Analysis of Pore Structure and Its Relationship to Water Transport and Electrical Flux in Mortars Incorporated with Slag and Silica Fume
Abstract
1. Introduction
2. Materials and Experiments
2.1. Materials
2.2. Experiments
2.2.1. Strength Tests
2.2.2. Water Absorption Tests
2.2.3. Rapid Chloride Permeability Test (RCPT)
2.2.4. Mercury Intrusion Porosimetry (MIP)
3. Results
3.1. Compressive and Flexural Strength
3.2. Water Absorption Test of the Mortar
3.3. Electrical Flux of Mortar
3.4. Pore Structure and the Fractal Dimension
4. Discussion
4.1. Pore Structure and Its Relation to Water Absorption and Electrical Flux
4.2. Relationship Between Pore Connectivity and Fractal Dimension
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, P.; Wittmann, F.H.; Vogel, M.; Müller, H.S.; Zhao, T. Influence of freeze-thaw cycles on capillary absorption and chloride penetration into concrete. Cem. Concr. Res. 2017, 100, 60–67. [Google Scholar] [CrossRef]
- Bakera, A.T.; Alexander, M.G.; Huet, B. Service life prediction model for biogenic acid corrosion: Advancement of life factor method for concrete sewer design. Constr. Build. Mater. 2024, 450, 138665. [Google Scholar] [CrossRef]
- Ji, Y.; Pel, L.; Zhang, X.; Sun, Z. Cl- and Na+ ions binding in slag and fly ash cement paste during early hydration as studied by 1H, 35Cl and 23Na NMR. Constr. Build. Mater. 2021, 266, 121606. [Google Scholar] [CrossRef]
- Poyet, S. Water transport properties of virtual fractal porous media: Implications for the unsaturated transport properties of cement-based materials. Cem. Concr. Res. 2021, 150, 106613. [Google Scholar] [CrossRef]
- Ji, Y.; Pel, L.; Sun, Z. The microstructure development during bleeding of cement paste: An NMR study. Cem. Concr. Res. 2019, 125, 105866. [Google Scholar] [CrossRef]
- Ji, Y.; Sun, Z.; Yang, X.; Li, C.; Tang, X. Assessment and mechanism study of bleeding process in cement paste by 1H low-field NMR. Constr. Build. Mater. 2015, 100, 255–261. [Google Scholar] [CrossRef]
- Baroghel-Bouny, V. Water vapour sorption experiments on hardened cementitious materials. Cem. Concr. Res. 2007, 37, 414–437. [Google Scholar] [CrossRef]
- Yang, L.; Gao, D.; Zhang, Y.; Tang, J.; Li, Y. Relationship between sorptivity and capillary coefficient for water absorption of cement-based materials: Theory analysis and experiment. R. Soc. Open Sci. 2019, 6, 190112. [Google Scholar] [CrossRef] [PubMed]
- Arya, C.; Buenfeld, N.R.; Newman, J.B. Factors influencing chloride-binding in concrete. Cem. Concr. Res. 1990, 20, 291–300. [Google Scholar] [CrossRef]
- Geng, J.; Easterbrook, D.; Li, L.; Mo, L. The stability of bound chlorides in cement paste with sulfate attack. Cem. Concr. Res. 2015, 68, 211–222. [Google Scholar] [CrossRef]
- Ji, Y.; Wendt, K.; Pel, L.; Stephan, D. Insights into Cl- binding and phase evolution during the early hydration of cement pastes prepared with NaCl solutions: A study using high-field NMR and in situ XRD. Cem. Concr. Compos. 2025, 164, 106266. [Google Scholar] [CrossRef]
- De Weerdt, K.; Orsáková, D.; Geiker, M.R. The impact of sulphate and magnesium on chloride binding in Portland cement paste. Cem. Concr. Res. 2014, 65, 30–40. [Google Scholar] [CrossRef]
- Li, K.; Li, C. Modeling Hydroionic Transport in Cement-Based Porous Materials Under Drying-Wetting Actions. J. Appl. Mech 2013, 80, 020904. [Google Scholar] [CrossRef]
- Bassuoni, M.T.; Nehdi, M.L. Durability of self-consolidating concrete to different exposure regimes of sodium sulfate attack. Mater. Struct. 2009, 42, 1039–1057. [Google Scholar] [CrossRef]
- Bentz, D.P.; Garboczi, E.J. Percolation of phases in a three-dimensional cement paste microstructural model. Cem. Concr. Res. 1991, 21, 325–344. [Google Scholar] [CrossRef]
- Nokken, M.R.; Hooton, R.D. Using pore parameters to estimate permeability or conductivity of concrete. Mater. Struct. 2007, 41, 1–16. [Google Scholar] [CrossRef]
- Ji, Y.; Sun, Z.; Chen, C.; Pel, L.; Barakat, A. Setting Characteristics, Mechanical Properties and Microstructure of Cement Pastes Containing Accelerators Mixed with Superabsorbent Polymers (SAPs): An NMR Study Combined with Additional Methods. Available online: https://www.mdpi.com/1996-1944/12/2/315 (accessed on 6 August 2025).
