Mechanical Properties of Fly Ash Ceramsite Concrete Produced in a Single-Cylinder Rotary Kiln
Abstract
1. Introduction
2. Test Overview
2.1. Test Material
2.2. Test Design
3. Test Methods
3.1. Compressive Strength Test and Split Tensile Strength Test
3.2. Axial Compressive Strength Test, Modulus of Elasticity Test, and Poisson’s Ratio Test
4. Test Results and Analysis
4.1. Compressive Strength
4.1.1. Compressive Strength of Ceramic Concrete of New Single-Cylinder Rotary Kiln
4.1.2. Sensitivity Analysis of Compressive Strength Factors
4.2. Splitting Tensile Strength
4.2.1. Splitting Tensile Strength of New Single Rotary Kiln Ceramic Concrete
4.2.2. Damage Pattern of Split Tensile Strength Test
4.2.3. Sensitivity Analysis of Splitting Tensile Strength by Factors
4.3. Axial Compressive Strength
4.3.1. Axial Compressive Strength of New Single Rotary Kiln Ceramic Concrete
4.3.2. Damage Pattern of Axial Compressive Strength Test
4.3.3. Sensitivity Analysis of Axial Compressive Strength by Factors
4.4. Modulus of Elasticity and Poisson’s Ratio
4.5. Relationship Between Cube Compressive Strength and Axial Compressive Strength
4.6. Comparison of the Mechanical Properties of the Two Types of Concrete
4.7. XRD Test and Analysis
4.8. CT Test and Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, F.; Zhang, X.; Du, Y.; Wang, Q.; Li, X. Preparation technology and research progress of fly ash ceramsite. Inorg. Chem. Ind. 2024, 56, 16–23. (In Chinese) [Google Scholar] [CrossRef]
- Li, C.; Zhang, G.; Liu, D.; Wang, M. Preparation of lightweight ceramsite from solid waste lithium slag and fly ash. Constr. Build. Mater. 2023, 398, 132419. [Google Scholar] [CrossRef]
- Wang, L.-S.; Wang, Y.-X.; Sun, W.; Wang, C.-W.; Meng, X.-S. Preparation of lightweight and high-strength ceramsite from highly doped coal fly ash. Trans. Nonferrous Met. Soc. China 2023, 33, 3885–3898. [Google Scholar] [CrossRef]
- Yadav, V.K.; Saxena, P.; Lal, C.; Gnanamoorthy, G.; Choudhary, N.; Singh, B.; Tavker, N.; Kalasariya, H.; Kumar, P. Synthesis and characterization of mullites from silicoaluminous fly ash waste. Int. J. Appl. Nanotechnol. Res. 2020, 5, 2. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, F.; Liu, H. Comparative life cycle assessment of two ceramsite production technologies for reusing municipal solid waste incinerator fly ash in China. Waste Manag. 2020, 113, 447–455. [Google Scholar] [CrossRef]
- Guo, J.; Yuan, K.; Xu, J.; Wang, Y.; Gan, D.; He, M. The Workability and Mechanical Performance of Fly Ash Cenosphere–Desert Sand Ceramsite Concrete: An Experimental Study and Analysis. Materials 2023, 16, 1298. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Sun, X. Synergistic effects of nano-silica and fly ash on the mechanical properties and durability of internal-cured concrete incorporating artificial shale ceramsite. J. Build. Eng. 2023, 66, 105905. [Google Scholar] [CrossRef]
- Lo, T.Y.; Cui, H.Z.; Li, Z.G. Influence of aggregate pre-wetting and fly ash on mechanical properties of lightweight concrete. Waste Manag. 2004, 24, 333–338. [Google Scholar] [CrossRef]
- Kabay, N.; Aköz, F. Effect of prewetting methods on some fresh and hardened properties of concrete with pumice aggregate. Cem. Concr. Compos. 2012, 34, 503–507. [Google Scholar] [CrossRef]
