LiDAR SLAM for Safety Inspection Robots in Large Scale Public Building Construction Sites
Abstract
1. Introduction
2. System Overview
3. Method
3.1. Data Preprocessing
3.1.1. Outlier Removal
3.1.2. Ground Segmentation
3.1.3. Dynamic Object Removal
3.2. Feature Extraction
3.3. LiDAR Odometry
3.4. LiDAR Mapping
3.5. Loop Closure Detection
4. Experimental Results and Analysis
4.1. Experimental Design
4.2. Simulation Environment Experiment
4.2.1. Inspection Robot Simulation Model
4.2.2. Construction Site Simulation Model
4.3. Construction Site Experiment
4.4. Analysis of Experimental Results
4.4.1. Ground Point Cloud Segmentation
4.4.2. Trajectory Estimation Results
4.4.3. Map Construction Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, M.; Xu, R.; Wu, H.; Pan, J.; Luo, X. Human–Robot Collaboration for on-Site Construction. Autom. Constr. 2023, 150, 104812. [Google Scholar] [CrossRef]
- Chen, X.; Li, X.; Li, K.; Xu, K.; Luo, J.; Du, G.; Ge, Z.; He, C. Collaborative Optimization of Indoor Concrete Leveling Robot Path Based on Discrete Element Simulation. J. Build. Eng. 2025, 111, 113247. [Google Scholar] [CrossRef]
- Kim, S.; Peavy, M.; Huang, P.-C.; Kim, K. Development of BIM-Integrated Construction Robot Task Planning and Simulation System. Autom. Constr. 2021, 127, 103720. [Google Scholar] [CrossRef]
- Tsuruta, T.; Miura, K.; Miyaguchi, M. Mobile Robot for Marking Free Access Floors at Construction Sites. Autom. Constr. 2019, 107, 102912. [Google Scholar] [CrossRef]
- Zou, Q.; Sun, Q.; Chen, L.; Nie, B.; Li, Q. A Comparative Analysis of LiDAR SLAM-Based Indoor Navigation for Autonomous Vehicles. IEEE Trans. Intell. Transp. Syst. 2022, 23, 6907–6921. [Google Scholar] [CrossRef]
- Vassena, G.P.M.; Perfetti, L.; Comai, S.; Mastrolembo Ventura, S.; Ciribini, A.L.C. Construction Progress Monitoring through the Integration of 4D BIM and SLAM-Based Mapping Devices. Buildings 2023, 13, 2488. [Google Scholar] [CrossRef]
- Ibrahimkhil, M.H.; Shen, X.; Barati, K.; Wang, C.C. Dynamic Progress Monitoring of Masonry Construction through Mobile SLAM Mapping and As-Built Modeling. Buildings 2023, 13, 930. [Google Scholar] [CrossRef]
- Brosque, C.; Hawkins, J.T.; Dong, T.; Örn, J.; Fischer, M. Comparison of On-Site and off-Site Robot Solutions to the Traditional Framing and Drywall Installation Tasks. Constr. Robot. 2023, 7, 19–39. [Google Scholar] [CrossRef]
- Wang, X.; Ding, D.; Fu, W. A Robust Lidar-Inertial Localization System Based on Outlier Removal. In Proceedings of the 2021 China Automation Congress (CAC), Beijing, China, 22–24 October 2021; pp. 2420–2425. [Google Scholar]
- Chen, J.; Lu, W.; Fu, Y.; Dong, Z. Automated Facility Inspection Using Robotics and BIM: A Knowledge-Driven Approach. Adv. Eng. Inform. 2023, 55, 101838. [Google Scholar] [CrossRef]
- Huang, Z.; Yang, N.; Cao, R.; Li, Z.; He, Y.; Feng, X. Autonomous Navigation System in Various Greenhouse Scenarios Based on Improved FAST-LIO2. Comput. Electron. Agric. 2025, 234, 110279. [Google Scholar] [CrossRef]
- Liu, W.; Ren, Y.; Guo, R.; Kong, V.W.W.; Hung, A.S.P.; Zhu, F.; Cai, Y.; Wu, H.; Zou, Y.; Zhang, F. Slope Inspection under Dense Vegetation Using LiDAR-Based Quadrotors. Nat. Commun. 2025, 16, 7411. [Google Scholar] [CrossRef]
- Kaya, Y.F.; Orr, L.; Kocer, B.B.; Pawar, V.; Stuart-Smith, R.; Kovač, M. Aerial Additive Manufacturing: Toward on-Site Building Construction with Aerial Robots. Sci. Robot. 2025, 10, eado6251. [Google Scholar] [CrossRef]
