Outdoor Comfort Optimization in Historic Urban Quarters: From Multisensory Approaches to Operational Strategies Under Resource Constraints
Abstract
1. Introduction
2. Method
2.1. Study Case
2.2. Exploratory Surveys
2.3. Experimental Conditions and Study Design
2.4. Environmental Reproduction
2.5. Experiment Process
2.6. Participants
2.7. Statistical Analysis
3. Result
3.1. Effects of Acoustic, Visual and Thermal Comforts on Overall Comfort
3.2. Accumulative Effects of Multisensory Comforts on Achieving Overall Comfort
3.3. Effects of Multisensory Environmental Factors on Overall Comfort
4. Discussion
4.1. Eliminating Extreme Discomfort Guaranteeing Cross-Domain Compensation
4.2. Accumulating Multisensory Enhancements Relaxing Per-Domain Threshold
4.3. Optimizing Cross-Domain Factors Generating Mutual Reinforcement
4.4. A Multi-Sensory Strategy and Its Illustrative Applications
4.5. Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
LUX | Illumination intensity | Ta | Air temperature |
PET | Physiological equivalent temperature | PMV | Predicted mean vote |
SPL | Sound pressure level | BMI | Body Mass Index |
GVI | Green view index | St,n | Premise events |
Appendix A
Objective Parameters | Instruments | Measurements |
---|---|---|
Visual environment | ||
Green view index | Camera (Insta360 X3, Insta360, Shenzhen, China) | Panoramic photographs were taken at a height of approximately 1.5 m above the ground. These images were subjected to semantic image segmentation, and the green view index was quantified by calculating the proportion of green pixels. |
Illumination intensity | Light meter (TES-1339R, TES, Taipei, Taiwan) | Illumination intensity was recorded at 1 min intervals over five consecutive measurements, with the average value representing the illuminance level for each location. |
Acoustic environment | ||
Sound pressure level | Sound level meter (AWA6228, Aihua, Hangzhou, China) | A sound level meter was positioned at approximately 1.5 m above the ground and maintained at least 3.5 m away from any reflective surfaces other than the ground. Continuous measurements were conducted for 15 min. |
Thermal environment | ||
Air temperature | Humidity and temperature meter (TES-1360A, TES, Taipei, Taiwan) | Temperature, humidity, and wind speed were recorded at 1 min intervals over five consecutive measurements. The average of these values was used as the representative measurement for each site. |
Relative humidity | ||
Wind speed | Thermal anemometer (Testo405, Testo, Lenzkirchte, Germany) |
References
- Chiesura, A. The role of urban parks for the sustainable city. Landsc. Urban Plan. 2004, 68, 129–138. [Google Scholar] [CrossRef]
- United Nations Human Settlements Programme. World Cities Report 2022: Envisaging the Future of Cities; United Nations Research Institute for Social Development: Geneva, Switzerland, 2022. [Google Scholar]
- Lai, D.; Lian, Z.; Liu, W.; Guo, C.; Liu, W.; Liu, K.; Chen, Q. A comprehensive review of thermal comfort studies in urban open spaces. Sci. Total. Environ. 2020, 742, 140092. [Google Scholar] [CrossRef] [PubMed]
- The Central People’s Government of the People’s Republic of China. Five-Year Action Plan for Further Implementing the People-Centered New Urbanization Strategy. Available online: https://www.gov.cn/zhengce/content/202407/content_6965542.htm (accessed on 19 July 2024).
- The Central People’s Government of the People’s Republic of China. Guiding Opinions on Comprehensively Promoting the Renovation of Old Urban Residential Communities. Available online: https://www.gov.cn/zhengce/content/2020-07/20/content_5528320.htm (accessed on 20 July 2020).
- Qiushi. Guiding the Construction of a Beautiful China with Xi’s Eco-Civilization Thought. Available online: https://www.qstheory.cn/20250731/064acb046a06449685fe5f05717f40fe/c.html (accessed on 31 July 2025).
