Research Progress and Trend Analysis of Solid Waste Resource Utilization in Geopolymer Concrete
Abstract
1. Introduction
2. Data Source and Bibliometric Methodology
2.1. Data Source
2.2. Statistical Methods for Bibliometric Analysis
2.3. Literature Retrieval and Data Processing
3. Bibliometric Analysis of Geopolymer Concrete Research
3.1. Annual Publication Trend Analysis
3.2. Core Journals and Co-Citation Analysis
3.3. Co-Citation Analysis of Core Literature
3.4. Author Output and Collaboration Analysis
3.5. Research Hotspots and Frontiers
3.6. Research Limitations
4. Review of Research Status and Progress of Solid Waste-Based Geopolymer Concrete
4.1. Fresh-State Properties of Geopolymer Concrete
4.1.1. Early-Age Strength Development
4.1.2. Workability
4.1.3. Setting Time and Initial Reaction
4.1.4. Rheological Behavior
4.2. Chemical Composition and Microstructural Characterization
4.2.1. Classification of Solid Waste-Based Precursors
Industrial Solid Waste Precursors
Natural Mineral Precursors
Agricultural Solid Waste Precursors
Comparison of Chemical Composition and Performance
Synergistic Composition Strategies
4.2.2. Alkali Activator Systems
Liquid Strong Alkali Activators
Composite Activators
Solid Alkali Activators
Influence of Key Parameters
Pretreatment Techniques
- Physical Separation and Structural Optimization
- 2.
- Chemical Additives and Synergistic Activation
- 3.
- Thermal Activation Mechanism
- 4.
- Mechanical Grinding and Lattice Amorphization Control
4.2.3. One-Part vs. Two-Part Geopolymer Concrete Systems
4.2.4. Reaction Mechanism and Microstructure
Depolymerization–Polycondensation Reaction Model
Three-Stage Kinetic Mechanism
Gel Types and Structure Evolution
Microstructural Characterization Methods
4.3. Mechanical Performance and Durability Characteristics
4.3.1. Compressive Strength and Optimization
4.3.2. Tensile and Flexural Performance
4.3.3. Resistance to Chemical Corrosion
4.3.4. Carbonation Resistance
4.3.5. Chloride Ion Penetration Resistance
4.3.6. Serviceability Challenges and Precursor–Performance Relationships in Geopolymer Concrete
5. Research Challenges and Future Directions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khalil, E.; AbouZeid, M. Framework for Cement Plants Assessment Through Cement Production Improvement Measures for Reduction of CO2 Emissions Towards Net Zero Emissions. Constr. Mater. 2025, 5, 20. [Google Scholar] [CrossRef]
- El Machi, A.; El Berdai, Y.; Mabroum, S.; Safhi, A.E.M.; Taha, Y.; Benzaazoua, M.; Hakkou, R. Recycling of mine wastes in the concrete industry: A review. Buildings 2024, 14, 1508. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymers: Inorganic polymeric new materials. J. Therm. Anal. Calorim. 1991, 37, 1633–1656. [Google Scholar] [CrossRef]
- Zhang, M.; El-Korchi, T.; Zhang, G.; Liang, J.; Tao, M. Synthesis factors affecting mechanical properties, microstructure, and chemical composition of red mud–fly ash based geopolymers. Fuel 2014, 134, 315–325. [Google Scholar] [CrossRef]
- Sharma, A.; Basumatary, N.; Singh, P.; Kapoor, K.; Singh, S.P. Potential of geopolymer concrete as substitution for conventional concrete: A review. Mater. Today Proc. 2022, 57, 1539–1545. [Google Scholar] [CrossRef]
- Tushar, Q.; Bhuiyan, M.A.; Abunada, Z.; Lemckert, C.; Giustozzi, F. Carbon Footprint and Uncertainties of Geopolymer Concrete Production: A Comprehensive Life Cycle Assessment (LCA). C 2025, 11, 55. [Google Scholar] [CrossRef]
- Cong, P.; Cheng, Y. Advances in geopolymer materials: A comprehensive review. J. Traffic Transp. Eng. 2021, 8, 283–314. [Google Scholar] [CrossRef]
- Luhar, I.; Luhar, S. A comprehensive review on fly ash-based geopolymer. J. Compos. Sci. 2022, 6, 219. [Google Scholar] [CrossRef]
- Khale, D.; Chaudhary, R. Mechanism of geopolymerization and factors influencing its development: A review. J. Mater. Sci. 2007, 42, 729–746. [Google Scholar] [CrossRef]
- Kriven, W.M.; Leonelli, C.; Provis, J.L.; Boccaccini, A.R.; Attwell, C.; Ducman, V.S.; Ferone, C.; Rossignol, S.; Luukkonen, T.; van Deventer, J.S.J.; et al. Why geopolymers and alkali-activated materials are key components of a sustainable world: A perspective contribution. J. Am. Ceram. Soc. 2024, 107, 5159–5177. [Google Scholar] [CrossRef]
- He, R.; Dai, N.; Wang, Z. Thermal and mechanical properties of geopolymers exposed to high temperature: A literature review. Adv. Civ. Eng. 2020, 2020, 7532703. [Google Scholar] [CrossRef]
- Verma, M.; Meena, R.K.; Singh, I.; Gupta, N.; Saxena, K.K.; Reddy, M.M.; Salem, K.H.; Salmaan, U. Investigation on the impact of elevated temperature on sustainable geopolymer composite. Adv. Mech. Eng. 2023, 15, 16878132231196402. [Google Scholar] [CrossRef]
- Hassan, A.; Arif, M.; Shariq, M. Mechanical behaviour and microstructural investigation of geopolymer concrete after exposure to elevated temperatures. Arab. J. Sci. Eng. 2020, 45, 3843–3861. [Google Scholar] [CrossRef]
- Rakhimova, N. Recent advances in alternative cementitious materials for nuclear waste immobilization: A review. Sustainability 2022, 15, 689. [Google Scholar] [CrossRef]
