Numerical Simulation of a Novel Welded Steel-Frame Joint Strengthened by Outer Corrugated Plates to Prevent Progressive Collapse
Abstract
1. Introduction
2. Proposal of a Novel Type of Joint
3. Validation of the FE Models
3.1. Test Program
3.2. Validation of the FE Results
4. FE Analysis of the Novel Joint
4.1. FE Modeling
4.2. Analysis Results
4.3. Parametric Analysis
5. Application of the Corrugated Plates
5.1. Full-Scale Beam–Column Joint Case
5.2. Full-Scale Steel-Frame Case
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Elkady, N.; Nelson, L.A.; Weekes, L.; Makoond, N.; Buitrago, M. Progressive collapse: Past, present, future and beyond. Structures 2024, 62, 106131. [Google Scholar] [CrossRef]
- Singh, H.; Bhandari, M. A contemporary review on progressive collapse. IOP Conf. Ser. Earth Environ. Sci. 2024, 1326, 012027. [Google Scholar] [CrossRef]
- Ferraioli, M.; Laurenza, B.; Lavino, A.; De Matteis, G. Progressive collapse analysis and retrofit of a steel-RC building considering catenary effect. J. Constr. Steel Res. 2024, 213, 108364. [Google Scholar] [CrossRef]
- Buitrago, M.; Setiawan, A.; Makoond, N.; Gerbaudo, M.L.; Marin, L.; Cetina, D.; Caredda, G.; Sempertegui, G.; Oliver, M.; Adam, J.M. Failure analysis after the progressive collapse of a precast building. Eng. Struct. 2024, 321, 118893. [Google Scholar] [CrossRef]
- Lin, S.-C.; Yang, B.; Kang, S.-B.; Xu, S.-Q. A new method for progressive collapse analysis of steel frames. J. Constr. Steel Res. 2019, 153, 71–84. [Google Scholar] [CrossRef]
- Qiu, L.; Lin, F.; Yang, X.-J. Pre-relaxed cables for improving progressive collapse resistance of RC frame subassemblages considering slabs. Eng. Fail. Anal. 2024, 165, 108803. [Google Scholar] [CrossRef]
- Qian, K.; Lan, X.; Deng, X.-F.; Fu, F. Load resistance of masonry infilled panels for steel frames to mitigate progressive collapse caused by middle column missing. J. Build. Eng. 2024, 97, 110757. [Google Scholar] [CrossRef]
- Zhong, W.-H.; Wu, D.; Tan, Z.; Qiu, Y.-Z.; Fan, C.-L. Progressive collapse behavior of beam–column structures with corrugated web openings. J. Constr. Steel Res. 2024, 223, 108982. [Google Scholar] [CrossRef]
- Dinu, F.; Marginean, I.; Dubina, D.; Petran, I. Experimental testing and numerical analysis of 3D steel frame system under column loss. Eng. Struct. 2016, 113, 59–70. [Google Scholar] [CrossRef]
- Meng, B.; Zhong, W.; Hao, J.; Song, X. Improving anti-collapse performance of steel frame with RBS connection. J. Constr. Steel Res. 2020, 170, 106119. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.-Z.; Bai, C.; Shen, H.-X.; Tian, L.-M. Novel beam–column joint with the folded plates for improving progressive collapse resistance of steel-frame structures. Structures 2024, 61, 106047. [Google Scholar] [CrossRef]
- Tian, L.-M.; Li, M.-H.; Li, L.; Li, D.-Y.; Bai, C. Novel joint for improving the collapse resistance of steel frame structures in column-loss scenarios. Thin-Walled Struct. 2022, 182, 110219. [Google Scholar] [CrossRef]
- Alembagheri, M.; Sharafi, P.; Tao, Z.; Hajirezaei, R.; Kildashti, K. Robustness of multistory corner-supported modular steel frames against progressive collapse. Struct. Des. Tall Spéc. Build. 2021, 30, e1896. [Google Scholar] [CrossRef]
- Zhang, L.; Li, H.; Wang, W. Retrofit strategies against progressive collapse of steel gravity frames. Appl. Sci. 2020, 10, 4600. [Google Scholar] [CrossRef]