- Fan, L.F.; Wang, H.; Zhong, W.L. Development of lightweight aggregate geopolymer concrete with shale ceramsite. Ceram. Int. 2023, 49, 15422–15433. [Google Scholar] [CrossRef]
- Wang, S.; Yang, L.; Ma, X.; Mei, R.; Li, C.; Sun, Z. The formation of porous light ceramsite using Yellow River sediment and its application in concrete masonry production. Case Stud. Constr. Mater. 2022, 17, e01340. [Google Scholar] [CrossRef]
- Han, Y.; Zhou, M.; Wang, J.; Tian, Y.; Wang, X. Optimization of coal-based solid waste ceramsite foam concrete mix proportions and performance study. Constr. Build. Mater. 2024, 416, 135226. [Google Scholar] [CrossRef]
- Wang, C.; Yu, L.; Wang, H.; Gao, S.; Huang, J.S.; Chen, X.; Shao, M. LC50 fly ash microbead lightweight high-strength concrete: Mix ratio design, stress mechanism, and life cycle assessment. Arch. Civ. Mech. Eng. 2025, 25, 18. [Google Scholar] [CrossRef]
- Qi, H.; Zhang, H.; Li, Y.; Jiang, R. Research on fly ash ceramic concrete. Cement Eng. 2022, 1, 26–28. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, Y.; Zhang, H.; Gu, X.; Ni, S.; Xu, Y.; Liu, R. Preparation and performance influencing factors of sludge-based non-sintering ceramsite foam concrete block. Constr. Build. Mater. 2024, 426, 136240. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Zhao, J.; Yang, S. Experimental and numerical simulation study on mechanical properties of ceramsite concrete. Concrete 2024, 3, 111–118. (In Chinese) [Google Scholar]
- Zhu, X. Optimization Design of Mix Proportion and Comprehensive Application Performance of Fly Ash Ceramsite Concrete. Master’s Thesis, Qingdao University of Technology, Qingdao, China, 2016. (In Chinese). [Google Scholar]
- Zhao, F. Research on Grading and Fiber Modification of Fly Ash Ceramic Concrete. Ph.D. Thesis, Taiyuan University of Technology, Taiyuan, China, 2023. (In Chinese). [Google Scholar] [CrossRef]
- Yan, C. Research on the Effect of Mixing Materials on the Mechanical Properties of LC30 Precast Vitrified Concrete. Master’s Thesis, Chongqing Jiaotong University, Chongqing, China, 2018. (In Chinese). [Google Scholar]
- Prokopski, G.; Langier, B. Effect of water/cement ratio and silica fume addition on the fracture toughness and morphology of fractured surfaces of gravel concretes. Cem. Concr. Res. 2000, 30, 1427–1433. [Google Scholar] [CrossRef]
- Li, P.; Li, J.; Fan, L.; Mi, S.; Li, J.; Liu, H.; Peng, S.; Huang, W. Experimental investigation into lightweight high strength concrete with shale and clay ceramsite for offshore structures. Sustainability 2024, 16, 1148. [Google Scholar] [CrossRef]
- Liu, Q.; Zhao, C.; Liu, J. Research on the proportion of high-strength shale fly ash ceramic concrete. Fly Ash 2000, 5, 19–22. (In Chinese) [Google Scholar]
- Mufti, N.; Yohana, K.; Fuad, A.; Taufiq, A.; Sunaryono, S. Effect of local sand ratio toward compressive strength and dielectric properties of concrete. J. Phys. Conf. Ser. 2020, 1595, 012030. [Google Scholar] [CrossRef]
- Tang, X. Research on the Properties of Lightweight Aggregate Concrete for Large Flowable Structures. Master’s Thesis, Chongqing University, Chongqing, China, 2003. (In Chinese). [Google Scholar]
