numeral | Adjective | Noun | |
---|---|---|---|---|---|
0 | 郭毅 | 带走 | 一个 | 彩色的 | 板凳 |
Guoyi | took away | one | colourful | stool | |
1 | 李锐 | 借来 | 两个 | 大号的 | 茶杯 |
Lirui | borrowed | two | large-sized | cup | |
2 | 沈悦 | 看见 | 三个 | 很旧的 | 灯笼 |
Shengyue | looked | three | very old | lantern | |
3 | 王石 | 留下 | 四个 | 便宜的 | 饭盒 |
Wangshi | kept | four | cheap | lunch-box | |
4 | 徐敏 | 买回 | 五个 | 漂亮的 | 花瓶 |
Xumin | bought | five | beautiful | vase | |
5 | 杨硕 | 拿起 | 六个 | 普通的 | 戒指 |
Yangshuo | picked up | six | ordinary | ring | |
6 | 张伟 | 弄丢 | 七个 | 奇怪的 | 闹钟 |
Zhangwei | lost | seven | strange | alarm-clocks | |
7 | 郑贤 | 收好 | 八个 | 全新的 | 书包 |
Zhengxian | put away | eight | brand-new | school-bag | |
8 | 周明 | 需要 | 九个 | 特别的 | 水壶 |
Zhouming | needed | nine | special | kettle | |
9 | 朱婷 | 找出 | 十个 | 用过的 | 玩具 |
Zhuting | found | ten | used | toy |
0 ms | 100 ms | 200 ms | 300 ms | 400 ms | 500 ms | 800 ms | 1000 ms | |
---|---|---|---|---|---|---|---|---|
0 ms | \ | 5.1% ** | 5.8% ** | 12.9% ** | 10.7% ** | 14.5% ** | 13.5% ** | 14.8% ** |
100 ms | 5.1% ** | \ | 0.6% | 7.8% ** | 5.6% ** | 9.4% ** | 8.4% ** | 9.6% ** |
200 ms | 5.8% ** | 0.6% | \ | 7.1% ** | 4.9% ** | 8.7% ** | 7.8% ** | 9.0% ** |
300 ms | 12.9% ** | 7.8% ** | 7.1% ** | \ | −2.2% | 1.6% | 0.6% | 1.9% |
400 ms | 10.7% ** | 5.6% ** | 4.9% ** | −2.2% | \ | 3.8% ** | 2.8% * | 4.0% ** |
500 ms | 14.5% ** | 9.4% ** | 8.7% ** | 1.6% | 3.8% ** | \ | −1.0% | 0.2% |
800 ms | 13.5% ** | 8.4% ** | 7.8% ** | 0.6% | 2.8% * | −1.0% | \ | 1.2% |
1000 ms | 14.8% ** | 9.6% ** | 9.0% ** | 1.9% | 4.0% ** | 0.2% | 1.2% | \ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Ma, H.; Wang, C.; Dong, S.; Hu, W.; He, B. Impact of Echo Interference on Speech Intelligibility in Extra-Large Spaces. Buildings 2025, 15, 3690. https://doi.org/10.3390/buildings15203690
Wang W, Ma H, Wang C, Dong S, Hu W, He B. Impact of Echo Interference on Speech Intelligibility in Extra-Large Spaces. Buildings. 2025; 15(20):3690. https://doi.org/10.3390/buildings15203690
Chicago/Turabian StyleWang, Wenkai, Hui Ma, Chao Wang, Siyang Dong, Wenlin Hu, and Bin He. 2025. "Impact of Echo Interference on Speech Intelligibility in Extra-Large Spaces" Buildings 15, no. 20: 3690. https://doi.org/10.3390/buildings15203690
APA StyleWang, W., Ma, H., Wang, C., Dong, S., Hu, W., & He, B. (2025). Impact of Echo Interference on Speech Intelligibility in Extra-Large Spaces. Buildings, 15(20), 3690. https://doi.org/10.3390/buildings15203690