- Lenzholzer, S.; van der Wulp, N.Y. Thermal experience and perception of the built environment in Dutch urban squares. J. Urban Des. 2010, 15, 375–401. [Google Scholar] [CrossRef]
- Peng, Y.; Feng, T.; Timmermans, H. A path analysis of outdoor comfort in urban public spaces. Build. Environ. 2019, 148, 459–467. [Google Scholar] [CrossRef]
- Zhang, T.; Su, M.; Hong, B.; Wang, C.; Li, K. Interaction of emotional regulation and outdoor thermal perception: A pilot study in a cold region of China. Build. Environ. 2021, 198, 107870. [Google Scholar] [CrossRef]
- Polat, A.T.; Akay, A. Relationships between the visual preferences of urban recreation area users and various landscape design elements. Urban For. Urban Green. 2015, 14, 573–582. [Google Scholar] [CrossRef]
- Achsani, R.A.; Wonorahardjo, S. Studies on visual environment phenomena of urban areas: A systematic review. IOP Conf. Ser. Earth Environ. Sci. 2020, 532, 012016. [Google Scholar] [CrossRef]
- Pan, W.; Du, J. Effects of neighbourhood morphological characteristics on outdoor daylight and insights for sustainable urban design. J. Asian Arch. Build. Eng. 2022, 21, 342–367. [Google Scholar] [CrossRef]
- World Health Organization. Environmental noise guidelines for the European region: Executive summary. In Environmental Noise Guidelines for the European Region: Executive Summary; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- ISO Standard No. 12913-1:2014; Acoustics—Soundscape—Part 1: Definition and Conceptual Framework. International Organization for Standardization: Geneva, Switzerland, 2014.
- Yang, W.; Kang, J. Acoustic comfort evaluation in urban open public spaces. Appl. Acoust. 2005, 66, 211–229. [Google Scholar] [CrossRef]
- Carvalho, A.P.; Cleto, R.A. Sound and noise in urban parks. In Proceedings of the 164th Meeting of the Acoustical Society of America, Kansas City, MI, USA, 22–26 October 2012; p. 040001. [Google Scholar]
- Ma, K.W.; Mak, C.M.; Wong, H.M. Effects of environmental sound quality on soundscape preference in a public urban space. Appl. Acoust. 2021, 171, 107570. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, X.; Dong, R.; Shao, G. Landsenses ecology and ecological planning toward sustainable development. Int. J. Sustain. Dev. World Ecol. 2016, 23, 293–297. [Google Scholar] [CrossRef]
- Nitidara, N.P.A.; Sarwono, J.; Suprijanto, S.; Soelami, F.N. The multisensory interaction between auditory, visual, and thermal to the overall comfort in public open space: A study in a tropical climate. Sustain. Cities Soc. 2022, 78, 103622. [Google Scholar] [CrossRef]
- Cureau, R.J.; Pigliautile, I.; Kousis, I.; Pisello, A.L. Multi-domain human-oriented approach to evaluate human comfort in outdoor environments. Int. J. Biometeorol. 2022, 66, 2033–2045. [Google Scholar] [CrossRef] [PubMed]
- Du, M.; Hong, B.; Gu, C.; Li, Y.; Wang, Y. Multiple effects of visual-acoustic-thermal perceptions on the overall comfort of elderly adults in residential outdoor environments. Energy Build. 2023, 283, 112813. [Google Scholar] [CrossRef]
- Li, K.; Liu, M. Combined influence of multi-sensory comfort in winter open spaces and its association with environmental factors: Wuhan as a case study. Build. Environ. 2024, 248, 111037. [Google Scholar] [CrossRef]
- Xiao, A.; Cheng, B.; Zhang, J.; Peng, H.; Lai, Y.; Zeng, F.; Liu, T.; Zhu, F. A study of acoustic-light-thermal effects on pedestrians’ overall comfort in a Cfa-climate campus during the summer. J. Therm. Biol. 2024, 121, 103839. [Google Scholar] [CrossRef]