- Tao, F.; Gu, P.; Yang, Y. Study on influencing factors of mechanical properties of ceramsite foam concrete based on orthogonal test. IOP Conf. Ser. Mater. Sci. Eng. 2020, 768, 032039. [Google Scholar] [CrossRef]
- Li, Y.; Wang, W.; Zhang, P.; Ma, T.; Gao, Y. Effects of mineral admixtures on the compressive strength of shale-ceramic concrete. J. Hunan Univ. (Nat. Sci. Ed.) 2018, 45, 72–77. (In Chinese) [Google Scholar] [CrossRef]
- Shannag, M.J. Characteristics of lightweight concrete containing mineral admixtures. Constr. Build. Mater. 2011, 25, 658–662. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, H.; Wan, Y.; Ghantous, R.M.; Li, J.; Liu, Y.; Ni, Y.; Guan, J. Mechanical properties and autogenous deformation behavior of early-age concrete containing pre-wetted ceramsite and CaO-based expansive agent. Constr. Build. Mater. 2021, 267, 120992. [Google Scholar] [CrossRef]
- Zhu, H.; Fu, Z.; Wang, Y.; Zhang, N. Study on splitting tensile strength of interface between the full lightweight ceramsite concrete and ordinary concrete. Case Stud. Constr. Mater. 2023, 18, e01829. [Google Scholar] [CrossRef]
- GB 175-2007; General Purpose Silicate Cement. China Construction Industry Press: Beijing, China, 2007. (In Chinese)
- GB/T 14684-2001; Sand for Construction. China Standard Press: Beijing, China, 2001. (In Chinese)
- JGJ 51-2002; Technical Specification for Lightweight Aggregate Concrete. China Construction Industry Press: Beijing, China, 2002. (In Chinese)
- GB/T 50081-2019; Standard of Test Methods for Physical and Mechanical Properties of Concrete. China Construction Industry Press: Beijing, China, 2019. (In Chinese)
- GB 50010-2010; Code for Design of Concrete Structures. China Construction Industry Press: Beijing, China, 2010. (In Chinese)
- Chen, Y. Research on the Proportion Design and Performance of High Strength Lightweight Aggregate Concrete. Ph.D. Thesis, Jilin University, Changchun, China, 2007. (In Chinese). [Google Scholar]
- Gong, L.; Shi, X.; Su, M.; Li, Y. Study on several basic mechanical properties of lightweight aggregate concrete. Concr. Build. Compon. 1979, 1, 20–27. (In Chinese) [Google Scholar]
- Liu, H.; Wang, L.; Song, Y.; Wang, H. Experimental study on mechanical properties of steel fiber high-strength lightweight aggregate concrete. J. Build. Struct. 2007, 28, 110–117. (In Chinese) [Google Scholar] [CrossRef]
- Niu, J.; Liu, H.; Zuo, F.; Xie, C. Experimental study on compressive strength conversion relationship of plastic fiber lightweight aggregate concrete. Silic. Bull. 2017, 36, 996–1002. (In Chinese) [Google Scholar] [CrossRef]
- Fan, Z. Experimental Study on the Performance of Lightweight Aggregate Concrete with Polypropylene Fiber. Master’s Thesis, Inner Mongolia Agricultural University, Hohhot, China, 2009. (In Chinese). [Google Scholar]
- Yang, Y. Research on the Basic Mechanical Properties of Fiber-Reinforced Ceramic Concrete. Master’s Thesis, Yangzhou University, Yangzhou, China, 2022. (In Chinese). [Google Scholar] [CrossRef]
Research Entry Angle | Research Literature | Core Research Content | Difference with This Study |
---|---|---|---|
