Numerical Dissipation and Stability Analyses of a Highly Efficient Numerical Approach Proposed for Predicting the Blast Loads from Large TNT-Equivalent Explosives on Building Structures
Abstract
1. Introduction
2. Blast Load Prediction
2.1. Blast Wave Generation
2.2. Method Implementation
2.3. CFD Scheme Formulation
3. Numerical Dissipation
3.1. Parameter Analysis
3.2. Analysis Based on a Simplified Continuity Equation
4. Stability Analysis
5. Discussion
6. Conclusions
- (1)
- Theoretical Framework: Based on a simplified 1D model, an explicit expression for the numerical dissipation term was derived (aβΔx(w+ − w-)(1 − CFL2)/4). This result provides a quantitative basis for understanding how the parameters govern numerical dissipation within the scheme.
- (2)
- Stability Criteria: Through von Neumann analysis, the necessary stability conditions for the scheme were rigorously established as α ≥ 0, 0 ≤ β ≤ 1, and 0 ≤ CFL ≤ 1, providing essential bounds for robust simulation setup.
- (3)
- Parametric Analysis: Numerical simulations confirmed the theoretical trends, demonstrating that numerical dissipation increases with parameters α and β but decreases with the CFL number.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Oxley, J.C.; Smith, J.L.; Rogers, E.; Yu, M. Ammonium nitrate: Thermal stability and explosivity modifiers. Thermochim. Acta 2002, 384, 23–45. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, B.; Wang, L.; Wei, J.; Wang, W. Dynamic response of polyurea coated thin steel storage tank to long duration blast loadings. Thin-Walled Struct. 2021, 163, 107747. [Google Scholar] [CrossRef]
- Fang, Q.; Yang, S.; Chen, L.; Liu, J.; Zhang, Y. Analysis on the building damage, personnel casualties and blast energy of the”8 ·12”explosion in Tianjin port. China Civ. Eng. J. 2017, 50, 12–18. [Google Scholar]
- Clough, L.G.; Clubley, S.K. Synergistic response of steel columns to explosive thermal and long duration blast loading. Eng. Struct. 2021, 245, 112944. [Google Scholar] [CrossRef]
- Chu, S.; Yuan, Y.; Huang, Y.; Liu, Y.; Xu, Z.; Liu, M.; Huang, F. Double blast loadings of clamped square steel plates. Thin-Walled Struct. 2024, 205, 112484. [Google Scholar] [CrossRef]
- Brode, H.L. Numerical Solutions of Spherical Blast Waves. J. Appl. Phys. 1955, 26, 766–775. [Google Scholar] [CrossRef]
- Randers-Pehrson, G.; Bannister, K.A. Airblast Loading Model for DYNA2D and DYNA3D; Army Research Laboratory: Aberdeen, UK, 1997. [Google Scholar]
- National Institute of Building Sciences Structures to Resist the Effects of Accidental Explosions; National Institute of Building Sciences: Washington, DC, USA, 2008.
- Ehrhardt, L.; Boutillier, J.; Magnan, P.; Deck, C.; De Mezzo, S.; Willinger, R.; Cheinet, S. Evaluation of overpressure prediction models for air blast above the triple point. J. Hazard. Mater. 2016, 311, 176–185. [Google Scholar] [CrossRef]
- Hank, S.; Saurel, R.; Le Métayer, O.; Lapébie, E. Modeling blast waves, gas and particles dispersion in urban and hilly ground areas. J. Hazard. Mater. 2014, 280, 436–449. [Google Scholar] [CrossRef]
- Chang, S.C. The Method of Space-Time Conservation Element and Solution Element-A New Approach for Solving the Navier-Stokes and Euler Equations. J. Comput. Phys. 1995, 119, 295–324. [Google Scholar] [CrossRef]
- Wei, L.; Dong, H.; Pan, H.; Hu, X.; Zhu, J. Study on the Mechanism of the Deflagration to Detonation Transition Process of Explosive. J. Energetic Mater. 2014, 32, 238–251. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, S.T.J.; Chang, S. A Space-Time Conservation Element and Solution Element Method for Solving the Two- and Three-Dimensional Unsteady Euler Equations Using Quadrilateral and Hexahedral Meshes. J. Comput. Phys. 2002, 175, 168–199. [Google Scholar] [CrossRef]
