Integrating Shapley Value and Least Core Attribution for Robust Explainable AI in Rent Prediction
Abstract
1. Introduction
2. Literature Review
2.1. Shapley Values and Explainable AI
2.2. Interpretability Challenges in Real Estate Price Prediction
3. Methodology
3.1. Shapley Value Explanation Allocation
3.2. Least Core Explanation Allocation
3.3. Least Core Explanation in Machine Learning
3.4. Hybrid Attribution via Weighted Fusion
4. Case Study: 2024 Urban Rental Housing Data from Beike/Lianjia Platform
4.1. Background
4.2. Data Source and Feature Description
4.3. Experimental Workflow
4.4. Results and Visualization
5. Conclusions
6. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Ciaramella, A.; Dall’Orso, M. Urban Regeneration and Real Estate Development: Turning Real Estate Assets into Engines for Sustainable Socio-Economic Progress; Springer Nature: London, UK, 2021. [Google Scholar]
- González, M.; López-Espín, J.J.; Aparicio, J. A parallel algorithm for matheuristics: A comparison of optimization solvers. Electronics 2020, 9, 1541. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.-I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 2017, 30, 4768–4777. [Google Scholar]
- Abidoye, R.B.; Chan, A.P.; Abidoye, F.A.; Oshodi, O.S. Predicting property price index using artificial intelligence techniques: Evidence from Hong Kong. Int. J. Hous. Mark. Anal. 2019, 12, 1072–1092. [Google Scholar] [CrossRef]
- Tekouabou, S.C.; Gherghina, Ş.C.; Kameni, E.D.; Filali, Y.; Idrissi Gartoumi, K. AI-based on machine learning methods for urban real estate prediction: A systematic survey. Arch. Comput. Methods Eng. 2024, 31, 1079–1095. [Google Scholar] [CrossRef]
- Zurada, J.; Levitan, A.; Guan, J. A comparison of regression and artificial intelligence methods in a mass appraisal context. J. Real Estate Res. 2011, 33, 349–388. [Google Scholar] [CrossRef]
- Dou, M.; Gu, Y.; Fan, H. Incorporating neighborhoods with explainable artificial intelligence for modeling fine-scale housing prices. Appl. Geogr. 2023, 158, 103032. [Google Scholar] [CrossRef]
- Alsulamy, S. Predicting construction delay risks in Saudi Arabian projects: A comparative analysis of CatBoost, XGBoost, and LGBM. Expert Syst. Appl. 2025, 268, 126268. [Google Scholar] [CrossRef]
- Ileri, K. Comparative analysis of CatBoost, LightGBM, XGBoost, RF, and DT methods optimised with PSO to estimate the number of k-barriers for intrusion detection in wireless sensor networks. Int. J. Mach. Learn. Cybern. 2025, 1–20. [Google Scholar] [CrossRef]
- Chen, W.; Farag, S.; Butt, U.; Al-Khateeb, H. Leveraging Machine Learning for Sophisticated Rental Value Predictions: A Case Study from Munich, Germany. Appl. Sci. 2024, 14, 9528. [Google Scholar] [CrossRef]
- Ho, W.K.; Tang, B.-S.; Wong, S.W. Predicting property prices with machine learning algorithms. J. Prop. Res. 2021, 38, 48–70. [Google Scholar] [CrossRef]
- Pu, G.; Zhang, Y.; Chou, L.-C. Estimating financial information asymmetry in real estate transactions in China-an application of two-tier Frontier model. Inf. Process. Manag. 2022, 59, 102860. [Google Scholar] [CrossRef]
- Sriram, H.K. Leveraging artificial intelligence and machine learning for next-generation credit risk assessment models. Eur. Adv. J. Sci. Eng. 2025, 1. [Google Scholar] [CrossRef]
- Dada, E.; Eyeregba, M.; Mokogwu, C.; Olorunyomi, T.D. AI-Driven policy optimization for strengthening economic resilience and inclusive growth in Nigeria. J. Artif. Intell. Policy Mak. 2024, 15, 23–37. [Google Scholar]
- Kothandapani, H.P. Advanced Artificial Intelligence models for Real-Time monitoring and prediction of macroprudential risks in the housing finance sector: Addressing interest rate shocks and housing price volatility to support proactive Decision-Making by federal agencies. J. Artif. Intell. Res. 2022, 2, 391–416. Available online: https://thesciencebrigade.com/JAIR/article/view/507 (accessed on 28 August 2025).