- Rößler, C.; Zimmer, D.; Trimby, P.; Ludwig, H.-M. Chemical—Crystallographic characterisation of cement clinkers by EBSD-EDS analysis in the SEM. Cem. Concr. Res. 2022, 154, 106721. [Google Scholar] [CrossRef]
- Fonseca, P.C.; Jennings, H.M. The effect of drying on early-age morphology of C–S–H as observed in environmental SEM. Cem. Concr. Res. 2010, 40, 1673–1680. [Google Scholar] [CrossRef]
- Ji, Y.; Pott, U.; Mezhov, A.; Rößler, C.; Stephan, D. Modelling and experimental study on static yield stress evolution and structural build-up of cement paste in early stage of cement hydration. Cem. Concr. Res. 2025, 87, 107710. [Google Scholar] [CrossRef]
- Ding, X.; Liang, X.; Zhang, Y.; Fang, Y.; Zhou, J.; Kang, T. Capillary Water Absorption and Micro Pore Connectivity of Concrete with Fractal Analysis. Crystals 2020, 10, 892. [Google Scholar] [CrossRef]
- Li, Y.; Shen, A.; Wu, H. Fractal Dimension of Basalt Fiber Reinforced Concrete (BFRC) and Its Correlations to Pore Structure, Strength and Shrinkage. Materials 2020, 13, 3238. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, R.; Zhang, Y.; He, F. The fractal characteristics of pore size distribution in cement-based materials and its effect on gas permeability. Sci. Rep. 2019, 9, 17191. [Google Scholar] [CrossRef] [PubMed]
- Moro, F.; Böhni, H. Ink-Bottle Effect in Mercury Intrusion Porosimetry of Cement-Based Materials. J. Colloid. Interface Sci. 2002, 246, 135–149. [Google Scholar] [CrossRef]
- Arshad, M.T.; Ahmad, S.; Khitab, A.; Hanif, A. Synergistic Use of Fly Ash and Silica Fume to Produce High-Strength Self-Compacting Cementitious Composites. Crystals 2021, 11, 915. [Google Scholar] [CrossRef]
- Mapa, D.G.; Zhu, H.; Nosouhian, F.; Shanahan, N.; Riding, K.A.; Zayed, A. Chloride binding and diffusion of slag blended concrete mixtures. Constr. Build. Mater. 2023, 388, 131584. [Google Scholar] [CrossRef]
- Weng, J.K.; Langan, B.W.; Ward, M.A. Pozzolanic reaction in portland cement, silica fume, and fly ash mixtures. Can. J. Civil. Eng. 1997, 24, 754–760. [Google Scholar] [CrossRef]
- Kim, B.-J.; Lee, G.-W.; Choi, Y.-C. Hydration and Mechanical Properties of High-Volume Fly Ash Concrete with Nano-Silica and Silica Fume. Materials 2022, 15, 6599. [Google Scholar] [CrossRef]
- Lü, Q.; Qiu, Q.; Zheng, J.; Wang, J.; Zeng, Q. Fractal dimension of concrete incorporating silica fume and its correlations to pore structure, strength and permeability. Constr. Build. Mater. 2019, 228, 116986. [Google Scholar] [CrossRef]
- Han, X.; Wang, B.; Feng, J. Relationship between fractal feature and compressive strength of concrete based on MIP. Constr. Build. Mater. 2022, 322, 126504. [Google Scholar] [CrossRef]
- EN 196-1:2016; Methods of testing cement—Part 1: Determination of strength. European Committee for Standardization (CEN): Brussels, Belgium, 2016.
- ASTM C1585-20; Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM C1202-19; Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration. ASTM International: West Conshohocken, PA, USA, 2019.