Reasonable adjustment of water-cement ratio and ceramic granule admixture | Yang Han et al. [12], Chaoqiang Wang et al. [13], Huijun Qi et al. [14], Zhang, Q.Y. et al. [15], Xiang Li et al. [16], Xueqing Zhu et al. [17] | Exploring the effects of water-cement ratio, ceramic granule dosing/substitution rate, and mineral admixture synergism on performance | Ceramics are mostly of common type or non-fly ash-based. Fly ash is only used as an admixture with low dosage, not as the core raw material of ceramic granules, and high-value utilization; the preparation process of fly ash ceramic granules is not involved; only the optimization of the mixing ratio is carried out, and the closed-loop of solid waste resource utilization is not constructed |
Size of water-cement ratio | Zhao Feiyang et al. [18], Yan Chunhao et al. [19], Prokopski et al. [20], Li et al. [21]. | To analyze the effect of the water-cement ratio on flowability, homogeneity, durability, fracture toughness, and strength of | Pottery is not fly ash-based; only single-parameter analysis, not associated with efficient use of fly ash |
Sand ratio | Qiang Liu et al. [22], Mufti et al. [23], Xiao Tang [24]. | To study the effect of sand rate on strength and comprehensive performance | Ceramic granules are mostly natural raw materials such as shale; only the sand rate was optimized, and no innovation in the fly ash ceramic granule preparation process was involved |
Incorporation of mineral admixtures | Feiyu Tao et al. [25], Yuping Li [26], Shannag [27], Zhao et al. [28], Zhu et al. [29] | Analyzing the strengthening effect of mineral admixtures (fly ash, silica fume, etc.) on strength | Fly ash is only used as a concrete admixture, not as a core raw material for ceramic granules; some ceramic granules are not fly ash-based, not reflecting the high value of solid waste |
Cement Variety | Fineness/% | Initial Setting Time/min | Final Setting Time/min | Stability | Burning Vector |
---|---|---|---|---|---|
P.O 42.5 | ≤10 | ≥45 | ≤600 | Qualified | ≤5.0 |
Type of Ceramic Granule | Gradation/mm | Bulk Density/(kg m−3) | Cylinder Compression Strength/MPa | Water Absorption Rate/% |
---|---|---|---|---|
Fly ash granule | 5–20 | 990 | ≥6.5 | 16 |
Type of Ceramic Granule | Gradation/mm | Bulk Density/(kg m−3) | Cylinder Compression Strength/MPa | Water Absorption Rate/% |
---|---|---|---|---|
Fly ash granule | 5–20 | 1000 | 10.8 | 4.8 |
Appearance and Shape | Water Reduction Rate/% | pH Value | Gas Content/% | Total Alkali Content/% |
---|---|---|---|---|
Colorless liquid | 30 | 7 | 3 | ≤0.2 |
No. | Cement/ (kg m−3) | Ordinary Sand/(kg m−3) | Ceramic Granule/ (kg m−3) | Water-Reducing Agent/(kg m−3) | Water/ (kg m−3) | Water-Cement Ratio |
---|---|---|---|---|---|---|
1 | 440 | 667 | 712 | 12 | 175 | 0.31 |
2 | 520 | 620 | 752 | 12 | 150 | 0.31 |
3 | 480 | 620 | 792 | 12 | 165 | 0.31 |
4 | 520 | 620 | 712 | 12 | 180 | 0.35 |
5 | 480 | 620 | 752 | 12 | 195 | 0.35 |
6 | 440 | 620 | 792 | 12 | 180 | 0.35 |
7 | 480 | 620 | 712 | 12 | 180 | 0.39 |
8 | 440 | 620 | 752 | 12 | 180 | 0.39 |
9 | 520 | 620 | 792 | 12 | 180 | 0.39 |
No. | Compressive Strength/MPa | ||
---|---|---|---|
3 d | 7 d | 28 d | |
1 | 30.40 | 41.61 | 50.92 |
2 | 28.50 | 39.55 | 46.65 |