- Nian, X.; Cao, Y.; Li, Y.; Zhang, Y.; Hong, B. Effects of Environmental Factors on Multisensory Perceptions of Comfort, Safety, and Pleasure in Autumnal Urban Riverfront Spaces. Sustain. Cities Soc. 2025, 131, 106710. [Google Scholar] [CrossRef]
- Lu, D. Remaking Chinese Urban form: Modernity, Scarcity and Space, 1949–2005; Routledge: Oxfordshire, UK, 2006. [Google Scholar]
- Zhang, H.; Wang, F.; Guo, F.; Cai, J.; Dong, J. Urban built heritage protection and realistic dilemmas: The development process, protection system, and critical thinking of historic districts in Dalian. Built Herit. 2023, 7, 25. [Google Scholar] [CrossRef]
- Takata, M. Evaluating the influence of traditional land allotment in the historical district of Japanese regional urban center upon outdoor summer thermal environment. Jpn. Arch. Rev. 2020, 3, 33–43. [Google Scholar] [CrossRef]
- Versaci, A. The evolution of urban heritage concept in France, between conservation and rehabilitation programs. Procedia-Soc. Behav. Sci. 2016, 225, 3–14. [Google Scholar] [CrossRef]
- Versaci, A. L’origine des Secteurs Sauvegardés. Intentions et Difficultés sans la Mise en Place des Premières Opérations. Ph.D. Thesis, Kore University of Enna, Enna, Italy, 2012. [Google Scholar]
- Jamei, E.; Rajagopalan, P. Effect of street design on pedestrian thermal comfort. Arch. Sci. Rev. 2019, 62, 92–111. [Google Scholar] [CrossRef]
- Castaldo, V.L.; Pigliautile, I.; Rosso, F.; Cotana, F.; De Giorgio, F.; Pisello, A.L. How subjective and non-physical parameters affect occupants’ environmental comfort perception. Energy Build. 2018, 178, 107–129. [Google Scholar] [CrossRef]
- Lau, K.K.-L.; Choi, C.Y. The influence of perceived aesthetic and acoustic quality on outdoor thermal comfort in urban environment. Build. Environ. 2021, 206, 108333. [Google Scholar] [CrossRef]
- Nasrollahi, N.; Hatami, Z.; Taleghani, M. Development of outdoor thermal comfort model for tourists in urban historical areas; A case study in Isfahan. Build. Environ. 2017, 125, 356–372. [Google Scholar] [CrossRef]
- Karimi, A.; Mohammad, P. Effect of outdoor thermal comfort condition on visit of tourists in historical urban plazas of Sevilla and Madrid. Environ. Sci. Pollut. Res. 2022, 29, 60641–60661. [Google Scholar] [CrossRef] [PubMed]
- Ali-Toudert, F.; Mayer, H. Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate. Build. Environ. 2006, 41, 94–108. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Wang, Y.; Song, Z.; Zhou, Z.; Ding, L.; Chen, C.; Jin, X.; Cheng, Y. Assessing thermal comfort for the elderly in historical districts and proposing adaptive urban design strategies: A case study in Zhenjiang, China. Landsc. Ecol. Eng. 2025, 21, 29–46. [Google Scholar] [CrossRef]
- Behzad, Z.; Guilandoust, A. Enhancing outdoor thermal comfort in a historic site in a hot dry climate (Case study: Naghsh-e-Jahan Square, Isfahan). Sustain. Cities Soc. 2024, 102, 105209. [Google Scholar] [CrossRef]
- Sun, T.; Lin, X. Research on the Protection of Xiamen Baijia Village Based on the Perspective of Urban Heritage. Chin. Overseas Archit. 2019, 5, 90–92. [Google Scholar]
- CPC Net. Promoting Valuable Spiritual Wealth and Jointly Building a New-Era Shentian Neighborhood. Available online: https://www.12371.cn/2023/08/17/ARTI1692266424799734.shtml (accessed on 17 August 2023).