- Zhang, X.; Ding, Y.; Shi, Y. Numerical simulation of far-field blast loads arising from large TNT equivalent explosives. J. Loss Prev. Process Ind. 2021, 70, 104432. [Google Scholar]
- Heydarifard, M.; Ghaemi, A.; Shirvani, M. Numerical simulation of CO2 chemical absorption in a gas-liquid bubble column using the space-time CESE method. J. Environ. Chem. Eng. 2020, 8, 104111. [Google Scholar]
- Rokhy, H.; Mostofi, T.M. Tracking the explosion characteristics of the hydrogen-air mixture near a concrete barrier wall using CESE IBM FSI solver in LS-DYNA incorporating the reduced chemical kinetic model. Int. J. Impact Eng. 2023, 172, 104401. [Google Scholar]
- Alia, A.; Souli, M. High explosive simulation using multi-material formulations. Appl. Therm. Eng. 2006, 26, 1032–1042. [Google Scholar] [CrossRef]
- Abd El Nabi, E.; El Helloty, A.; Summra, A. Numerical analysis of reinforced concrete buildings subjected to blast load. Struct. Concr. 2023, 24, 3727–3743. [Google Scholar] [CrossRef]
- Bornstein, H.; Kuznetsov, V.; Lu, J.; Stojko, S.; Freundt, J. Characterisation and validation of the JWL equation of state parameters for PE4. Int J Impact Eng. 2022, 164, 104190. [Google Scholar]
- Yang, Z.; Mi, Y.; Wang, W.; Zhao, J.; Chen, Y. Numerical simulation of hollow-core FRP-concrete-steel column subjected to the combined collision and blast loads. Case Stud. Constr. Mater. 2025, 22, e04143. [Google Scholar]
- Ding, Y.; Chen, Y.; Shi, Y. Simplified model of overpressure loading caused by internal blast. Eng. Mech. 2015, 32, 119–125. [Google Scholar]
- Uystepruyst, D.; Monnoyer, F. A numerical study of the evolution of the blast wave shape in rectangular tunnels. J. Loss Prev. Process Ind. 2015, 34, 225–231. [Google Scholar]
- Slavik, T.P. A coupling of empirical explosive blast loads to ALE air domains in LS-DYNA. IOP Conf. Ser. Mater. Sci. Eng. 2010, 10, 12146. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, X.; Shi, Y.; Zhang, H. Prediction of far-field blast loads from large TNT-equivalent explosives on gabled frames. J. Constr. Steel Res. 2022, 190, 107120. [Google Scholar] [CrossRef]
- Brouwer, J.; Reiss, J.; Sesterhenn, J. Conservative time integrators of arbitrary order for skew-symmetric finite-difference discretizations of compressible flow. Comput. Fluids. 2014, 100, 1–12. [Google Scholar] [CrossRef]
- Chang, S. Explicit von Neumann Stability Conditions for the c-τ Scheme—A Basic Scheme in the Development of the CE-SE Courant Number Insensitive Schemes; Glenn Research Center: Cleveland, OH, USA, 2005. [Google Scholar]
- Chang, S. Courant number and mach number insensitive ce/se euler solvers. In Proceedings of the 41th AIAA Joint Propulsion Conference and Exhibit, Tucson, AZ, USA, 10–13 July 2005. [Google Scholar]
- Motwani, R.; Gandolfo, J.; Gainey, B.; Lawler, B. Validation of a multidimensional CFD approach for ethanol-fueled spark ignition engines at knock-limited conditions. Appl. Therm. Eng. 2025, 271, 126301. [Google Scholar] [CrossRef]
- Konangi, S.; Palakurthi, N.K.; Ghia, U. von Neumann stability analysis of first-order accurate discretization schemes for one-dimensional (1D) and two-dimensional (2D) fluid flow equations. Comput. Math. Appl. 2018, 75, 643–665. [Google Scholar] [CrossRef]
- Konangi, S.; Palakurthi, N.K.; Ghia, U. von Neumann Stability Analysis of a Segregated Pressure-Based Solution Scheme for One-Dimensional and Two-Dimensional Flow Equations. J. Fluids Eng. 2016, 138, 101401. [Google Scholar] [CrossRef]
- Malakiyeh, M.M.; Shojaee, S.; Hamzehei-Javaran, S. A novel explicit-implicit time integration method for solving time-dependent finite element equation: The Versa-δ method. Comput. Struct. 2025, 309, 107664. [Google Scholar] [CrossRef]
