Optimizing Glass Panel Geometry for Freeform Architecture: A Curvature-Based Pavilion Study
Abstract
1. Introduction
2. Review of Freeform Glass Architecture
2.1. Freeform Geometry
2.2. Brief History of Modular Glass Structures
2.3. Strategies for Panelizing Curved Surfaces
3. Materials and Methods
4. Results
4.1. Concept Development—From Idea to Geometry
4.2. Surface Classification Based on Curvature
4.3. Penalization and Panel Classification
4.3.1. Surface Division Methods (UV, Grids, Tessellations)
4.3.2. Panel Analysis and Classification
4.4. Environmental Analysis—CFD Simulation
4.4.1. Design Objectives
4.4.2. Analysis Results
4.5. Optimization of Glass Pavilion Composite Structure—MES Digital Analysis
4.5.1. Computational Model
4.5.2. Structural Variants Investigated
4.5.3. Results of the Analysis
4.5.4. Variant 8—Detailed Analysis
4.5.5. Summary of the Analysis
5. Discussion
Logical Inversion of Architectural Form Generation
6. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Veltkamp, M. Free Form Structural Design: Schemes, Systems and Prototypes of Structures for Irregular Shaped Buildings. Ph.D. Thesis, TU Delft, Delft, The Netherlands, 2011. [Google Scholar]
- Eigensatz, M.; Kilian, M.; Schiftner, A.; Mitra, N.J.; Pottmann, H.; Pauly, M. Paneling Architectural Freeform Surfaces. In Proceedings of the ACM SIGGRAPH 2010, Los Angeles, CA, USA, 26–30 July 2010. [Google Scholar]
- Hambleton, D.; Howes, C.; Hendricks, J.; Kooymans, J. Study of Panelization Techniques to Inform Freeform Architecture. In Glass Performance Days; Halcrow Yolles Partnership Inc.: Toronto, ON, Canada, 2009; pp. 239–240. [Google Scholar]
- Siegel, C. Formy Strukturalne w Nowoczesnej Architekturze; Arkady: Warszawa, Poland, 1964; p. 236. [Google Scholar]
- Shawkat, S.; Hamaradha, C.; Schlesinger, R.; Ivanec, I. Free-Form Geometry in Architecture. In Proceedings of the 4th International Conference on Architecture & Design (DARCH 2023 April), Virtual, 17–18 April 2023. [Google Scholar] [CrossRef]
- Pottmann, H.; Asperl, A.; Hofer, M.; Kilian, A. Architectural Geometry; Springer: Vienna, Austria, 2007. [Google Scholar]
- Gavriil, K.; Schiftner, A.; Pottmann, H. Optimizing B-Spline Surfaces for Developability and Paneling Architectural Freeform Surfaces. Comput.-Aided Des. 2019, 115, 160–175. [Google Scholar] [CrossRef]
- Li, Z.; Ye, J.; Gao, B.; Wang, Q.; Quan, G.; Shepherd, P. Digital and Automatic Design of Free-Form Single-Layer Grid Structures. Autom. Constr. 2022, 133, 104025. [Google Scholar] [CrossRef]
- Lee, C.; Shin, S.; Issa, R.R. Rationalization of Free-Form Architecture Using Generative and Parametric Designs. Buildings 2023, 13, 1250. [Google Scholar] [CrossRef]
- Gopal, N. Perceptual Aspects of Planar Faceting in Freeform Glass Architecture. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2015. [Google Scholar]