- Yang, X.; Chen, J.; Chen, L.; Guo, L. Analysis of Changing Characteristics and Influencing Factors of Climate Environmental Comfort in Xiamen from 1971 to 2019. Sci. Technol. Innov. 2022, 11, 103–105. [Google Scholar]
- Roegr, D.; Wei, F.; Bailey, S. “Sensewalk Mapping” as a Method for Teaching Multi-sensorial Landscape Perception. Landsc. Archit. 2021, 28, 96–106. [Google Scholar]
- Aletta, F.; Kang, J.; Axelsson, Ö. Soundscape descriptors and a conceptual framework for developing predictive soundscape models. Landsc. Urban Plan. 2016, 149, 65–74. [Google Scholar] [CrossRef]
- Stevens, J.C.; Tulving, E. Estimations of loudness by a group of untrained observers. Am. J. Psychol. 1957, 70, 600–605. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhao, L.; Mcbride, J.; Gong, P. Can you see green? Assessing the visibility of urban forests in cities. Landsc. Urban Plan. 2009, 91, 97–104. [Google Scholar] [CrossRef]
- Fanger, P.O. Thermal Comfort; Danish Technical Press: Copenhagen, Denmark, 1970. [Google Scholar]
- Yang, M.; Heimes, A.; Vorländer, M.; Schulte-Fortkamp, B. Comparison of subjective evaluations in virtual and real environments for soundscape research. J. Acoust. Soc. Am. 2024, 155, 3715–3729. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Lau, S.-K. Examining the ecological validity of VR experiments in soundscape and landscape research. Comput. Hum. Behav. 2025, 162, 108462. [Google Scholar] [CrossRef]
- Huang, L.; Zhu, Y.; Ouyang, Q.; Cao, B. A study on the effects of thermal, luminous, and acoustic environments on indoor environmental comfort in offices. Build. Environ. 2012, 49, 304–309. [Google Scholar] [CrossRef]
- Wu, H.; Sun, X.; Wu, Y. Investigation of the relationships between thermal, acoustic, illuminous environments and human perceptions. J. Build. Eng. 2020, 32, 101839. [Google Scholar] [CrossRef]
- Guan, H.; Hu, S.; Lu, M.; He, M.; Mao, Z.; Liu, G. People’s subjective and physiological responses to the combined thermal-acoustic environments. Build. Environ. 2020, 172, 106709. [Google Scholar] [CrossRef]
- ASHRAE Standard; ASHRAE Standard 55-2017: Thermal Environmental Conditions for Human Occupancy. American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, Georgia, 2017.
- Qin, Z.; Lu, B.; Jing, W.; Yin, Y.; Zhang, L.; Wang, X.; Luo, W.; Zhang, J.; Qiu, J.; Dong, Y. Creating comfortable outdoor environments: Understanding the intricate relationship between sound, humidity, and thermal comfort. Urban Clim. 2024, 55, 101967. [Google Scholar] [CrossRef]
- Aletta, F.; Lepore, F.; Kostara-Konstantinou, E.; Kang, J.; Astolfi, A. An experimental study on the influence of soundscapes on People’s behaviour in an open public space. Appl. Sci. 2016, 6, 276. [Google Scholar] [CrossRef]
- Meng, Q.; Zhao, T.; Kang, J. Influence of music on the behaviors of crowd in urban open public spaces. Front. Psychol. 2018, 9, 596. [Google Scholar] [CrossRef]
- Yin, J.; Zhu, H.; Yuan, J. Health Impacts of Biophilic Design from a Multisensory Interaction Perspective: Empirical Evidence, Research Designs, and Future Directions. Land 2024, 13, 1448. [Google Scholar] [CrossRef]