- Fu, B.; Lavery Ilunga, S.; Chen, J. Two families of dual-explicit model-based integration algorithms with controllable numerical damping for structural dynamic problems. Mech. Syst. Signal Process 2024, 218, 111576. [Google Scholar] [CrossRef]
- Lai, Z.; Liu, Y.; Tan, P.; Peng, J.; Zhou, F. A semi-explicit integration algorithm with controllable numerical damping for real-time hybrid simulation. Structures 2025, 74, 108606. [Google Scholar] [CrossRef]
- Guo, W.; Zhu, Y.; Wu, X.; Yu, Y. Improved Explicit Integration Algorithms with Controllable Numerical Damping for Real-Time Hybrid Simulation. J. Eng. Mech. 2023, 149, 04023012. [Google Scholar] [CrossRef]
- Granda, M.; Trojan, M.; Taler, D. CFD analysis of steam superheater operation in steady and transient state. Energy 2020, 199, 117423. [Google Scholar] [CrossRef]
- Roe, P. Designing CFD methods for bandwidth—A physical approach. Comput. Fluids 2021, 214, 104774. [Google Scholar] [CrossRef]
- Ilunga, S.L.; Chen, J.; Fu, B. A New Model-Based Integration Method with Controllable Numerical Damping for Structural Dynamic Problems. Int. J. Struct. Stab. Dyn. 2025, 2650096. [Google Scholar] [CrossRef]
- Morch, H.; Yuan, S.; Duchêne, L.; Harzallah, R.; Habraken, A.M. A review of higher order Newton type methods and the effect of numerical damping for the solution of an advanced coupled Lemaitre damage model. Finite Elem. Anal. Des. 2022, 209, 103801. [Google Scholar] [CrossRef]
- Rigby, S. Blast Wave Clearing Effects on Finite-Sized Targets Subjected to Explosive Loads; University of Sheffield: Sheffield, UK, 2014. [Google Scholar]
- Zhang, Z. The CE/SE Compressible Fluid Solver; LSTC: Livermore, CA, USA, 2010. [Google Scholar]
- Chang, S. Courant number insensitive ce/se schemes. In Proceedings of the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Indianapolis, IN, USA, 7–10 July 2002. [Google Scholar]
Specific Heat at Constant Volume J/(kg·K) | Specific Heat at Constant Pressure J/(kg·K) | Initial Density kg/m3 | Initial Pressure kPa |
717.50 | 1004.50 | 1.29 | 101.32 |
Case | α | β | CFL | Overpressure (kPa) |
---|---|---|---|---|
1 | 0.1 | 1.0 | 0.50 | 215.47 |
2 | 2.0 | 1.0 | 0.50 | 190.69 |
3 | 5.0 | 1.0 | 0.50 | 187.47 |
4 | 10.0 | 0.0 | 0.05 | 191.85 |
5 | 10.0 | 0.5 | 0.05 | 185.35 |
6 | 10.0 | 1.0 | 0.05 | 181.84 |
7 | 2.0 | 1.0 | 0.10 | 188.60 |
8 | 2.0 | 1.0 | 0.05 | 187.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Xia, S.; Li, M.; Dong, X.; Shi, F.; Li, H.; Dou, T.; Dong, S. Numerical Dissipation and Stability Analyses of a Highly Efficient Numerical Approach Proposed for Predicting the Blast Loads from Large TNT-Equivalent Explosives on Building Structures. Buildings 2025, 15, 3348. https://doi.org/10.3390/buildings15183348
Zhang X, Xia S, Li M, Dong X, Shi F, Li H, Dou T, Dong S. Numerical Dissipation and Stability Analyses of a Highly Efficient Numerical Approach Proposed for Predicting the Blast Loads from Large TNT-Equivalent Explosives on Building Structures. Buildings. 2025; 15(18):3348. https://doi.org/10.3390/buildings15183348
Chicago/Turabian StyleZhang, Xuan, Shifa Xia, Meng Li, Xiaonong Dong, Fengwei Shi, Huanchen Li, Tiesheng Dou, and Shuo Dong. 2025. "Numerical Dissipation and Stability Analyses of a Highly Efficient Numerical Approach Proposed for Predicting the Blast Loads from Large TNT-Equivalent Explosives on Building Structures" Buildings 15, no. 18: 3348. https://doi.org/10.3390/buildings15183348
APA StyleZhang, X., Xia, S., Li, M., Dong, X., Shi, F., Li, H., Dou, T., & Dong, S. (2025). Numerical Dissipation and Stability Analyses of a Highly Efficient Numerical Approach Proposed for Predicting the Blast Loads from Large TNT-Equivalent Explosives on Building Structures. Buildings, 15(18), 3348. https://doi.org/10.3390/buildings15183348