- Genua, F.; Lancellotti, I.; Leonelli, C. Geopolymer-Based Stabilization of Heavy Metals, the Role of Chemical Agents in Encapsulation and Adsorption. Polymers 2025, 17, 670. [Google Scholar] [CrossRef]
- Wang, J.; Gangarao, H.; Liang, R.; Liu, W. Durability and prediction models of fiber-reinforced polymer composites under various environmental conditions: A critical review. J. Reinf. Plast. Compos. 2016, 35, 179–211. [Google Scholar] [CrossRef]
- Duxson, P.; Fernández-Jiménez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; Van Deventer, J.S. Geopolymer technology: The current state of the art. J. Mater. Sci. 2007, 42, 2917–2933. [Google Scholar] [CrossRef]
- McLellan, B.C.; Williams, R.P.; Lay, J.; Van Riessen, A.; Corder, G.D. Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement. J. Clean. Prod. 2011, 19, 1080–1090. [Google Scholar] [CrossRef]
- Adnan; Anas, M. Geopolymer concrete as a sustainable alternative to OPC. J. Umm Al-Qura Univ. Eng. Archit. 2025, 1–23. [Google Scholar] [CrossRef]
- Ahmed, H.U.; Mahmood, L.J.; Muhammad, M.A.; Faraj, R.H.; Qaidi, S.M.; Sor, N.H.; Mohammed, A.S.; Mohammed, A.A. Geopolymer concrete as a cleaner construction material: An overview on materials and structural performances. Clean. Mater. 2022, 5, 100111. [Google Scholar] [CrossRef]
- Aarre, T.; Kaasgaard, M. Influence of curing temperature on strength development of concrete. Key Eng. Mater. 2016, 711, 118–125. [Google Scholar] [CrossRef]
- El-Habaak, G.; Askalany, M.; Abdel-Hakeem, M. Building up and characterization of calcined marl-based geopolymeric cement. Infrastructures 2018, 3, 22. [Google Scholar] [CrossRef]
- Vogt, O.; Ukrainczyk, N.; Ballschmiede, C.; Koenders, E. Reactivity and microstructure of metakaolin based geopolymers: Effect of fly Ash and liquid/solid contents. Materials 2019, 12, 3485. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Liu, B.; Zhang, Q.; Wang, S.; Liu, J.; Li, Q.; Fan, J.; Wei, S. Mechanical properties and hydration of fly ash-based geopolymers modified by copper slag. Mater. Today Commun. 2024, 39, 108914. [Google Scholar] [CrossRef]
- Mohmmad, S.H.; Shakor, P.; Muhammad, J.H.; Hasan, M.F.; Karakouzian, M. Sustainable alternatives to cement: Synthesizing metakaolin-based geopolymer concrete using nano-silica. Constr. Mater. 2023, 3, 276–286. [Google Scholar] [CrossRef]
- Liu, H.; Sun, X.; Wang, Y.; Lu, X.; Du, H.; Tian, Z. Study on the influence of silica fume (SF) on the rheology, fluidity, stability, time-varying characteristics, and mechanism of cement paste. Materials 2021, 15, 90. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, G.; Han, X.; Gao, Q.; Ren, J. Research on the design method of mix proportion of ceramsite lightweight aggregate concrete. Constr. Build. Mater. 2024, 433, 136665. [Google Scholar] [CrossRef]
- Mohseni, E.; Kazemi, M.J.; Koushkbaghi, M.; Zehtab, B.; Behforouz, B. Evaluation of mechanical and durability properties of fiber-reinforced lightweight geopolymer composites based on rice husk ash and nano-alumina. Constr. Build. Mater. 2019, 209, 532–540. [Google Scholar] [CrossRef]
- ElNemr, A. Generating water/binder ratio-to-strength curves for cement mortar used in Masnory walls. Constr. Build. Mater. 2020, 233, 117249. [Google Scholar] [CrossRef]
- Hamada, H.M.; Abed, F.; Katman, H.Y.B.; Humada, A.M.; Al Jawahery, M.S.; Majdi, A.; Yousif, S.T.; Thomas, B.S. Effect of silica fume on the properties of sustainable cement concrete. J. Mater. Res. Technol. 2023, 24, 8887–8908. [Google Scholar] [CrossRef]
- Hwang, S.D.; Lepesqueux, É.; Khayat, K.H. Effect of lightweight aggregate on key properties of SCC designated for repair applications. J. Sustain. Cem.-Based Mater. 2018, 7, 79–98. [Google Scholar] [CrossRef]
- Huang, J.; Diao, Y.; Li, P.; Zheng, G.; Pan, W.; Su, Y.; Gan, W.; Chen, H. Optimization design and characteristic of retarding and low-early-strength grouting material for capsule grouting technology: Laboratory and field evaluation. J. Mater. Res. Technol. 2022, 19, 4815–4831. [Google Scholar] [CrossRef]
- Karagöl, F.; Yegin, Y.; Polat, R.; Benli, A.; Demirboğa, R. The influence of lightweight aggregate, freezing–thawing procedure and air entraining agent on freezing–thawing damage. Struct. Concr. 2018, 19, 1328–1340. [Google Scholar] [CrossRef]
- Gökçe, H.S. Durability of slag-based alkali-activated materials: A critical review. J. Aust. Ceram. Soc. 2024, 60, 885–903. [Google Scholar] [CrossRef]
- Luhar, S.; Luhar, I.; Nicolaides, D.; Gupta, R. Durability performance evaluation of rubberized geopolymer concrete. Sustainability 2021, 13, 5969. [Google Scholar] [CrossRef]
- Pasupathy, K.; Ramakrishnan, S.; Sanjayan, J. Formulating eco-friendly geopolymer foam concrete by alkali-activation of ground brick waste. J. Clean. Prod. 2021, 325, 129180. [Google Scholar] [CrossRef]
- Assi, L.; Anay, R.; Leaphart, D.; Soltangharaei, V.; Ziehl, P. Understanding early geopolymerization process of Fly ash–based geopolymer paste using pattern recognition. J. Mater. Civ. Eng. 2018, 30, 04018092. [Google Scholar] [CrossRef]
- Wang, T.; Rao, F.; Yang, L.; Jiang, K.; Lin, N.; Mo, L. Influence of Wastes and Synthesis Conditions on the Compressive Strength, Setting Time and Gels of Waste-Based Geopolymers. Gels 2024, 10, 700. [Google Scholar] [CrossRef]