- Pottmann, H.; Eigensatz, M.; Vaxman, A.; Wallner, J. Architectural Geometry. Comput. Graph 2015, 47, 145–164. [Google Scholar] [CrossRef]
- Oikonomopoulou, F.; Bristogianni, T.; Veer, F.A.; Nijsse, R. The Construction of the Crystal Houses Façade: Challenges and Innovations. Glass Struct. Eng. 2018, 3, 247–268. [Google Scholar]
- Addis, B. Building: 3000 Years of Design Engineering and Construction; Phaidon Press: London, UK, 2006. [Google Scholar]
- Wala, T. Nowoczesne Technologie w Architekturze: Szkło jako Materiał Budowlany; Politechnika Śląska: Gliwice, Poland, 2017. [Google Scholar]
- Giedion, S. Przestrzeń, Czas i Architektura; PWN: Warszawa, Poland, 1968. [Google Scholar]
- Whyte, I. Bruno Taut and the Architecture of Activism; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Pilkington, L.A.B. Review Lecture: The Float Glass Process. Proc. R. Soc. Lond. A 1969, 314, 1–25. [Google Scholar] [CrossRef]
- Mauro, J.C.; Zanotto, E.D. Two Centuries of Glass Research: Historical Trends, Current Status, and Grand Challenges for the Future. Int. J. Appl. Glass Sci. 2014, 5, 313–327. [Google Scholar] [CrossRef]
- Pottmann, H.; Liu, Y.; Wallner, J.; Bobenko, A.; Wang, W. Geometry of Multi-Layer Freeform Structures for Architecture. In ACM SIGGRAPH 2007 Papers; Association for Computing Machinery: New York, NY, USA, 2007; pp. 65-1–65-11. [Google Scholar]
- Pottmann, H.; Schiftner, A.; Bo, P.; Schmiedhofer, H.; Wang, W.; Baldassini, N.; Flöry, S. Freeform Surfaces from Single Curved Panels. ACM Trans. Graph. 2008, 27, 76. [Google Scholar] [CrossRef]
- Eigensatz, M.; Sumner, R.W.; Pauly, M. Curvature-Domain Shape Processing. Comput. Graph. Forum 2008, 27, 241–250. [Google Scholar] [CrossRef]
- Stefańska, A.; Rokicki, W. Architectural Design Optimisation in Reticulated Free-Form Canopies. Buildings 2022, 12, 1068. [Google Scholar] [CrossRef]
- Glymph, J.; Shelden, D.; Ceccato, C.; Mussel, J.; Schober, H. A Parametric Strategy for Free-Form Glass Structures Using Quadrilateral Planar Facets. Autom. Constr. 2004, 13, 187–202. [Google Scholar] [CrossRef]
- Fu, C.W.; Lai, C.F.; He, Y.; Cohen-Or, D. K-set Tilable Surface. ACM Trans. Graph. 2010, 29, 1–6. [Google Scholar] [CrossRef]
- Singh, M.; Schaefer, S. Triangle Surfaces with Discrete Equivalence Classes. In ACM SIGGRAPH 2010 Papers; Association for Computing Machinery: New York, NY, USA, 2010; pp. 1–10. [Google Scholar]
- Neugebauer, J. Applications for Curved Glass in Buildings. J. Facade Des. Eng. 2014, 2, 67–83. [Google Scholar] [CrossRef]
- Yuanda Europe Ltd. Engineering One Blackfriars Façade; Yuanda Europe Ltd.: London, UK, 2019; Available online: https://www.yuanda-europe.com/engineering-one-blackfriars-facade/ (accessed on 19 September 2025).