- Szekely, J.; Neumann, A.W.; Chuang, Y.K. The rate of capillary penetration and the applicability of the washburn equation. J. Colloid. Interface Sci. 1971, 35, 273–278. [Google Scholar] [CrossRef]
- Yang, J.-W.; Cui, Y.-J.; Mokni, N.; Ormea, E. Investigation into the mercury intrusion porosimetry (MIP) and micro-computed tomography (μCT) methods for determining the pore size distribution of MX80 bentonite pellet. Acta Geotech. 2024, 19, 85–97. [Google Scholar] [CrossRef]
- Ji, Y.; Sun, Z.; Jiang, X.; Liu, Y.; Shui, L.; Chen, C. Fractal characterization on pore structure and analysis of fluidity and bleeding of fresh cement paste based on 1H low-field NMR. Constr. Build. Mater. 2017, 140, 445–453. [Google Scholar] [CrossRef]
- Tang, S.; Wang, Y.; Geng, Z.; Xu, X.; Yu, W.; A, H.; Chen, J. Structure, fractality, mechanics and durability of calcium silicate hydrates. Fractal Fract. 2021, 5, 47. [Google Scholar] [CrossRef]
- Janik, J.A.; Kurdowski, W.; Podsiadły, R.; Samseth, J. Fractal Structure of C-S-H and Tobermorite Phases. Acta Phys Pol A 2001, 100, 529–537. [Google Scholar] [CrossRef]
- Archie, G.E. The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics. Trans. AIME 1942, 146, 54–62. [Google Scholar] [CrossRef]
- Sahimi, M. Flow and Transport in Porous Media and Fractured Rock; Wiley, VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2011. [Google Scholar] [CrossRef]
- Katz, A.J.; Thompson, A.H. Quantitative prediction of permeability in porous rock. Phys. Rev. B 1986, 34, 8179–8181. [Google Scholar] [CrossRef] [PubMed]
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | Na2O | Loss on Ignition | |
---|---|---|---|---|---|---|---|---|
Cement | 21.72 | 5.81 | 4.33 | 62.41 | 1.73 | 2.56 | 0.5 | 1.47 |
GGBFS | 55.01 | 28.5 | 8.05 | 2.39 | 2.19 | 0.02 | 0.08 | 2.45 |
Silica fume | 86.20 | 0.70 | 0.50 | 0.35 | 0.15 | 0.01 | 0.2 | 2.1 |
Sample | Water (g) | Cement (g) | Sand (g) | Slag (g) | Silica Fume (g) | PCE (wt.%) |
---|---|---|---|---|---|---|
OPC_REF | 50 | 100 | 150 | 0.1 | ||
OPC_SG15 | 50 | 85 | 150 | 15 | 0.1 | |
OPC_SG30 | 50 | 70 | 150 | 30 | 0.1 | |
OPC_SG25SF5 | 50 | 70 | 150 | 25 | 5 | 0.1 |
OPC_SG20SF10 | 50 | 70 | 150 | 20 | 10 | 0.1 |
Sample | Percent in Each Range [%] | Total Porosity (θT) [%] | Average Pore Diameter [nm] | ||||
---|---|---|---|---|---|---|---|
<10 nm | 10–102 nm | 102–103 nm | >103 nm | ||||
Cured for 7 days | OPC_REF | 4.21 | 21.19 | 61.28 | 13.32 | 17.11 | 242.55 |
OPC_SG15 | 2.11 | 15.78 | 63.62 | 18.49 | 18.86 | 286.57 | |
OPC_SG30 | 2.42 | 17.44 | 59.46 | 20.68 | 19.30 | 322.72 | |
OPC_SG25SF5 | 2.71 | 19.54 | 57.7 | 20.05 | 17.93 | 310.29 | |
OPC_SG20SF10 | 3.52 | 20.94 | 55.51 | 20.04 | 16.65 | 277.38 | |
Cured for 28 days | OPC_REF | 5.43 | 25.26 | 59.77 | 9.54 | 14.51 | 226.87 |
OPC_SG15 | 3.91 | 27.8 | 57.0 | 11.3 | 16.73 | 254.90 | |
OPC_SG30 | 3.39 | 21.97 | 58.43 | 16.21 | 15.54 | 303.49 | |
OPC_SG25SF5 | 5.84 | 29.19 | 51.48 | 13.49 | 11.48 | 293.37 | |
OPC_SG20SF10 | 7.52 | 41.22 | 38.8 | 12.46 | 11.35 | 233.54 |
7 Days | 28 Days | |||
---|---|---|---|---|
Df | R2 | Df | R2 | |
OPC_REF | 2.0723 | 0.9593 | 2.3283 | 0.9413 |
OPC_SG15 | 2.1954 | 0.9233 | 2.3736 | 0.9444 |
OPC_SG30 | 2.3344 | 0.9220 | 2.2496 | 0.9644 |
OPC_SG25SF05 | 2.3087 | 0.9522 | 2.3298 | 0.9768 |
OPC_SG20SF10 | 2.4387 | 0.9409 | 2.4663 | 0.9409 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, Y.; Peng, X.; Tian, H.; Ding, X. Analysis of Pore Structure and Its Relationship to Water Transport and Electrical Flux in Mortars Incorporated with Slag and Silica Fume. Buildings 2025, 15, 3450. https://doi.org/10.3390/buildings15193450
Ji Y, Peng X, Tian H, Ding X. Analysis of Pore Structure and Its Relationship to Water Transport and Electrical Flux in Mortars Incorporated with Slag and Silica Fume. Buildings. 2025; 15(19):3450. https://doi.org/10.3390/buildings15193450
Chicago/Turabian StyleJi, Yanliang, Xinyi Peng, Hongwei Tian, and Xiangqun Ding. 2025. "Analysis of Pore Structure and Its Relationship to Water Transport and Electrical Flux in Mortars Incorporated with Slag and Silica Fume" Buildings 15, no. 19: 3450. https://doi.org/10.3390/buildings15193450
APA StyleJi, Y., Peng, X., Tian, H., & Ding, X. (2025). Analysis of Pore Structure and Its Relationship to Water Transport and Electrical Flux in Mortars Incorporated with Slag and Silica Fume. Buildings, 15(19), 3450. https://doi.org/10.3390/buildings15193450