3 | 35.34 | 40.05 | 49.97 |
4 | 34.39 | 43.32 | 48.54 |
5 | 33.44 | 40.54 | 46.93 |
6 | 30.65 | 36.67 | 47.59 |
7 | 28.60 | 35.34 | 47.12 |
8 | 28.03 | 34.39 | 47.88 |
9 | 26.22 | 39.14 | 47.46 |
Factor | 3 d Compressive Strength/MPa | 7 d Compressive Strength/MPa | 28 d Compressive Strength/MPa | ||||||
---|---|---|---|---|---|---|---|---|---|
Water-Cement Ratio | Dosage of Ceramic Granule | Cement Dosage | Water- Cement Ratio | Dosage of Ceramic Granule | Cement Dosage | Water- Cement Ratio | Pottery Granule Mixing Amount | Cement Dosage | |
K1 | 94.24 | 93.39 | 89.08 | 121.20 | 120.27 | 112.67 | 147.54 | 146.59 | 146.40 |
K2 | 98.48 | 89.97 | 97.38 | 120.53 | 114.48 | 115.93 | 143.07 | 141.46 | 144.02 |
K3 | 82.25 | 92.21 | 89.11 | 108.87 | 115.86 | 122.01 | 142.46 | 145.03 | 142.66 |
k1 | 31.41 | 31.13 | 26.69 | 40.40 | 40.09 | 37.56 | 49.18 | 48.86 | 48.80 |
k2 | 32.83 | 29.99 | 32.46 | 40.18 | 38.16 | 38.64 | 47.69 | 47.15 | 48.01 |
k3 | 27.41 | 30.74 | 29.70 | 36.29 | 38.62 | 40.67 | 47.49 | 48.34 | 47.55 |
R | 5.42 | 1.14 | 5.77 | 4.11 | 1.93 | 3.11 | 1.69 | 1.71 | 1.26 |
R Comparison | R3 > R1 > R2 | R1 > R3 > R2 | R2 > R1 > R3 |
No. | Splitting Tensile Strength/MPa | ||
---|---|---|---|
3 d | 7 d | 28 d | |
1 | 1.54 | 2.75 | 3.96 |
2 | 1.61 | 3.01 | 3.84 |
3 | 1.64 | 3.39 | 3.80 |
4 | 2.10 | 3.08 | 3.93 |
5 | 1.50 | 3.20 | 3.78 |
6 | 1.57 | 3.17 | 3.53 |
7 | 1.41 | 3.13 | 3.96 |
8 | 1.72 | 3.11 | 3.81 |
9 | 2.01 | 2.71 | 3.79 |
Factor | 3 d Compressive Strength/MPa | 7 d Compressive Strength/MPa | 28 d Compressive Strength/MPa | ||||||
---|---|---|---|---|---|---|---|---|---|
Water-Cement Ratio | Dosage of Ceramic Granule | Cement Dosage | Water- Cement Ratio | Dosage of Ceramic Granule | Cement Dosage | Water- Cement Ratio | Pottery Granule Mixing Amount | Cement Dosage | |
K1 | 4.79 | 5.05 | 4.83 | 9.15 | 8.96 | 9.03 | 11.6 | 11.85 | 11.3 |
K2 | 5.17 | 4.83 | 4.55 | 9.45 | 9.32 | 9.72 | 11.24 | 11.43 | 11.54 |
K3 | 5.14 | 5.22 | 5.72 | 8.95 | 9.27 | 8.8 | 11.56 | 11.12 | 11.56 |
k1 | 1.60 | 1.68 | 1.61 | 3.05 | 2.99 | 3.01 | 3.87 | 3.95 | 3.77 |
k2 | 1.72 | 1.61 | 1.52 | 3.15 | 3.11 | 3.24 | 3.75 | 3.81 | 3.85 |
k3 | 1.71 | 1.74 | 1.91 | 2.98 | 3.09 | 2.93 | 3.85 | 3.71 | 3.85 |
R | 0.12 | 0.13 | 0.3 | 0.17 | 0.12 | 0.31 | 0.12 | 0.24 | 0.08 |
R Comparison | R3 > R2 > R1 | R3 > R1 > R2 | R2 > R1 > R3 |
No. | Axial Compressive Strength/MPa | ||
---|---|---|---|
3 d | 7 d | 28 d | |
1 | 30.24 | 33.56 | 47.48 |
2 | 31.45 | 33.64 | 43.13 |
3 | 30.89 | 33.13 | 46.22 |
4 | 31.82 | 35.69 | 45.46 |
5 | 29.14 | 34.18 | 43.31 |
6 | 29.83 | 35.65 | 43.87 |
7 | 31.32 | 35.87 | 44.74 |
8 | 30.89 | 33.08 | 44.26 |
9 | 30.79 | 35.93 | 42.95 |
Factor | 3 d Axial Compressive Strength/MPa | 7 d Axial Compressive Strength/MPa | 28 d Axial Compressive Strength/MPa | ||||||
---|---|---|---|---|---|---|---|---|---|
Water-Cement Ratio | Dosage of Ceramic Granule | Cement Dosage | Water-Cement Ratio | Dosage of Ceramic Granule | Cement Dosage | Water-Cement Ratio | Pottery Granule Mixing Amount | Cement Dosage | |
K1 | 92.58 | 93.38 | 90.96 | 100.33 | 105.12 | 102.29 | 136.83 | 137.78 | 135.61 |
K2 | 90.79 | 91.48 | 91.35 | 105.52 | 100.9 | 103.18 | 132.64 | 130.70 | 134.27 |