- Zbašnik-Senegačnik, M.; Kitek Kuzman, M. Interpretations of Organic Architecture. Prostor 2014, 22, 290–301. [Google Scholar]
- Oxman, R. Digital Architecture: Design and Manufacturing in the 21st Century; Laurence King: London, UK, 2006. [Google Scholar]
- Kolarevic, B. Architecture in the Digital Age. Int. J. Archit. Comput. 2003, 1, 247–251. [Google Scholar] [CrossRef]
- Peters, B. Parametric Design in Architecture: Theory and Practice; Routledge: New York, NY, USA, 2013. [Google Scholar]
- Piegl, L.; Tiller, W. The NURBS Book; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Gauthier, S.; Puech, W.; Bénière, R.; Subsol, G. Analysis of Digitized 3D Mesh Curvature Histograms for Reverse Engineering. Comput. Ind. 2017, 92, 67–83. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, E.; Sun, R.; Gao, W.; Fu, Z. Free-Form Surface Partitioning and Simulation Verification Based on Surface Curvature. Micromachines 2022, 13, 2163. [Google Scholar] [CrossRef]
- Januszkiewicz, K. O projektowaniu architektury w dobie narzędzi cyfrowych—stan aktualny i perspektywy rozwoju; Oficyna Wydawnicza PWr: Wrocław, Poland, 2010. [Google Scholar]
- Hagen, H.; Hahmann, S.; Schreiber, T. Visualization and Computation of Curvature Behaviour of Freeform Curves and Surfaces. Comput.-Aided Des. 1995, 27, 545–552. [Google Scholar] [CrossRef]
- Lu, J.; Hu, S.; Raghavan, M.L. A Shell-Based Inverse Approach of Stress Analysis in Intracranial Aneurysms. Ann. Biomed. Eng. 2013, 41, 1505–1515. [Google Scholar] [CrossRef]
- Kreyszig, E. Differential Geometry; Dover Publications: New York, NY, USA, 1991. [Google Scholar]
- Patrikalakis, N.M.; Maekawa, T. Shape Interrogation for Computer Aided Design and Manufacturing; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Turrin, M.; von Buelow, P.; Stouffs, R. Design Explorations of Performance Driven Geometry in Architectural Design Using Parametric Modeling and Genetic Algorithms. Adv. Eng. Inform. 2011, 25, 656–675. [Google Scholar] [CrossRef]
- Ma, Y.; Hewitt, T. Adaptive Tessellation for Trimmed NURBS Surface. Comput. Graph. Forum 2002, 21, 1–10. [Google Scholar]
- Kolarevic, B. Designing and Manufacturing Architecture in the Digital Age. In Proceedings of the 19th eCAADe Conference, Helsinki, Finland, 29–31 August 2001; eCAADe: Helsinki, Finland, 2001; pp. 117–123. [Google Scholar] [CrossRef]
- Tarrús, J.; Hänig, J. New Generation of Bending Tempering Equipment. Challenging Glass Conf. Proc. 2024, 9, 601–608. [Google Scholar]
- Eigensatz, M.; Deuss, M.; Schiftner, A.; Kilian, M.; Mitra, N.J.; Pottmann, H.; Pauly, M. Case Studies in Cost-Optimized Paneling of Architectural Freeform Surfaces. In Advances in Architectural Geometry 2010; Ceccato, C., Ed.; Springer: Wien, Austria, 2010; pp. 49–72. [Google Scholar] [CrossRef]
- Berk, A. A Structural Basis for Surface Discretization of Free Form Structures: Integration of Geometry, Materials and Fabrication. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, 2012. [Google Scholar]
- Pottmann, H.; Wallner, J. Computational Line Geometry; Springer: Berlin/Heidelberg, Germany, 2001; 565p, ISBN 3-540-42058-4. [Google Scholar]
- Østergård, T.; Jensen, R.L.; Maagaard, S.E. Building Simulations Supporting Decision Making in Early Design—A Review. Renew. Sustain. Energy Rev. 2016, 61, 187–201. [Google Scholar] [CrossRef]