- Ling, Y.; Wang, K.; Wang, X.; Hua, S. Effects of mix design parameters on heat of geopolymerization, set time, and compressive strength of high calcium fly ash geopolymer. Constr. Build. Mater. 2019, 228, 116763. [Google Scholar] [CrossRef]
- Zhang, P.; Ding, J.; Dai, X.; Zheng, Y.; Zheng, M. Mechanical properties of geopolymer concrete solidified with waste materials. Constr. Build. Mater. 2025, 460, 139835. [Google Scholar] [CrossRef]
- Tennakoon, C.; San Nicolas, R.; Sanjayan, J.G.; Shayan, A. Thermal effects of activators on the setting time and rate of workability loss of geopolymers. Ceram. Int. 2016, 42, 19257–19268. [Google Scholar] [CrossRef]
- Provis, J.L. Geopolymers and other alkali activated materials: Why, how, and what? Mater. Struct. 2014, 47, 11–25. [Google Scholar] [CrossRef]
- Alelweet, O.; Pavia, S. An evaluation of the feasibility of several industrial wastes and natural materials as precursors for the production of alkali activated materials. Int. J. Archit. Civ. Constr. Sci. 2019, 13, 745–752. [Google Scholar]
- Elhag, A.B.; Raza, A.; Khan, Q.U.Z.; Abid, M.; Masood, B.; Arshad, M.; Deifalla, A.F. A critical review on mechanical, durability, and microstructural properties of industrial by-product-based geopolymer composites. Rev. Adv. Mater. Sci. 2023, 62, 20220306. [Google Scholar] [CrossRef]
- Mousavi, S.S.; Bhojaraju, C.; Ouellet-Plamondon, C. Clay as a sustainable binder for concrete—A review. Constr. Mater. 2021, 1, 134–168. [Google Scholar] [CrossRef]
- Alassaf, Y. Comprehensive review of the advancements, benefits, challenges, and design integration of energy efficient materials for sustainable buildings. Buildings 2024, 14, 2994. [Google Scholar] [CrossRef]
- Al-Duais, I.N.; Ahmad, S.; Al-Osta, M.M.; Maslehuddin, M.; Saleh, T.A.; Al-Dulaijan, S.U. Optimization of alkali-activated binders using natural minerals and industrial waste materials as precursor materials. J. Build. Eng. 2023, 69, 106230. [Google Scholar] [CrossRef]
- Zheng, Q.; Zhou, Y.; Liu, X.; Liu, M.; Liao, L.; Lv, G. Environmental hazards and comprehensive utilization of solid waste coal gangue. Prog. Nat. Sci. Mater. Int. 2024, 34, 223–239. [Google Scholar] [CrossRef]
- Deb, P.S.; Nath, P.; Sarker, P.K. The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature. Mater. Des. 2014, 62, 32–39. [Google Scholar] [CrossRef]
- Nath, P.; Sarker, P.K. Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Constr. Build. Mater. 2014, 66, 163–171. [Google Scholar] [CrossRef]
- Hossain, S.S.; Roy, P.K.; Bae, C.J. Utilization of waste rice husk ash for sustainable geopolymer: A review. Constr. Build. Mater. 2021, 310, 125218. [Google Scholar] [CrossRef]
- Guo, S.; Wu, Y.; Jia, Z.; Qi, X.; Wang, W. Sodium-based activators in alkali-activated materials: Classification and comparison. J. Build. Eng. 2023, 70, 106397. [Google Scholar] [CrossRef]
- Nodehi, M.; Taghvaee, V.M. Alkali-activated materials and geopolymer: A review of common precursors and activators addressing circular economy. Circ. Econ. Sustain. 2022, 2, 165–196. [Google Scholar] [CrossRef]
- Lothenbach, B.; Nonat, A. Calcium silicate hydrates: Solid and liquid phase composition. Cem. Concr. Res. 2015, 78, 57–70. [Google Scholar] [CrossRef]
- Ma, C.; Zhao, B.; Guo, S.; Long, G.; Xie, Y. Properties and characterization of green one-part geopolymer activated by composite activators. J. Clean. Prod. 2019, 220, 188–199. [Google Scholar] [CrossRef]
- Leong, H.Y.; Ong, D.E.L.; Sanjayan, J.G.; Nazari, A. The effect of different Na2O and K2O ratios of alkali activator on compressive strength of fly ash based-geopolymer. Constr. Build. Mater. 2016, 106, 500–511. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, W.; Cao, Z.; Xue, Y.; Xiong, F. Coupled effects of the anisotropic permeability and adsorption-induced deformation on the hydrogen and carbon reservoir extraction dynamics. Phys. Fluids 2025, 37, 066608. [Google Scholar] [CrossRef]
- Sun, B.; Ye, G.; De Schutter, G. A review: Reaction mechanism and strength of slag and fly ash-based alkali- activated materials. Constr. Build. Mater. 2022, 326, 126843. [Google Scholar] [CrossRef]
- Keskin, T.; Yilmaz, E.; Kasap, T.; Sari, M.; Cao, S. Toward viable industrial solid residual waste recycling: A review of its innovative applications and future perspectives. Minerals 2024, 14, 943. [Google Scholar] [CrossRef]
- Venkatesan, G.; Alengaram, U.J.; Ibrahim, S.; Ibrahim, M.S.I. Effect of Fly Ash characteristics, sodium-based alkaline activators, and process variables on the compressive strength of siliceous Fly Ash geopolymers with microstructural properties: A comprehensive review. Constr. Build. Mater. 2024, 437, 136808. [Google Scholar] [CrossRef]
- Garcés, P.; Andión, L.G.; Zornoza, E.; Bonilla, M.; Payá, J. The effect of processed fly ashes on the durability and the corrosion of steel rebars embedded in cement–modified fly ash mortars. Cem. Concr. Compos. 2010, 32, 204–210. [Google Scholar] [CrossRef]
- Balczár, I.; Korim, T.; Kovács, A.; Makó, É. Mechanochemical and thermal activation of kaolin for manufacturing geopolymer mortars–comparative study. Ceram. Int. 2016, 42, 15367–15375. [Google Scholar] [CrossRef]