K3 | 93 | 91.51 | 94.06 | 104.88 | 104.71 | 105.26 | 131.95 | 133.04 | 131.54 |
k1 | 30.86 | 31.12 | 30.32 | 33.44 | 35.04 | 34.10 | 45.61 | 45.93 | 45.20 |
k2 | 30.26 | 30.49 | 30.49 | 35.17 | 33.63 | 34.39 | 44.21 | 43.57 | 44.76 |
k3 | 31.00 | 30.50 | 31.35 | 34.96 | 34.90 | 35.09 | 43.98 | 44.35 | 43.85 |
R | 0.74 | 0.63 | 1.03 | 1.73 | 1.41 | 0.99 | 1.63 | 2.36 | 1.35 |
R Comparison | R3 > R1 > R2 | R1 > R2 > R3 | R2 > R1 > R3 |
No. | Axial Compressive Strength /MPa | Modulus of Elasticity × 10−4/MPa | Apparent Density kg/m3 | Poisson’s Ratio | Calculated Value × 10−4/MPa |
---|---|---|---|---|---|
1 | 47.48 | 2.18 | 1866.47 | 0.204 | 2.69 |
2 | 43.13 | 1.93 | 1864.55 | 0.217 | 2.57 |
3 | 46.22 | 2.14 | 1859.66 | 0.198 | 2.66 |
4 | 45.46 | 2.06 | 1911.45 | 0.234 | 2.69 |
5 | 43.31 | 1.96 | 1879.63 | 0.225 | 2.60 |
6 | 43.87 | 2.06 | 1922.15 | 0.211 | 2.68 |
7 | 44.74 | 2.04 | 1889.69 | 0.236 | 2.62 |
8 | 44.26 | 2.01 | 1903.34 | 0.233 | 2.66 |
9 | 42.95 | 1.98 | 1915.77 | 0.219 | 2.67 |
Literature | Aggregate Variety | Concrete Grade | fc/fcu | Mean Value |
---|---|---|---|---|
Chen Yan [35] | Spherical shale ceramic granule | LC40 | 0.940 | 0.940 |
Shaanxi Construction Research Institute [36] | Fly ash ceramic granule | LC20 LC30 LC50 | 0.866 0.972 0.956 | 0.938 |
Liu Hanyong [37] | Rounded shale pellets Shale ceramic granule | LC50 | 0.900 | 0.900 |
Tianjin Light Aggregate Research Group [36] | Fly ash Ceramic granule | LC20 LC30 LC40 | 0.932 0.943 0.907 | 0.911 |
Structural Institute of China Academy of Building Research [36] | Shale Ceramic Granules Clay | LC10 LC30 | 0.912 0.866 | 0.889 |
Niu Jianguang [38] | Fly ash Ceramic granule | LC30~LC35 | 0.804 | 0.804 |
Shanghai Construction Research Institute [36] | Clay granule Shale Ceramic Granule | LC30 LC15 | 0.897 1.006 | 0.952 |
Fan Zhiyong [39] | Pumice | LC30 LC35 LC40 | 0.880 | 0.880 |
Yang Ying [40] | Ceramic concrete | LC20 LC30 LC40 | 0.865 0.831 0.793 | 0.825 |
Chen Yan | Structural Institute of China Academy of Building Research | Tianjin Lightweight Aggregate Research Group | Fan Zhiyong | Shanghai Institute of Building Research | Ying Yang | Shaanxi Provincial Institute of Building Research | Liu Hanyong | Niu Jiangang | |
---|---|---|---|---|---|---|---|---|---|
1 | 47.864 | 45.268 | 46.388 | 44.810 | 48.479 | 42.009 | 47.610 | 45.828 | 40.940 |
2 | 43.851 | 41.472 | 42.498 | 41.052 | 44.411 | 38.486 | 43.618 | 41.985 | 37.507 |
3 | 46.972 | 44.423 | 45.523 | 43.974 | 47.571 | 41.225 | 46.722 | 44.973 | 40.176 |
4 | 45.632 | 43.156 | 44.224 | 42.720 | 46.215 | 40.050 | 45.390 | 43.691 | 39.030 |
5 | 44.114 | 41.721 | 42.753 | 41.298 | 44.677 | 38.717 | 43.880 | 42.237 | 37.732 |
6 | 44.739 | 42.312 | 43.359 | 41.884 | 45.310 | 39.266 | 44.501 | 42.836 | 38.266 |
7 | 44.293 | 41.890 | 42.926 | 41.466 | 44.858 | 38.874 | 44.057 | 42.408 | 37.884 |
8 | 45.007 | 42.565 | 43.619 | 42.134 | 45.582 | 39.501 | 44.768 | 43.092 | 38.496 |
9 | 44.614 | 42.194 | 43.238 | 41.7667 | 45.184 | 39.156 | 44.377 | 42.719 | 38.159 |
Mean value | 45.232 | 42.778 | 43.836 | 42.345 | 45.810 | 39.698 | 44.991 | 43.308 | 38.688 |