- Rabani, M.; Madessa, H.B.; Nord, N. Building Retrofitting through Coupling of Building Energy and Daylighting Simulations with Multi-Objective Optimization: Application to a Historical Building. Energies 2021, 14, 2180. [Google Scholar] [CrossRef]
- Oxman, R. Re-Thinking Digital Design. WIT Trans. Built Environ. 2006, 90, 239–247. [Google Scholar] [CrossRef]
- Gavriil, K.; Guseinov, R.; Pérez, J.; Pellis, D.; Henderson, P.; Rist, F.; Pottmann, H.; Bickel, B. Computational Design of Cold Bent Glass Façades. ACM Trans. Graph. 2020, 39, 208. [Google Scholar] [CrossRef]
- Song, J.; Sun, S. Research on Architectural Form Optimization Method Based on Environmental Performance-Driven Design. In Proceedings of the 2020 Digital FUTURES, Online, 26 June–3 July 2020; Springer: Singapore, 2021; pp. 217–228. [Google Scholar] [CrossRef]
- Pariafsai, F. A Review of Design Considerations in Glass Buildings. Front. Archit. Res. 2016, 5, 171–193. [Google Scholar] [CrossRef]
- Pallasmaa, J. The Eyes of the Skin: Architecture and the Senses; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Coburn, A.; Vartanian, O.; Chatterjee, A. Buildings, Beauty, and the Brain: A Neuroscience of Architectural Experience. J. Cogn. Neurosci. 2017, 29, 1521–1531. [Google Scholar] [CrossRef]
- Hildebrand, G. Origins of Architectural Pleasure; University of California Press: Berkeley, CA, USA, 1999. [Google Scholar]
Gaussian Curvature (K) | Mean Curvature (H) | Point Feature | Local Surface Shape | Example/Notes |
---|---|---|---|---|
K > 0 | H > 0 | Oval | Concave area | Inner side of sphere |
K > 0 | H < 0 | Oval | Convex area | Outer side of a sphere |
K < 0 | H > 0 or H < 0 | Hyperbola | Saddle area | Hyperbolic paraboloid |
K = 0 | H = 0 | Parabola | Flat area | Plane |
K = 0 | H > 0 | Parabola | Concave area | Inside of a cylinder |
K = 0 | H < 0 | Parabola | Convex area | Outside of a cylinder |
Kvaries | Hvaries | Mixed | Freeform surface | Requires point-by-point classification |
Technology | Minimum Bending Radius Rmin | Maximum Panel Dimensions | Technological Limitations | Cost and Production Notes |
---|---|---|---|---|
Slumped glass (traditional bending using bespoke steel mold) | No coating: R = 150 mm With coating (e.g., low-E): R = 500 mm | Up to 12 × 3.6 m | Requires steel mold; 8 h bending + annealing cycle | More expensive than machine bending due to mold fabrication |
Machine bending (no mold; fully tempered or heat strengthened) | No coating: theoretically R = 150 mm (requires special oven), readily achievable R = 700 mm With coating: R = 700 mm | Up to 18 × 3.6 m (height × arch length) or 3.6 × 8.5 m (height × arch length) | Depends on furnace capacity; coatings and interlayers limited to max width 3.2 m | Most cost-efficient option; fast production (~20 min per ply); no molds required |
Lamination bending (during autoclave cycle at 140 °C; vacuum bag process) | Not specified; depends on lamination process and geometry | Up to 20 × 3.6 m | Coatings and interlayers limited to max width 3.2 m | 8 h lamination cycle; glass conforms to framing/system shape |
Group | Surface Area—Range (cm2) | Gaussian Curvature—Range (1/mm2) | Curvature—Characteristics | Technological Conclusions | Panel Characteristics |