- Hounsi, A.D.; Lecomte-Nana, G.L.; Djétéli, G.; Blanchart, P. Kaolin-based geopolymers: Effect of mechanical activation and curing process. Constr. Build. Mater. 2013, 42, 105–113. [Google Scholar] [CrossRef]
- Frost, R.L.; Makó, É.; Kristóf, J.; Horváth, E.; Kloprogge, J.T. Mechanochemical treatment of kaolinite. J. Colloid Interface Sci. 2001, 239, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Siyal, A.A.; Mohamed, R.M.S.R.; Shamsuddin, R.; Ridzuan, M.B. A comprehensive review of synthesis kinetics and formation mechanism of geopolymers. RSC Adv. 2024, 14, 446–462. [Google Scholar] [CrossRef] [PubMed]
- Rahier, H.; Wastiels, J.; Biesemans, M.; Willlem, R.; Van Assche, G.; Van Mele, B. Reaction mechanism, kinetics and high temperature transformations of geopolymers. J. Mater. Sci. 2007, 42, 2982–2996. [Google Scholar] [CrossRef]
- Chen, C.; Gong, W.; Lutze, W.; Pegg, I.L. Kinetics of fly ash geopolymerization. J. Mater. Sci. 2011, 46, 3073–3083. [Google Scholar] [CrossRef]
- Huo, W.; Zhu, Z.; Sun, H.; Gao, Q.; Zhang, J.; Wan, Y.; Zhang, C. Reaction kinetics, mechanical properties, and microstructure of nano-modified recycled concrete fine powder/slag based geopolymers. J. Clean. Prod. 2022, 372, 133715. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, L.; Xue, Y.; Cao, X.; Liu, G. Multiphysics modeling of thermal–fluid–solid interactions in coalbed methane reservoirs: Simulations and optimization strategies. Phys. Fluids 2025, 37, 076649. [Google Scholar] [CrossRef]
- Kumar, S.G.K.M.; Kinuthia, J.M.; Oti, J.; Adeleke, B.O. Geopolymer Chemistry and Composition: A Comprehensive Review of Synthesis, Reaction Mechanisms, and Material Properties—Oriented with Sustainable Construction. Materials 2025, 18, 3823. [Google Scholar] [CrossRef]
- Mao, Q.; Li, Y.; Liu, K.; Peng, H.; Shi, X. Mechanism, characterization and factors of reaction between basalt and alkali: Exploratory investigation for potential application in geopolymer concrete. Cem. Concr. Compos. 2022, 130, 104526. [Google Scholar] [CrossRef]
- Mohammed, A.A.; Ahmed, H.U.; Mosavi, A. Survey of mechanical properties of geopolymer concrete: A comprehensive review and data analysis. Materials 2021, 14, 4690. [Google Scholar] [CrossRef]
- Castillo, H.; Collado, H.; Droguett, T.; Sánchez, S.; Vesely, M.; Garrido, P.; Palma, S. Factors affecting the compressive strength of geopolymers: A review. Minerals 2021, 11, 1317. [Google Scholar] [CrossRef]
- Pavithra, P.; Reddy, M.S.; Dinakar, P.; Rao, B.H.; Satpathy, B.K.; Mohanty, A.N. A mix design procedure for geopolymer concrete with fly ash. J. Clean. Prod. 2016, 133, 117–125. [Google Scholar] [CrossRef]
- Naskar, S.; Chakraborty, A.K. Effect of nano materials in geopolymer concrete. Perspect. Sci. 2016, 8, 273–275. [Google Scholar] [CrossRef]
- Yao, Z.; Luo, L.; Qin, Y.; Cheng, J.; Qu, C. Research on mix design and mechanical performances of MK-GGBFS based geopolymer pastes using central composite design method. Sci. Rep. 2024, 14, 9101. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.; Arif, M.; Shariq, M. Use of geopolymer concrete for a cleaner and sustainable environment–A review of mechanical properties and microstructure. J. Clean. Prod. 2019, 223, 704–728. [Google Scholar] [CrossRef]
- Onyelowe, K.C.; Kamchoom, V.; Ebid, A.M.; Hanandeh, S.; Llamuca Llamuca, J.L.; Londo Yachambay, F.P.; Palta, J.L.A.; Vishnupriyan, M.; Avudaiappan, S. Optimizing the utilization of Metakaolin in pre-cured geopolymer concrete using ensemble and symbolic regressions. Sci. Rep. 2025, 15, 6858. [Google Scholar] [CrossRef]
- Feng, Z.; Zhang, P.; Guo, J.; Zheng, Y.; Hu, S. Single and synergistic effects of nano-SiO2 and hybrid fiber on rheological property and compressive strength of geopolymer concrete. Constr. Build. Mater. 2025, 472, 140945. [Google Scholar] [CrossRef]
- Ahmed, H.U.; Mohammed, A.S.; Faraj, R.H.; Qaidi, S.; Mohammed, A.A. Compressive strength of geopolymer concrete modified with nano-silica: Experimental and modeling investigations. Case Stud. Constr. Mater. 2022, 16, e01036. [Google Scholar] [CrossRef]
- Kurhade, S.D.; Patankar, S. Predicting compressive strength of geopolymer concrete using machine learning models. Innov. Infrastruct. Solut. 2025, 10, 12. [Google Scholar] [CrossRef]
- Zhang, B.; Feng, Y.; Zhou, X.; Lai, D.; Zhong, H.; Yu, T.; Liang, J.; Xie, J. Dynamic mechanical behaviour and life cycle assessment of rubberised solid waste-based geopolymer concrete. J. Clean. Prod. 2025, 501, 145247. [Google Scholar] [CrossRef]
- Zuaiter, M.; Khalil, A.; Elkafrawy, M.; Hawileh, R.; AlHamaydeh, M.; Ayman, A.; Kim, T.Y. Effect of blending GGBS and silica fume on the mechanical properties of geopolymer concrete. Sci. Rep. 2025, 15, 9091. [Google Scholar] [CrossRef]
- Asghar, R.; Khan, M.A.; Alyousef, R.; Javed, M.F.; Ali, M. Promoting the green Construction: Scientometric review on the mechanical and structural performance of geopolymer concrete. Constr. Build. Mater. 2023, 368, 130502. [Google Scholar] [CrossRef]
- Lee, B.; Kim, G.; Kim, R.; Cho, B.; Lee, S.; Chon, C.M. Strength development properties of geopolymer paste and mortar with respect to amorphous Si/Al ratio of fly ash. Constr. Build. Mater. 2017, 151, 512–519. [Google Scholar] [CrossRef]