Gender | Age (Years) | Height (cm) | Weight (kg) | |
---|---|---|---|---|
Women (n = 19) | Mean (S.D.) | 21.8 (3.2) | 176.4 (8.1) | 74.6 (15.5) |
Men (n = 16) | Mean (S.D.) | 21.0 (2.6) | 164.2 (5.8) | 53.1 (8.9) |
Thresholds | Uncomfortable (−2) | Slightly Uncomfortable (−1) | Neutral (0) | Slightly Comfortable (1) | Comfortable (2) | Very Comfortable (3) |
---|---|---|---|---|---|---|
Improvements (Classified by Thresholds) | 0: [−3, −2) /1: [−2, 3] | 0: [−3, −1) /1: [−1, 3] | 0: [−3, 0) /1: [0, 3] | 0: [−3, 1) /1: [1, 3] | 0: [−3, 2) /1: [2, 3] | 0: [−3, 3) /1: [3] |
Premise events (St,n identified as combinations of conditions) | All three comfort domains improved | |||||
S−2,1 = B1, C1, D1 | S−1,1 = B1, C1, D1 | S0,1 = B1, C1, D1 | S1,1 = B1, C1, D1 | S2,1 = B1, C1, D1 | S3,1 = B1, C1, D1 | |
Two comfort domains improved | ||||||
S−2,2 = B1, C1, D0 | S−1,2 = B1, C1, D0 | S0,2 = B1, C1, D0 | S1,2 = B1, C1, D0 | S2,2 = B1, C1, D0 | S3,2 = B1, C1, D0 | |
S−2,3 = B1, C0, D1 | S−1,3 = B1, C0, D1 | S0,3 = B1, C0, D1 | S1,3 = B1, C0, D1 | S2,3 = B1, C0, D1 | S3,3 = B1, C0, D1 | |
S−2,4 = B0, C1, D1 | S−1,4 = B0, C1, D1 | S0,4 = B0, C1, D1 | S1,4 = B0, C1, D1 | S2,4 = B0, C1, D1 | S3,4 = B0, C1, D1 | |
One comfort domain improved | ||||||
S−2,5 = B1, C0, D0 | S−1,5 = B1, C0, D0 | S0,5 = B1, C0, D0 | S1,5 = B1, C0, D0 | S2,5 = B1, C0, D0 | S3,5 = B1, C0, D0 | |
S−2,6 = B0, C1, D0 | S−1,6 = B0, C1, D0 | S0,6 = B0, C1, D0 | S1,6 = B0, C1, D0 | S2,6 = B0, C1, D0 | S3,6 = B0, C1, D0 | |
S−2,7 = B0, C0, D1 | S−1,7 = B0, C0, D1 | S0,7 = B0, C0, D1 | S1,7 = B0, C0, D1 | S2,7 = B0, C0, D1 | S3,7 = B0, C0, D1 | |
None of the comfort domains improved | ||||||
S−2,8 = B0, C0, D0 | S−1,8 = B0, C0, D0 | S0,8 = B0, C0, D0 | S1,8 = B0, C0, D0 | S2,8 = B0, C0, D0 | S3,8 = B0, C0, D0 |
df | F | Sig. | ηp2 | |
---|---|---|---|---|
Acoustic comfort | 6 | 221.857 | 0.000 *** | 0.237 |
Visual comfort | 6 | 121.819 | 0.000 *** | 0.146 |
Thermal comfort | 6 | 19.116 | 0.000 *** | 0.026 |
Acoustic comfort × Visual comfort | 36 | 3.406 | 0.000 *** | 0.028 |
Visual comfort × Thermal comfort | 35 | 2.659 | 0.000 *** | 0.021 |
Thermal comfort × Acoustic comfort | 36 | 3.016 | 0.000 *** | 0.025 |
df | F | Sig. | η2 | df | F | Sig. | η2 | |||
---|---|---|---|---|---|---|---|---|---|---|
Visual comfort | Thermal comfort | |||||||||
Acoustic comfort | 3 | 6 | 62.023 | 0.000 *** | 0.080 | 3 | 6 | 33.763 | 0.000 *** | 0.045 |
2 | 6 | 158.652 | 0.000 *** | 0.182 | 2 | 6 | 172.224 | 0.000 *** | 0.195 | |
1 | 6 | 292.862 | 0.000 *** | 0.291 | 1 | 6 | 129.163 | 0.000 *** | 0.153 | |
0 | 6 | 151.490 | 0.000 *** | 0.175 | 0 | 6 | 161.415 | 0.000 *** | 0.185 | |
−1 | 6 | 93.865 | 0.000 *** | 0.116 | −1 | 6 | 138.268 | 0.000 *** | 0.162 | |
−2 | 6 | 36.660 | 0.000 *** | 0.049 | −2 | 6 | 55.284 | 0.000 *** | 0.072 | |
−3 | 6 | 6.479 | 0.000 *** | 0.009 | −3 | 6 | 13.880 | 0.000 *** | 0.019 | |
Thermal comfort | Acoustic comfort | |||||||||
Visual comfort | 3 | 5 | 27.221 | 0.000 *** | 0.031 | 3 | 6 | 24.991 | 0.000 *** | 0.034 |
2 | 6 | 59.262 | 0.000 *** | 0.077 | 2 | 6 | 43.147 | 0.000 *** | 0.057 | |
1 | 6 | 69.885 | 0.000 *** | 0.089 | 1 | 6 | 27.317 | 0.000 *** | 0.037 | |