- Hassija, V.; Chamola, V.; Mahapatra, A.; Singal, A.; Goel, D.; Huang, K.; Scardapane, S.; Spinelli, I.; Mahmud, M.; Hussain, A. Interpreting black-box models: A review on explainable artificial intelligence. Cogn. Comput. 2024, 16, 45–74. [Google Scholar] [CrossRef]
- Pedreschi, D.; Giannotti, F.; Guidotti, R.; Monreale, A.; Ruggieri, S.; Turini, F. Meaningful explanations of black box AI decision systems. In Proceedings of the AAAI Conference on Artificial Intelligence, Madrid, Spain, 20–27 January 2019. [Google Scholar]
- Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 2019, 1, 206–215. [Google Scholar] [CrossRef]
- Acharya, D.B.; Divya, B.; Kuppan, K. Explainable and Fair AI: Balancing Performance in Financial and Real Estate Machine Learning Models. IEEE Access 2024, 12, 154022–154034. [Google Scholar] [CrossRef]
- Longo, L.; Brcic, M.; Cabitza, F.; Choi, J.; Confalonieri, R.; Del Ser, J.; Guidotti, R.; Hayashi, Y.; Herrera, F.; Holzinger, A. Explainable Artificial Intelligence (XAI) 2.0: A manifesto of open challenges and interdisciplinary research directions. Inf. Fusion 2024, 106, 102301. [Google Scholar] [CrossRef]
- Minh, D.; Wang, H.X.; Li, Y.F.; Nguyen, T.N. Explainable artificial intelligence: A comprehensive review. Artif. Intell. Rev. 2022, 55, 3503–3568. [Google Scholar] [CrossRef]
- Das, A.; Rad, P. Opportunities and challenges in explainable artificial intelligence (xai): A survey. arXiv 2020, arXiv:2006.11371. [Google Scholar] [CrossRef]
- Chinnaraju, A. Explainable AI (XAI) for trustworthy and transparent decision-making: A theoretical framework for AI interpretability. World J. Adv. Eng. Technol. Sci. 2025, 14, 170–207. [Google Scholar] [CrossRef]
- Chundru, S. Ensuring Data Integrity Through Robustness and Explainability in AI Models. Trans. Latest Trends Artif. Intell. 2020, 1, 1–19. [Google Scholar]
- Chander, B.; John, C.; Warrier, L.; Gopalakrishnan, K. Toward trustworthy artificial intelligence (TAI) in the context of explainability and robustness. ACM Comput. Surv. 2025, 57, 1–49. [Google Scholar] [CrossRef]
- Li, M.; Sun, H.; Huang, Y.; Chen, H. Shapley value: From cooperative game to explainable artificial intelligence. Auton. Intell. Syst. 2024, 4, 2. [Google Scholar] [CrossRef]
- Merrick, L.; Taly, A. The explanation game: Explaining machine learning models using shapley values. In Proceedings of the Machine Learning and Knowledge Extraction: 4th IFIP TC 5 2020, TC 12, WG 8.4, WG 8.9, WG 12.9 International Cross-Domain Conference, CD-MAKE 2020, Dublin, Ireland, 25–28 August 2020. [Google Scholar]
- Dwivedi, R.; Dave, D.; Naik, H.; Singhal, S.; Omer, R.; Patel, P.; Qian, B.; Wen, Z.; Shah, T.; Morgan, G. Explainable AI (XAI): Core ideas, techniques, and solutions. ACM Comput. Surv. 2023, 55, 1–33. [Google Scholar] [CrossRef]
- Ter-Minassian, L.; Clivio, O.; Diazordaz, K.; Evans, R.J.; Holmes, C.C. Pwshap: A path-wise explanation model for targeted variables. In Proceedings of the International Conference on Machine Learning, Osaka, Japan, 4–6 February 2023. [Google Scholar]
- Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.-I. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2020, 2, 56–67. [Google Scholar] [CrossRef]
- Olsen, L.H.B.; Glad, I.K.; Jullum, M.; Aas, K. A comparative study of methods for estimating model-agnostic Shapley value explanations. Data Min. Knowl. Discov. 2024, 38, 1782–1829. [Google Scholar] [CrossRef]
- Sebastián, C.; González-Guillén, C.E. A feature selection method based on Shapley values robust for concept shift in regression. Neural Comput. Appl. 2024, 36, 14575–14597. [Google Scholar] [CrossRef]
- Ortigossa, E.S.; Gonçalves, T.; Nonato, L.G. EXplainable artificial intelligence (XAI)–From theory to methods and applications. IEEE Access 2024, 12, 80799–80846. [Google Scholar] [CrossRef]
- Wang, H.; Liang, Q.; Hancock, J.T.; Khoshgoftaar, T.M. Feature selection strategies: A comparative analysis of SHAP-value and importance-based methods. J. Big Data 2024, 11, 44. [Google Scholar] [CrossRef]
- Tan, X.; Qi, Z.; Tang, L.; Cohen, M.C. A General Framework for Robust Individualized Decision Learning with Sensitive Variables. SSRN Electron. J. 2024. [CrossRef]
- Kern, W.; Paulusma, D. Matching games: The least core and the nucleolus. Math. Oper. Res. 2003, 28, 294–308. [Google Scholar] [CrossRef]
- Finus, M.; Rundshagen, B. A micro foundation of core stability in positive-externality coalition games. J. Institutional Theor. Econ. 2006, 162, 329–346. [Google Scholar] [CrossRef]
- Chamola, V.; Hassija, V.; Sulthana, A.R.; Ghosh, D.; Dhingra, D.; Sikdar, B. A review of trustworthy and explainable artificial intelligence (xai). IEEE Access 2023, 11, 78994–79015. [Google Scholar] [CrossRef]
- Kalasampath, K.; Spoorthi, K.; Sajeev, S.; Kuppa, S.S.; Ajay, K.; Angulakshmi, M. A Literature review on applications of explainable artificial intelligence (XAI). IEEE Access 2025, 13, 41111–41140. [Google Scholar] [CrossRef]
- Carmichael, Z. Explainable AI for High-Stakes Decision-Making; University of Notre Dame: Notre Dame, IN, USA, 2024. [Google Scholar]
- Cohen, S.; Dror, G.; Ruppin, E. Feature selection via coalitional game theory. Neural Comput. 2007, 19, 1939–1961. [Google Scholar] [CrossRef] [PubMed]
- Parisineni, S.R.A.; Pal, M. Enhancing trust and interpretability of complex machine learning models using local interpretable model agnostic shap explanations. Int. J. Data Sci. Anal. 2024, 18, 457–466. [Google Scholar] [CrossRef]
- Nallakaruppan, M.; Chaturvedi, H.; Grover, V.; Balusamy, B.; Jaraut, P.; Bahadur, J.; Meena, V.; Hameed, I.A. Credit risk assessment and financial decision support using explainable artificial intelligence. Risks 2024, 12, 164. [Google Scholar] [CrossRef]
- Roder, J.; Maguire, L.; Georgantas, R.; Roder, H. Explaining multivariate molecular diagnostic tests via Shapley values. BMC Med. Inform. Decis. Mak. 2021, 21, 211. [Google Scholar] [CrossRef]
- Lei, D.; Ma, J.; Zhang, G.; Wang, Y.; Deng, X.; Liu, J. Bayesian ensemble learning and Shapley additive explanations for fast estimation of slope stability with a physics-informed database. Natural Hazards 2024, 121, 2941–29701. [Google Scholar] [CrossRef]