- Shahmansouri, A.A.; Nematzadeh, M.; Behnood, A. Mechanical properties of GGBFS-based geopolymer concrete incorporating natural zeolite and silica fume with an optimum design using response surface method. J. Build. Eng. 2021, 36, 102138. [Google Scholar] [CrossRef]
- Eltantawi, I.; Sheikh, M.N.; Hadi, M.N. Influence of stainless steel fibres on the mechanical properties of self-compacting ultra-high-performance geopolymer concrete. Constr. Build. Mater. 2025, 463, 140092. [Google Scholar] [CrossRef]
- Xu, J.; Kang, A.; Wu, Z.; Xiao, P.; Gong, Y. Evaluation of workability, microstructure and mechanical properties of recycled powder geopolymer reinforced by waste hydrophilic basalt fiber. J. Clean. Prod. 2023, 396, 136514. [Google Scholar] [CrossRef]
- Shilar, F.A.; Ganachari, S.V.; Patil, V.B.; Khan, T.Y.; Javed, S.; Baig, R.U. Optimization of alkaline activator on the strength properties of geopolymer concrete. Polymers 2022, 14, 2434. [Google Scholar] [CrossRef]
- Hamed, Y.R.; Keshta, M.M.; Elshikh, M.M.Y.; Elshami, A.A.; Matthana, M.H.; Youssf, O. Performance of Sustainable Geopolymer Concrete Made of Different Alkaline Activators. Infrastructures 2025, 10, 41. [Google Scholar] [CrossRef]
- Wang, X.H.; Hu, D.G.; Hong, A.K.B.; Shi, D.D. Prediction of equivalent chloride ion diffusion coefficient in cracked concrete of the in-service RC element. KSCE J. Civ. Eng. 2022, 26, 2369–2380. [Google Scholar] [CrossRef]
- Wang, H.; Bi, J.; Zhao, Y.; Wang, C.; Wang, W. Fracture behavior and fracture evolution mechanism of rock-concrete bi-material under acousto-optic characteristics. Constr. Build. Mater. 2025, 458, 139585. [Google Scholar] [CrossRef]
- Bhattarai, S.R.; Adesina, M.; Akbari, A. Geopolymers as Sustainable Materials: A Short Review. J. Build. Archit. (JBA) 2025, 2, 1–5. [Google Scholar]
- Ramesh, V.; Muthramu, B.; Rebekhal, D. A review of sustainability assessment of geopolymer concrete through AI-based life cycle analysis. AI Civ. Eng. 2025, 4, 3. [Google Scholar] [CrossRef]
- Tian, L.; He, D.; Zhao, J.; Wang, H. Durability of geopolymers and geopolymer concretes: A review. Rev. Adv. Mater. Sci. 2021, 60, 1–14. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, L.; Cao, Z.; Liu, J.; Xue, Y.; Wang, P.; Cao, X.; Liu, Y. Thermo-mechanical degradation and fracture evolution in low-permeability coal subjected to cyclic heating-cryogenic cooling. Phys. Fluids 2025, 37, 086617. [Google Scholar] [CrossRef]
- Samimi, K.; Kamali-Bernard, S.; Maghsoudi, A.A. Durability of self-compacting concrete containing pumice and zeolite against acid attack, carbonation and marine environment. Constr. Build. Mater. 2018, 165, 247–263. [Google Scholar] [CrossRef]
- Wang, A.; Zheng, Y.; Zhang, Z.; Liu, K.; Li, Y.; Shi, L.; Sun, D. The durability of alkali-activated materials in comparison with ordinary Portland cements and concretes: A review. Engineering 2020, 6, 695–706. [Google Scholar] [CrossRef]
- Yang, G.; Zhao, J.; Wang, Y. Durability properties of sustainable alkali-activated cementitious materials as marine engineering material: A review. Mater. Today Sustain. 2022, 17, 100099. [Google Scholar] [CrossRef]
- Albitar, M.; Ali, M.M.; Visintin, P.; Drechsler, M. Durability evaluation of geopolymer and conventional concretes. Constr. Build. Mater. 2017, 136, 374–385. [Google Scholar] [CrossRef]
- Cai, C.; Li, F.; Fan, S.; Yan, D.; Sun, Q.; Jin, H.; Shao, J.; Chen, Z.; Liu, M. Investigation on deterioration mechanism of geopolymer cemented coal Gangue-Fly ash backfill under combined action of high temperature and salt corrosion environment. Constr. Build. Mater. 2023, 398, 132518. [Google Scholar] [CrossRef]
- Guo, L.; Wu, Y.; Xu, F.; Song, X.; Ye, J.; Duan, P.; Zhang, Z. Sulfate resistance of hybrid fiber reinforced metakaolin geopolymer composites. Compos. Part B Eng. 2020, 183, 107689. [Google Scholar] [CrossRef]
- Xie, Y.; Lin, X.; Ji, T.; Liang, Y.; Pan, W. Comparison of corrosion resistance mechanism between ordinary Portland concrete and alkali-activated concrete subjected to biogenic sulfuric acid attack. Constr. Build. Mater. 2019, 228, 117071. [Google Scholar] [CrossRef]
- Gu, L.; Bennett, T.; Visintin, P. Sulphuric acid exposure of conventional concrete and alkali-activated concrete: Assessment of test methodologies. Constr. Build. Mater. 2019, 197, 681–692. [Google Scholar] [CrossRef]
- Sarıdemir, M.; Celikten, S. Effect of high temperature, acid and sulfate on properties of alkali-activated lightweight aggregate concretes. Constr. Build. Mater. 2022, 317, 125886. [Google Scholar] [CrossRef]
- Valencia-Saavedra, W.G.; de Gutiérrez, R.M.; Puertas, F. Performance of FA-based geopolymer concretes exposed to acetic and sulfuric acids. Constr. Build. Mater. 2020, 257, 119503. [Google Scholar] [CrossRef]
- Elyamany, H.E.; Elmoaty, A.E.M.A.; Diab, A.R.A. Sulphuric acid resistance of slag geopolymer concrete modified with fly ash and silica fume. Iran. J. Sci. Technol. Trans. Civ. Eng. 2021, 45, 2297–2315. [Google Scholar] [CrossRef]