- Qin, X.; Wang, W.; Chen, Y.; Bao, Y. A special reinforcing technique to improve resistance of beam-to-tubular column connections for progressive collapse preventions. Eng. Struct. 2016, 117, 26–39. [Google Scholar] [CrossRef]
- Han, Q.; Li, X.; Liu, M.; Spencer, B.F., Jr. Performance analysis and macromodel simulation of steel frame structures with beam-column joints using cast steel stiffeners for progressive collapse prevention. Thin-Walled Struct. 2019, 140, 404–415. [Google Scholar] [CrossRef]
- Meng, B.; Li, F.; Zhong, W.; Zheng, Y.; Du, Q. Strengthening strategies against the progressive collapse of steel frames with extended end-plate connections. Eng. Struct. 2023, 274, 115154. [Google Scholar] [CrossRef]
- Qiao, H.; Xie, X.; Zheng, J.; Xing, Z.; Chen, Y.; Wei, J. Progressive collapse behavior of beam-to-column connections involving flange openings. Eng. Struct. 2023, 284, 115972. [Google Scholar] [CrossRef]
- Kiakojouri, F.; De Biagi, V.; Chiaia, B.; Sheidaii, M.R. Strengthening and retrofitting techniques to mitigate progressive collapse: A critical review and future research agenda. Eng. Struct. 2022, 262, 114274. [Google Scholar] [CrossRef]
- Wei, J.-P.; Tian, L.-M.; Guo, Y.; Qiao, H.-Y.; Jiao, Z.-A.; Bao, Y. Seismic performance of a double-hinge steel frame joint with replaceable T-shape energy dissipator. J. Constr. Steel Res. 2022, 199, 107630. [Google Scholar] [CrossRef]
- Bai, C.; Tian, L.-M.; Kou, Y.-F.; Zhong, W.-H.; Li, L. Performance analysis of steel frame joints reinforced against progressive collapse by partially-penetrated butt-welded corrugated steel plates. J. Constr. Steel Res. 2022, 198, 107565. [Google Scholar] [CrossRef]
- Karlina, A.I.; Balanovskiy, A.E.; Kondratiev, V.V.; Romanova, V.V.; Batukhtin, A.G.; Karlina, Y.I. An Investigation into the behavior of cathode and anode spots in a welding discharge. Appl. Sci. 2024, 14, 9774. [Google Scholar] [CrossRef]
- Wang, W.; Fang, C.; Qin, X.; Chen, Y.; Li, L. Performance of practical beam-to-SHS column connections against progressive collapse. Eng. Struct. 2016, 106, 332–347. [Google Scholar] [CrossRef]
- Li, L.; Wang, W.; Chen, Y.; Lu, Y. Effect of beam web bolt arrangement on catenary behaviour of moment connections. J. Constr. Steel Res. 2015, 104, 22–36. [Google Scholar] [CrossRef]
- JGJ99–2015; Technical Specification for Steel Structure of Tall Building. Ministry of Construction of China: Beijing, China, 2015.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Yi, Y.-X.; Tian, L.-M. Numerical Simulation of a Novel Welded Steel-Frame Joint Strengthened by Outer Corrugated Plates to Prevent Progressive Collapse. Buildings 2025, 15, 3061. https://doi.org/10.3390/buildings15173061
Wang Y, Yi Y-X, Tian L-M. Numerical Simulation of a Novel Welded Steel-Frame Joint Strengthened by Outer Corrugated Plates to Prevent Progressive Collapse. Buildings. 2025; 15(17):3061. https://doi.org/10.3390/buildings15173061
Chicago/Turabian StyleWang, Yuan, Yu-Xuan Yi, and Li-Min Tian. 2025. "Numerical Simulation of a Novel Welded Steel-Frame Joint Strengthened by Outer Corrugated Plates to Prevent Progressive Collapse" Buildings 15, no. 17: 3061. https://doi.org/10.3390/buildings15173061
APA StyleWang, Y., Yi, Y.-X., & Tian, L.-M. (2025). Numerical Simulation of a Novel Welded Steel-Frame Joint Strengthened by Outer Corrugated Plates to Prevent Progressive Collapse. Buildings, 15(17), 3061. https://doi.org/10.3390/buildings15173061