- Roughgarden, T. Beyond the Worst-Case Analysis of Algorithms; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Chen, Y.; Ren, Q.; Yan, J. Rethinking and improving robustness of convolutional neural networks: A shapley value-based approach in frequency domain. Adv. Neural Inf. Process. Syst. 2022, 35, 324–337. [Google Scholar]
- Lorenz, F.; Willwersch, J.; Cajias, M.; Fuerst, F. Interpretable machine learning for real estate market analysis. Real Estate Econ. 2023, 51, 1178–1208. [Google Scholar] [CrossRef]
- Mathotaarachchi, K.V.; Hasan, R.; Mahmood, S. Advanced machine learning techniques for predictive modeling of property prices. Information 2024, 15, 295. [Google Scholar] [CrossRef]
- Abidoye, R.B. Towards Property Valuation Accuracy: A Comparison of Hedonic Pricing Model and Artifiical Neural Network. Ph.D. Thesis, Hong Kong Polytechnic University, Hong Kong, China, 2017. [Google Scholar]
- Kucklick, J.-P.; Müller, O. Tackling the accuracy-interpretability trade-off: Interpretable deep learning models for satellite image-based real estate appraisal. ACM Trans. Manag. Inf. Syst. 2023, 14, 1–24. [Google Scholar] [CrossRef]
- Bell, A.; Solano-Kamaiko, I.; Nov, O.; Stoyanovich, J. It’s just not that simple: An empirical study of the accuracy-explainability trade-off in machine learning for public policy. In Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency, New York, NY, USA, 21–24 June 2022. [Google Scholar]
- Liao, H.-F.; Chu, N.-Y.; Peng, C.-W. Awareness of Independence of Real Estate Appraisers: An Empirical Analysis. Int. Real Estate Rev. 2018, 21, 295–316. [Google Scholar] [CrossRef]
- Bordt, S. Explainable Machine Learning and Its Limitations. Ph.D. Thesis, Universität Tübingen, Tübingen, Germany, 2023. [Google Scholar]
- Ferry, J. Addressing Interpretability Fairness & Privacy in Machine Learning Through Combinatorial Optimization Methods. Ph.D. Thesis, Université Paul Sabatier-Toulouse III, Toulouse, France, 2023. [Google Scholar]
- Winter, E. The shapley value. Handb. Game Theory Econ. Appl. 2002, 3, 2025–2054. [Google Scholar]
- Louati, A.; Lahyani, R.; Aldaej, A.; Aldumaykhi, A.; Otai, S. Price forecasting for real estate using machine learning: A case study on Riyadh city. Concurr. Comput. Pract. Exp. 2022, 34, e6748. [Google Scholar] [CrossRef]
- Bennetot, A.; Donadello, I.; El Qadi El Haouari, A.; Dragoni, M.; Frossard, T.; Wagner, B.; Sarranti, A.; Tulli, S.; Trocan, M.; Chatila, R. A practical tutorial on explainable AI techniques. ACM Comput. Surv. 2024, 57, 1–44. [Google Scholar] [CrossRef]
- Geipele, I.; Kauskale, L.; Lepkova, N.; Liias, R. Interaction of socio-economic factors and real estate market in the context of sustainable urban development. Environmental Engineering. In Proceedings of the International Conference on Environmental Engineering, Vilnius, Lithuania, 22–23 May 2014. [Google Scholar]
Variable | Count | Mean | Std | Min | 25% | 50% | 75% | Max |
---|---|---|---|---|---|---|---|---|
Area/m2 | 53,343 | 82.1 | 66.7 | 5.1 | 51.0 | 70.2 | 95.5 | 5600.0 |
Elevator | 53,343 | 0.6 | 0.5 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 |