- Ibrahim, M.; Salami, B.A.; Algaifi, H.A.; Rahman, M.K.; Nasir, M.; Ewebajo, A.O. Assessment of acid resistance of natural pozzolan-based alkali-activated concrete: Experimental and optimization modelling. Constr. Build. Mater. 2021, 304, 124657. [Google Scholar] [CrossRef]
- Karaaslan, C.; Yener, E.; Bağatur, T.; Polat, R. Improving the durability of pumice-fly ash based geopolymer concrete with calcium aluminate cement. J. Build. Eng. 2022, 59, 105110. [Google Scholar] [CrossRef]
- Chen, K.; Wu, D.; Xia, L.; Cai, Q.; Zhang, Z. Geopolymer concrete durability subjected to aggressive environments–A review of influence factors and comparison with ordinary Portland cement. Constr. Build. Mater. 2021, 279, 122496. [Google Scholar] [CrossRef]
- Ye, H.; Radlińska, A. Carbonation-induced volume change in alkali-activated slag. Constr. Build. Mater. 2017, 144, 635–644. [Google Scholar] [CrossRef]
- Zhang, X.; Long, K.; Liu, W.; Li, L.; Long, W.J. Carbonation and chloride ions’ penetration of alkali-activated materials: A review. Molecules 2020, 25, 5074. [Google Scholar] [CrossRef] [PubMed]
- Kolade, A.S.; Ikotun, B.D.; Oyejobi, D.O. A Review of the Chemistry, Waste Utilization, Mix Design and Performance Evaluation of Geopolymer Concrete. Iran. J. Sci. Technol. Trans. Civ. Eng. 2025, 1–34. [Google Scholar] [CrossRef]
- Behfarnia, K.; Rostami, M. An assessment on parameters affecting the carbonation of alkali-activated slag concrete. J. Clean. Prod. 2017, 157, 1–9. [Google Scholar] [CrossRef]
- Dudi, L.; Bishnoi, S. Revealing the relationships between transport properties and microstructure characteristics in low-clinker binders before and after carbonation. Cem. Concr. Res. 2025, 198, 108006. [Google Scholar] [CrossRef]
- Bernal, S.A.; San Nicolas, R.; Provis, J.L.; Mejía de Gutiérrez, R.; van Deventer, J.S. Natural carbonation of aged alkali-activated slag concretes. Mater. Struct. 2014, 47, 693–707. [Google Scholar] [CrossRef]
- Khan, M.S.H.; Castel, A.; Noushini, A. Carbonation of a low-calcium fly ash geopolymer concrete. Mag. Concr. Res. 2017, 69, 24–34. [Google Scholar] [CrossRef]
- Li, Z.G.; Li, S. Carbonation resistance of fly ash and blast furnace slag based geopolymer concrete. Constr. Build. Mater. 2018, 163, 668–680. [Google Scholar] [CrossRef]
- Wong, L.S. Durability performance of geopolymer concrete: A review. Polymers 2022, 14, 868. [Google Scholar] [CrossRef]
- Feng, H.; Xin, X.; Guo, A.; Yu, Z.; Shao, Q.; Sheikh, M.N.; Sun, Z. Effect of mix proportion parameters on chloride erosion resistance of fly ash/slag-based engineered geopolymer composites. J. Clean. Prod. 2024, 438, 140785. [Google Scholar] [CrossRef]
- Liu, Q.F.; Cai, Y.; Peng, H.; Meng, Z.; Mundra, S.; Castel, A. A numerical study on chloride transport in alkali-activated fly ash/slag concretes. Cem. Concr. Res. 2023, 166, 107094. [Google Scholar] [CrossRef]
- Osio-Norgaard, J.; Gevaudan, J.P.; Srubar, W.V., III. A review of chloride transport in alkali-activated cement paste, mortar, and concrete. Constr. Build. Mater. 2018, 186, 191–206. [Google Scholar] [CrossRef]
- Vu, T.H.; Dang, L.C.; Kang, G.; Sirivivatnanon, V. Chloride induced corrosion of steel reinforcement in alkali activated slag concretes: A critical review. Case Stud. Constr. Mater. 2022, 16, e01112. [Google Scholar] [CrossRef]
- Ma, Q.; Nanukuttan, S.V.; Basheer, P.M.; Bai, Y.; Yang, C. Chloride transport and the resulting corrosion of steel bars in alkali activated slag concretes. Mater. Struct. 2016, 49, 3663–3677. [Google Scholar] [CrossRef]
- Kumar, S.; Maradani, L.S.R.; Mohapatra, A.K.; Pradhan, B. Effect of mix parameters on chloride content, sulfate ion concentration, and microstructure of geopolymer concrete. Constr. Build. Mater. 2024, 435, 136864. [Google Scholar] [CrossRef]
- Fu, Q.; Zhang, Z.; Niu, D. Understanding the acceleration impact of load and flowing water on the chloride ion transport properties of fly ash-based geopolymer concrete. Cem. Concr. Compos. 2023, 141, 105146. [Google Scholar] [CrossRef]
- Yan, G.; Hu, J.; Chen, M.; Ma, Y.; Huang, H.; Zhang, Z.; Wei, J.; Shi, C.; Yu, Q. Performance evaluation of reinforced slag-fly ash-ceramic waste powders ternary geopolymer concrete under chloride ingress environment. Constr. Build. Mater. 2025, 478, 141447. [Google Scholar] [CrossRef]
- Theja, A.R.; Sivaramakrishmaiah, M.; Sastry, K.G.K.; Sashidhar, C.; Paramasivam, P.; Kanti, P.K.; Ayani, A.G. Influence of Nano Titanium Dioxide on Strength and Durability of Ambient-Cured GGBS-Based Geopolymer Concrete. Results Eng. 2025, 27, 105757. [Google Scholar] [CrossRef]
- Kupwade-Patil, K.; Allouche, E.N. Examination of chloride-induced corrosion in reinforced geopolymer concretes. J. Mater. Civ. Eng. 2013, 25, 1465–1476. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, Y.; Zheng, J.; Hu, J.; Fu, J.; Zhang, Z.; Wang, H. Chloride diffusion in alkali-activated fly ash/slag concretes: Role of slag content, water/binder ratio, alkali content and sand-aggregate ratio. Constr. Build. Mater. 2020, 261, 119940. [Google Scholar] [CrossRef]
- Siddika, A.; Hajimohammadi, A.; Mamun, M.A.A.; Alyousef, R.; Ferdous, W. Waste glass in cement and geopolymer concretes: A review on durability and challenges. Polymers 2021, 13, 2071. [Google Scholar] [CrossRef]