Chen Yan | Structural Institute of China Academy of Building Research | Tianjin Lightweight Aggregate Research Group | Fan Zhiyong | Shanghai Institute of Building Research | Ying Yang | Shaanxi Provincial Institute of Building Research | Liu Hanyong | Niu Jiangang | |
---|---|---|---|---|---|---|---|---|---|
1 | 1.008 | 0.953 | 0.977 | 0.943 | 1.021 | 0.885 | 1.003 | 0.965 | 0.953 |
2 | 1.016 | 0.961 | 0.985 | 0.951 | 1.030 | 0.892 | 1.011 | 0.973 | 0.962 |
3 | 1.016 | 0.961 | 0.985 | 0.951 | 1.029 | 0.892 | 1.011 | 0.973 | 0.961 |
4 | 1.003 | 0.949 | 0.973 | 0.940 | 1.017 | 0.881 | 0.998 | 0.961 | 0.961 |
5 | 1.018 | 0.963 | 0.987 | 0.954 | 1.032 | 0.894 | 1.013 | 0.975 | 0.963 |
6 | 1.019 | 0.964 | 0.988 | 0.955 | 1.033 | 0.895 | 1.014 | 0.976 | 0.964 |
7 | 0.990 | 0.936 | 0.959 | 0.927 | 1.002 | 0.869 | 0.985 | 0.947 | 0.936 |
8 | 1.017 | 0.962 | 0.985 | 0.952 | 1.030 | 0.892 | 1.011 | 0.974 | 0.962 |
9 | 1.039 | 0.982 | 1.01 | 0.972 | 1.052 | 0.912 | 1.033 | 0.995 | 0.982 |
Mean value | 1.014 | 0.959 | 0.983 | 1.067 | 1.027 | 0.890 | 1.009 | 0.971 | 0.959 |
Variance | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 |
Sand/ (kg m−3) | Water/ (kg m−3) | Cement/(kg m−3) | Ceramic Granule/ (kg m−3) | Water-Reducing Agent/ (kg m−3) | Water-Cement Ratio |
---|---|---|---|---|---|
627 | 163 | 480 | 750 | 12 | 0.34 |
Type | Compressive Strength/MPa | Split Tensile Strength/MPa | Mix Working Performance | ||||
---|---|---|---|---|---|---|---|
3 d | 7 d | 28 d | 3 d | 7 d | 28 d | ||
Ordinary fly ash ceramic granule | 21.6 | 25.4 | 34.6 | 1.58 | 2.1 | 2.8 | Better |
New type single-cylinder rotary kiln ceramic granule | 27.1 | 35.6 | 46.2 | 1.68 | 2.4 | 3.6 | good |
No. | Pore Volume | ||||
---|---|---|---|---|---|
Maximum Value/(mm3) | Minimum Value/(mm3) | Average Value/ (mm3) | Total Volum/(mm3) | Percentage of Total Volume | |
Ordinary fly ash | 58.25 | 0.0025 | 0.092 | 2736.67 | 0.00760458 |
Single-drum rotary kiln | 188.34 | 0.0035 | 0.25 | 2297.51 | 0.00642272 |
No. | Crack Volume | ||||
---|---|---|---|---|---|
Maximum Value/(mm3) | Minimum Value/(mm3) | Average Value/ (mm3) | Total Volume/(mm3) | Percentage of Total Volume | |
Ordinary fly ash | 22.46 | 0.010 | 0.276 | 3271.72 | 0.00909134 |
Single-drum rotary kiln | 30.42 | 0.010 | 0.44 | 1171.97 | 0.00327629 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Jia, X.; Ni, G.; Liu, B.; Li, J.; Wang, Z.; Chen, J. Mechanical Properties of Fly Ash Ceramsite Concrete Produced in a Single-Cylinder Rotary Kiln. Buildings 2025, 15, 3124. https://doi.org/10.3390/buildings15173124
Li W, Jia X, Ni G, Liu B, Li J, Wang Z, Chen J. Mechanical Properties of Fly Ash Ceramsite Concrete Produced in a Single-Cylinder Rotary Kiln. Buildings. 2025; 15(17):3124. https://doi.org/10.3390/buildings15173124
Chicago/Turabian StyleLi, Weitao, Xiaorui Jia, Guowei Ni, Bo Liu, Jiayue Li, Zirui Wang, and Juannong Chen. 2025. "Mechanical Properties of Fly Ash Ceramsite Concrete Produced in a Single-Cylinder Rotary Kiln" Buildings 15, no. 17: 3124. https://doi.org/10.3390/buildings15173124
APA StyleLi, W., Jia, X., Ni, G., Liu, B., Li, J., Wang, Z., & Chen, J. (2025). Mechanical Properties of Fly Ash Ceramsite Concrete Produced in a Single-Cylinder Rotary Kiln. Buildings, 15(17), 3124. https://doi.org/10.3390/buildings15173124