0 | 6 | 99.551 | 0.000 *** | 0.122 | 0 | 6 | 37.792 | 0.000 *** | 0.050 | |
−1 | 6 | 140.924 | 0.000 *** | 0.165 | −1 | 6 | 60.445 | 0.000 *** | 0.078 | |
−2 | 6 | 41.785 | 0.000 *** | 0.055 | −2 | 6 | 50.680 | 0.000 *** | 0.066 | |
−3 | 6 | 8.201 | 0.000 *** | 0.011 | −3 | 6 | 27.009 | 0.000 *** | 0.036 | |
Visual comfort | Acoustic comfort | |||||||||
Thermal comfort | 3 | 6 | 2.279 | 0.034 * | 0.003 | 3 | 6 | 4.575 | 0.000 *** | 0.006 |
2 | 6 | 16.446 | 0.000 *** | 0.023 | 2 | 6 | 13.890 | 0.000 *** | 0.019 | |
1 | 6 | 16.891 | 0.000 *** | 0.023 | 1 | 6 | 15.585 | 0.000 *** | 0.021 | |
0 | 6 | 12.717 | 0.000 *** | 0.018 | 0 | 6 | 14.879 | 0.000 *** | 0.020 | |
−1 | 6 | 6.057 | 0.000 *** | 0.008 | −1 | 6 | 8.650 | 0.000 *** | 0.012 | |
−2 | 6 | 4.920 | 0.000 *** | 0.007 | −2 | 6 | 6.473 | 0.000 *** | 0.009 | |
−3 | 5 | 2.368 | 0.037 * | 0.003 | −3 | 6 | 3.650 | 0.001 ** | 0.005 |
df | F | Sig. | ηp2 | |
---|---|---|---|---|
Sound source | 3 | 669.045 | 0.000 *** | 0.315 |
SPL | 2 | 394.162 | 0.000 *** | 0.153 |
GVI | 3 | 116.019 | 0.000 *** | 0.074 |
Ta | 2 | 9.747 | 0.000 *** | 0.004 |
Sound source × SPL | 6 | 46.105 | 0.000 *** | 0.060 |
Sound source × Ta | 6 | 2.828 | 0.009 ** | 0.004 |
Sound source × GVI | 9 | 1.714 | 0.080 | 0.004 |
SPL × GVI | 6 | 1.042 | 0.396 | 0.001 |
SPL × Ta | 4 | 1.899 | 0.108 | 0.002 |
Ta × GVI | 6 | 0.216 | 0.972 | 0.000 |
df | F | Sig. | η2 | ||
---|---|---|---|---|---|
Sound source | |||||
SPL | Natural | 2 | 0.107 | 0.899 | 0.000 |
Human | 2 | 170.592 | 0.000 *** | 0.072 | |
Traffic | 2 | 191.718 | 0.000 *** | 0.081 | |
Construction | 2 | 173.111 | 0.000 *** | 0.073 | |
Sound source | |||||
Ta | Natural | 2 | 14.446 | 0.000 *** | 0.007 |
Human | 2 | 1.160 | 0.314 | 0.000 | |
Traffic | 2 | 2.233 | 0.107 | 0.000 | |
Construction | 2 | 0.421 | 0.657 | 0.000 | |
SPL [dBA] | |||||
Sound source | 40 | 3 | 80.376 | 0.000 *** | 0.052 |
50 | 3 | 227.774 | 0.000 *** | 0.135 | |
60 | 3 | 455.770 | 0.000 *** | 0.238 | |
Ta [°C] | |||||
Sound source | 24 | 3 | 295.116 | 0.000 *** | 0.168 |
16 | 3 | 209.196 | 0.000 *** | 0.126 | |
32 | 3 | 178.569 | 0.000 *** | 0.109 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, H.; Ma, H.; Liu, K. Outdoor Comfort Optimization in Historic Urban Quarters: From Multisensory Approaches to Operational Strategies Under Resource Constraints. Buildings 2025, 15, 3616. https://doi.org/10.3390/buildings15193616
Su H, Ma H, Liu K. Outdoor Comfort Optimization in Historic Urban Quarters: From Multisensory Approaches to Operational Strategies Under Resource Constraints. Buildings. 2025; 15(19):3616. https://doi.org/10.3390/buildings15193616
Chicago/Turabian StyleSu, Hua, Hui Ma, and Kang Liu. 2025. "Outdoor Comfort Optimization in Historic Urban Quarters: From Multisensory Approaches to Operational Strategies Under Resource Constraints" Buildings 15, no. 19: 3616. https://doi.org/10.3390/buildings15193616
APA StyleSu, H., Ma, H., & Liu, K. (2025). Outdoor Comfort Optimization in Historic Urban Quarters: From Multisensory Approaches to Operational Strategies Under Resource Constraints. Buildings, 15(19), 3616. https://doi.org/10.3390/buildings15193616