- Ikotun, J.O.; Aderinto, G.E.; Madirisha, M.M.; Katte, V.Y. Geopolymer Cement in Pavement Applications: Bridging Sustainability and Performance. Sustainability 2024, 16, 5417. [Google Scholar] [CrossRef]
- Liang, K.; Cui, K.; Sabri, M.M.S.; Huang, J. Influence factors in the wide application of alkali-activated materials: A critical review about efflorescence. Materials 2022, 15, 6436. [Google Scholar] [CrossRef] [PubMed]
- Arbi, K.; Nedeljkovic, M.; Zuo, Y.; Ye, G. A review on the durability of alkali-activated fly ash/slag systems: Advances, issues, and perspectives. Ind. Eng. Chem. Res. 2016, 55, 5439–5453. [Google Scholar] [CrossRef]
- Sherwani, A.F.H.; Younis, K.H.; Arndt, R.W. Fresh, mechanical, and durability behavior of fly ash-based self compacted geopolymer concrete: Effect of slag content and various curing conditions. Polymers 2022, 14, 3209. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F.; Abdollahnejad, Z.; Camões, A.F.; Jamshidi, M.; Ding, Y. Durability of alkali-activated binders: A clear advantage over Portland cement or an unproven issue? Constr. Build. Mater. 2012, 30, 400–405. [Google Scholar] [CrossRef]
- Ralli, Z.G.; Pantazopoulou, S.J. State of the art on geopolymer concrete. Int. J. Struct. Integr. 2021, 12, 511–533. [Google Scholar] [CrossRef]
- Alanazi, H. Study of the interfacial transition zone characteristics of geopolymer and conventional concretes. Gels 2022, 8, 105. [Google Scholar] [CrossRef]
- Coppola, L.; Beretta, S.; Bignozzi, M.C.; Bolzoni, F.; Brenna, A.; Cabrini, M.; Candamano, S.; Caputo, D.; Carsana, M.; Cioffi, R.; et al. The improvement of durability of reinforced concretes for sustainable structures: A review on different approaches. Materials 2022, 15, 2728. [Google Scholar] [CrossRef]
- Khan, M.I.; Abbas, Y.M. Intelligent data-driven compressive strength prediction and optimization of reactive powder concrete using multiple ensemble-based machine learning approach. Constr. Build. Mater. 2023, 404, 133148. [Google Scholar] [CrossRef]
- Lin, J.; Liu, Y.; Sui, H.; Sagoe-Crentsil, K.; Duan, W. Microstructure of graphene oxide–silica-reinforced OPC composites: Image-based characterization and nano-identification through deep learning. Cem. Concr. Res. 2022, 154, 106737. [Google Scholar] [CrossRef]
- Liu, J.; Liang, X.; Xue, Y.; Li, S.T.; Su, S.; Cao, W.J. Multiphysics modeling of microwave heating-induced moisture and methane transport in shale gas reservoir. Phys. Fluids 2025, 37, 076656. [Google Scholar] [CrossRef]
- Jueyendah, S.; Yaman, Z.; Dere, T.; Çavuş, T.F. Comparative Study of Linear and Non-Linear ML Algorithms for Cement Mortar Strength Estimation. Buildings 2025, 15, 2932. [Google Scholar] [CrossRef]
- Majid, K.A.; Amin, F.; Al Ismaeel, A.; Faning, D.; Shah, J. Sustainable rehabilitation of corroded RC culverts using ECC and interpretable machine learning. Structures 2025, 80, 109896. [Google Scholar] [CrossRef]
- Taffese, W.Z.; Zhu, Y.; Chen, G. Ensemble-learning model based ultimate moment prediction of reinforced concrete members strengthened by UHPC. Eng. Struct. 2024, 305, 117705. [Google Scholar] [CrossRef]
- Yu, Y.; Al-Damad, I.M.A.; Foster, S.; Nezhad, A.A.; Hajimohammadi, A. Compressive strength prediction of fly ash/slag-based geopolymer concrete using EBA-optimised chemistry-informed interpretable deep learning model. Dev. Built Environ. 2025, 23, 100736. [Google Scholar] [CrossRef]
- He, Y.; Gao, S.; Li, Y.; Guan, Y.; Zhang, J.; Hu, D. Adaptive machine learning framework: Predicting UHPC performance from data to modelling. Results Eng. 2025, 27, 106724. [Google Scholar] [CrossRef]
- Shilar, F.A.; Ganachari, S.V.; Patil, V.B.; Khan, T.Y.; Almakayeel, N.M.; Alghamdi, S. Review on the relationship between nano modifications of geopolymer concrete and their structural characteristics. Polymers 2022, 14, 1421. [Google Scholar] [CrossRef]
- Sargam, Y.; Wang, K. Influence of dispersants and dispersion on properties of nanosilica modified cement-based materials. Cem. Concr. Compos. 2021, 118, 103969. [Google Scholar] [CrossRef]
- Liu, X.; Wu, Y.; Li, M.; Jiang, J.; Guo, L.; Wang, W.; Zhang, W.; Zhang, Z.; Duan, P. Effects of graphene oxide on microstructure and mechanical properties of graphene oxide-geopolymer composites. Constr. Build. Mater. 2020, 247, 118544. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, W.; Meng, Y. Salt Spray Resistance of Roller-Compacted Concrete with Surface Coatings. Materials 2023, 16, 7134. [Google Scholar] [CrossRef]
- Panda, B.; Tan, M.J. Experimental study on mix proportion and fresh properties of fly ash based geopolymer for 3D concrete printing. Ceram. Int. 2018, 44, 10258–10265. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, C.; Wang, F.; Yuan, P. Influence of sodium silicate to precursor ratio on mechanical properties and durability of the metakaolin/fly ash alkali-activated sustainable mortar using manufactured sand. Rev. Adv. Mater. Sci. 2023, 62, 20220330. [Google Scholar] [CrossRef]
- Paul, S.C.; Tay, Y.W.D.; Panda, B.; Tan, M.J. Fresh and hardened properties of 3D printable cementitious materials for building and construction. Arch. Civ. Mech. Eng. 2018, 18, 311–319. [Google Scholar] [CrossRef]