---|---|---|---|---|---|
0 | 3732–11,310 | |K| ≤ ε | Nearly flat/developable | Flat glass or cold-bent (large R) | Best for standardization. |
1 | 4446–26,113 | ε < K ≤ 1 × 10−6 | Synclastic, low | Hot-bent (gentle) | Typically dimensionally feasible. |
2 | 4109–9123 | 1 × 10−6 < K ≤ 5 × 10−6 | Synclastic, medium | Hot-bent | Consider finer subdivision. |
3 | 4354–8026 | 5 × 10−6 < K ≤ 1 × 10−5 | Synclastic, high | Hot-bent (tight) | Prefer smaller panels/grid re-orientation. |
4 | 4671–12,185 | K > 1 × 10−5 | Synclastic, very high | Hot-bent/precise molds | Re-panelization recommended. |
5 | 2772–14,564 | −1 × 10−6 ≤ K < −ε | Anticlastic, low | Cold/hot forming per requirements | Acceptable. |
6 | 3567–16,078 | −5 × 10−6 ≤ K < −1 × 10−6 | Anticlastic, medium | Anticlastic forming | Consider smaller panels. |
7 | 2892–7029 | K < −5 × 10−6 | Anticlastic, high | Special molds | Prefer grid correction. |
Wind Velocity = 100 km/h | Pressures at Control Points [kPa] | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Wind angle | 0 | 20 | 40 | 60 | −20/340 | −40/320 | −60/300 | 150 | 180 | 210 |
Control point ID | ||||||||||
1 | −0.01 | −0.01 | −0.21 | −0.68 | 0.14 | −0.37 | −0.55 | −0.27 | −0.01 | 0.0 |
2 | −0.05 | −0.1 | −0.27 | −0.62 | 0.14 | −0.25 | −0.31 | −0.27 | −0.05 | −0.06 |
3 | −0.12 | −0.06 | −0.14 | −0.24 | 0.26 | −0.38 | −0.17 | −0.29 | −0.07 | −0.11 |
4 | −0.55 | −0.37 | −0.38 | −0.42 | −0.70 | −0.63 | −0.53 | −0.62 | −0.44 | −0.17 |
5 | −0.02 | −0.06 | −0.16 | −0.35 | −0.09 | −0.23 | −0.25 | −0.19 | −0.04 | −0.09 |
6 | −0.07 | −0.09 | −0.13 | −0.32 | 0.14 | −0.26 | −0.33 | −0.22 | −0.08 | −0.13 |
7 | −0.07 | −0.13 | −0.2 | −0.22 | 0.15 | −0.2 | −0.3 | −0.21 | −0.07 | −0.2 |
8 | −0.01 | −0.12 | −0.14 | −0.11 | −0.07 | −0.19 | −0.21 | −0.18 | −0.11 | −0.21 |
9 | −0.05 | −0.07 | −0.13 | −0.25 | −0.12 | −0.25 | −0.27 | −0.18 | −0.09 | −0.14 |
10 | −0.26 | −0.39 | −0.08 | −0.18 | −0.20 | −0.16 | −0.22 | −0.16 | −0.39 | −0.53 |
Longitudinal Beam | |||
Beam span | 1.5 m | m | |
Support width | 1.5 m | m | |
Glass weight | 50 | kg/m2 | 490.5 |
Snow weight | 200 | kg/m3 | 0.4905 |
snow thickness | 20 | mm | |
Linear Load | |||
Glass weight | 0.4905 | kN/m2 | 47% |
Snow weight | 0.03924 | kN/m2 | 4% |
Wind load | 0.5 | kN/m2 | 48% |
Web weight | 0.16704 | kg/m | |
Capping weight | 0.42 | kg/m | |
Composite beam load | 0.005758862 | kN | |
Working load | 1.04 | kN/m2 | |
Linear load on beam | 1.55 | kN/m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gołębiowska, M. Optimizing Glass Panel Geometry for Freeform Architecture: A Curvature-Based Pavilion Study. Buildings 2025, 15, 3635. https://doi.org/10.3390/buildings15203635
Gołębiowska M. Optimizing Glass Panel Geometry for Freeform Architecture: A Curvature-Based Pavilion Study. Buildings. 2025; 15(20):3635. https://doi.org/10.3390/buildings15203635
Chicago/Turabian StyleGołębiowska, Marta. 2025. "Optimizing Glass Panel Geometry for Freeform Architecture: A Curvature-Based Pavilion Study" Buildings 15, no. 20: 3635. https://doi.org/10.3390/buildings15203635
APA StyleGołębiowska, M. (2025). Optimizing Glass Panel Geometry for Freeform Architecture: A Curvature-Based Pavilion Study. Buildings, 15(20), 3635. https://doi.org/10.3390/buildings15203635