Deposit (RMB) | 53,343 | 7362.5 | 9467.4 | 0.0 | 3800 | 5500 | 7654 | 450,000 |
Agency_fee (RMB) | 53,343 | 5782.7 | 9982.7 | 0.0 | 0.0 | 4500.0 | 7000.0 | 450,000.0 |
longitude | 53,891 | 116.4 | 0.1 | 116.0 | 116.3 | 116.4 | 116.5 | 117.3 |
latitude | 53,891 | 39.9 | 0.1 | 39.5 | 39.9 | 39.9 | 40.0 | 40.7 |
Supporting_facilities | 53,891 | 0.8 | 0.4 | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 |
Current_floor | 53,312 | 13.8 | 8.0 | 1.0 | 6.0 | 13.0 | 20.0 | 57.0 |
Total_floor_level | 44,619 | 2.0 | 0.8 | 1.0 | 1.0 | 2.0 | 3.0 | 3.0 |
East | 53,891 | 0.2 | 0.4 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 |
South | 53,891 | 0.7 | 0.4 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 |
West | 53,891 | 0.2 | 0.4 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 |
North | 53,891 | 0.5 | 0.5 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 |
Rent | 53,891 | 7303.1 | 9441.6 | 250.0 | 3800.0 | 5500.0 | 7600.0 | 450,000.0 |
District | Count | Mean | Std_Dev | Min | Q1 | Median | Q3 | Max |
---|---|---|---|---|---|---|---|---|
Changping_District | 3728 | 5509 | 4459 | 350 | 3464 | 4800 | 6300 | 75,000 |
Chaoyang_District | 15,336 | 9004 | 13,222 | 550 | 5000 | 6430 | 9000 | 450,000 |
Daxing_District | 4042 | 5864 | 5516 | 1200 | 3600 | 4422 | 6300 | 125,000 |
Dongcheng_District | 1994 | 8533 | 6726 | 1300 | 5500 | 6855 | 9000 | 80,000 |
Fangshan_District | 1954 | 3596 | 2060 | 480 | 2536 | 3200 | 4000 | 30,000 |
Fengtai_District | 5351 | 6349 | 5774 | 900 | 4300 | 5350 | 6800 | 130,000 |
Haidian_District | 6757 | 9456 | 10,120 | 1400 | 5500 | 7000 | 9500 | 200,000 |
Huairou_District | 624 | 3269 | 3497 | 950 | 2200 | 2500 | 3100 | 50,000 |
Mentougou_District | 895 | 4087 | 2837 | 550 | 2800 | 3400 | 4400 | 33,000 |
Miyun_District | 515 | 2547 | 2481 | 580 | 1600 | 1900 | 2450 | 23,000 |
Pinggu_District | 4 | 2725 | 842 | 1700 | 2300 | 2750 | 3175 | 3700 |
Shijingshan_District | 1892 | 5625 | 3663 | 400 | 4100 | 4900 | 6000 | 80,000 |
Shunyi_District | 3413 | 6574 | 10,410 | 830 | 2800 | 3600 | 5100 | 198,000 |
Tongzhou_District | 4494 | 4691 | 3518 | 250 | 3200 | 4000 | 5000 | 85,000 |
Xicheng_District | 2884 | 9753 | 9698 | 900 | 5700 | 7200 | 9591 | 150,000 |
Yanqing_District | 8 | 2700 | 2960 | 500 | 1650 | 1800 | 2100 | 9900 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Kee, T. Integrating Shapley Value and Least Core Attribution for Robust Explainable AI in Rent Prediction. Buildings 2025, 15, 3133. https://doi.org/10.3390/buildings15173133
Wang X, Kee T. Integrating Shapley Value and Least Core Attribution for Robust Explainable AI in Rent Prediction. Buildings. 2025; 15(17):3133. https://doi.org/10.3390/buildings15173133
Chicago/Turabian StyleWang, Xinyu, and Tris Kee. 2025. "Integrating Shapley Value and Least Core Attribution for Robust Explainable AI in Rent Prediction" Buildings 15, no. 17: 3133. https://doi.org/10.3390/buildings15173133
APA StyleWang, X., & Kee, T. (2025). Integrating Shapley Value and Least Core Attribution for Robust Explainable AI in Rent Prediction. Buildings, 15(17), 3133. https://doi.org/10.3390/buildings15173133