- Zhang, J.; Singh, S. Low-Drift and Real-Time Lidar Odometry and Mapping. Auton. Robot. 2017, 41, 401–416. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, L.; Qin, S.; Tian, D.; Ouyang, S.; Chen, C. Optimized LOAM Using Ground Plane Constraints and SegMatch-Based Loop Detection. Sensors 2019, 19, 5419. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sun, Z.; Xu, C.-Z.; Sarma, S.E.; Yang, J.; Kong, H. LiDAR Iris for Loop-Closure Detection. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020; pp. 5769–5775. [Google Scholar]
- Wang, H.; Wang, C.; Xie, L. Intensity Scan Context: Coding Intensity and Geometry Relations for Loop Closure Detection. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 2095–2101. [Google Scholar]
- Wang, H.; Wang, C.; Chen, C.-L.; Xie, L. F-LOAM: Fast LiDAR Odometry and Mapping. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021; pp. 4390–4396. [Google Scholar]
- Shan, T.; Englot, B. LeGO-LOAM: Lightweight and Ground-Optimized Lidar Odometry and Mapping on Variable Terrain. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 4758–4765. [Google Scholar]
- Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision Meets Robotics: The KITTI Dataset. Int. J. Robot. Res. 2013, 32, 1231–1237. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, G. Improved LeGO-LOAM Method Based on Outlier Points Elimination. Measurement 2023, 214, 112767. [Google Scholar] [CrossRef]
- Qian, X.; Ye, C. NCC-RANSAC: A Fast Plane Extraction Method for 3-D Range Data Segmentation. IEEE Trans. Cybern. 2014, 44, 2771–2783. [Google Scholar] [CrossRef] [PubMed]
- Pierzchała, M.; Giguère, P.; Astrup, R. Mapping Forests Using an Unmanned Ground Vehicle with 3D LiDAR and Graph-SLAM. Comput. Electron. Agric. 2018, 145, 217–225. [Google Scholar] [CrossRef]
- Cai, Y.; Xu, W.; Zhang, F. Ikd-Tree: An Incremental K-D Tree for Robotic Applications 2021. arXiv 2021, arXiv:2102.10808. [Google Scholar]
- Tang, J.; Zhang, X.; Zou, Y.; Li, Y.; Du, G. A High-Precision LiDAR-Inertial Odometry via Kalman Filter and Factor Graph Optimization. IEEE Sens. J. 2023, 23, 11218–11231. [Google Scholar] [CrossRef]
- Kim, G.; Choi, S.; Kim, A. Scan Context++: Structural Place Recognition Robust to Rotation and Lateral Variations in Urban Environments. IEEE Trans. Robot. 2022, 38, 1856–1874. [Google Scholar] [CrossRef]
Methods | Max | Mean | Median | Rmse | Std |
---|---|---|---|---|---|
LeGO-LOAM-LPB | 13.834575 | 6.256219 | 5.737883 | 7.209165 | 3.582148 |
LOAM | 41.913941 | 15.936732 | 11.942811 | 19.644045 | 11.485167 |
F-LOAM | 47.216399 | 15.898320 | 10.348663 | 20.269295 | 12.573295 |
LeGO-LOAM | 27.484617 | 9.089018 | 5.473816 | 12.334109 | 8.337866 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, C.; Yu, J.; Li, J.; Wu, Y.; Wang, B.; Wang, K. LiDAR SLAM for Safety Inspection Robots in Large Scale Public Building Construction Sites. Buildings 2025, 15, 3602. https://doi.org/10.3390/buildings15193602
Feng C, Yu J, Li J, Wu Y, Wang B, Wang K. LiDAR SLAM for Safety Inspection Robots in Large Scale Public Building Construction Sites. Buildings. 2025; 15(19):3602. https://doi.org/10.3390/buildings15193602
Chicago/Turabian StyleFeng, Chunyong, Junqi Yu, Jingdan Li, Yonghua Wu, Ben Wang, and Kaiwen Wang. 2025. "LiDAR SLAM for Safety Inspection Robots in Large Scale Public Building Construction Sites" Buildings 15, no. 19: 3602. https://doi.org/10.3390/buildings15193602
APA StyleFeng, C., Yu, J., Li, J., Wu, Y., Wang, B., & Wang, K. (2025). LiDAR SLAM for Safety Inspection Robots in Large Scale Public Building Construction Sites. Buildings, 15(19), 3602. https://doi.org/10.3390/buildings15193602