Rank | Keyword | Frequency | Year | Link | Centrality |
---|---|---|---|---|---|
1 | geopolymer concrete | 1149 | 2021 | 9583 | 0.08 |
2 | fly ash | 749 | 2021 | 6787 | 0.03 |
3 | compressive strength | 700 | 2021 | 6345 | 0.05 |
4 | mechanical-properties | 619 | 2021 | 5995 | 0.01 |
5 | strength | 614 | 2021 | 5074 | 0.04 |
6 | performance | 522 | 2021 | 4720 | 0.04 |
7 | durability | 412 | 2021 | 3847 | 0.03 |
8 | cement | 416 | 2020 | 3833 | 0.08 |
9 | behavior | 413 | 2020 | 3631 | 0.05 |
10 | microstructure | 376 | 2020 | 3622 | 0.03 |
Material | Si/Al Ratio | Ca Content | Activity Level | Activator Adaptability | Characteristics |
---|---|---|---|---|---|
FA | 2.0~3.0 | Low | Medium | Strong alkali (NaOH/Na2SiO3) | High later strength, low cost |
GGBFS | 1.0~2.0 | High | High | Weak alkali (Lime + Gypsum) | Fast early strength, high density |
MK | ≈1.5 | Very Low | High | Weak to Medium alkali | Fast reaction, suitable for high strength |
SF | >3.0 | Very Low | Very High | Any alkaline | Significant strength increase, poor workability |
CG | 2.0~2.5 | Low | Low (Medium after thermal activation) | Strong alkali or heat treatment | High potential for waste reuse |
RHA | >3.0 | None | Medium | Strong alkali | Cheap, eco-friendly, requires pretreatment |
Precursor Combination | Activator System | Gel Type | Compressive Strength (MPa) | Key Features |
---|---|---|---|---|
FA + GGBFS (50:50) | NaOH + Na2SiO3 (modulus 1.5) | N-C-A-S-H | 60-70-28 d | High early strength, ambient curing |
FA + MK + SF (70:20:10) | NaOH + Na2SiO3 | N-A-S-H | 55-65-28 d | Low permeability, dense matrix |
FA + Red Mud (80:20) | NaOH (8 M) | N-A-S-H + minor C-A-S-H | 40-50-28 d | Encapsulation of toxic elements |
GGBFS + SF (70:30) | Na2SO4 + lime | C-A-S-H | 70-80-28 d | Sulfate resistance, fast set |
Parameter | Characteristics | Performance Impact |
---|---|---|
Alkali Concentration (OH−) | High concentration accelerates dissolution and polymerization of Si/Al oxides; low concentration slows reaction | High concentration boosts early strength but can cause microcracks; low concentration enhances later strength due to more complete reaction. |
Modulus (Ms) | Ms = SiO2/Na2O (or K2O) | Low Ms: Strong alkali, insufficient Si source, fast early reaction but limited later strength. High Ms: Slower reaction but favors complex gel structure formation. |
Metal Cation Type (Na+/K+/Li+) | Differences in ion radius and migration ability | Na+: High reaction rate but high hygroscopicity. K+: Strong stability, suitable for high-temp. Li+: High efficiency but prone to alkali–aggregate reaction. |
Pretreatment Method | Main Targets | Action Mechanism | Cost | Technical Advantages | Technical Challenges |
---|---|---|---|---|---|
Physical Sieving/Magnetic Separation | FA, Steel Slag | Enrich active components, remove inert phase | Low | Low cost, environmentally friendly | Limited effect, difficult to improve intrinsic activity |
Chemical Additives | FA, GGBFS, RHA | Improve solution chemistry, regulate reaction rate | Medium | Adjustable performance, flexible application | Prone to side reactions, requires precise dosage control |
Thermal Activation | MK, Coal Gangue | Amorphization treatment, destroy crystal structure | High | Significant reactivity improvement, fast reaction | High energy consumption, complex process |
Mechanical Activation | MK, FA, RHA | Increase specific surface area, lattice distortion | Medium | No high temperature needed, good equipment adaptability | Prone to agglomeration, high power consumption |
Attribute | One-Part GPC | Two-Part GPC |
---|---|---|
Handling and Safety | Safer; no liquid chemicals on site | Requires careful handling of caustic liquids |
Logistics | Easier transport and storage | Challenging due to bulky liquid activators |
Activator Dissolution | May be incomplete or slower | Fully dissolved; higher early reactivity |
Rheology | More stable with dry blending | Highly dependent on solution viscosity |
Setting Control | Less flexible; needs admixtures | Easier to adjust through liquid ratios |
Field Practicality | Well-suited for precast and remote sites | Requires trained personnel and equipment |
Cost | Lower shipping cost; higher formulation cost | Higher material cost; simpler batching |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Zhu, L.; Wan, D.; Xue, Y. Research Progress and Trend Analysis of Solid Waste Resource Utilization in Geopolymer Concrete. Buildings 2025, 15, 3370. https://doi.org/10.3390/buildings15183370
Wang J, Zhu L, Wan D, Xue Y. Research Progress and Trend Analysis of Solid Waste Resource Utilization in Geopolymer Concrete. Buildings. 2025; 15(18):3370. https://doi.org/10.3390/buildings15183370
Chicago/Turabian StyleWang, Jun, Lin Zhu, Dongping Wan, and Yi Xue. 2025. "Research Progress and Trend Analysis of Solid Waste Resource Utilization in Geopolymer Concrete" Buildings 15, no. 18: 3370. https://doi.org/10.3390/buildings15183370
APA StyleWang, J., Zhu, L., Wan, D., & Xue, Y. (2025). Research Progress and Trend Analysis of Solid Waste Resource Utilization in Geopolymer Concrete. Buildings, 15(18), 3370. https://doi.org/10.3390/buildings15183370