Review of the Influence of the Interaction Between In-Plane and Out-of-Plane Behaviors on the Seismic Response of Non-Framed Unreinforced Masonry Walls
Abstract
1. Introduction
2. Definition of “In-Plane and Out-of-Plane Interaction Effects” in Non-Framed URM Walls
3. Available Research on Interaction Effects in Non-Framed URM Walls
Interaction Scenario | Year | Publication(s) | URM Interaction Tests (Number—Type) | Scale (Test/Reality) | Masonry Unit Type | Mortar Type | Masonry Prism Compressive Strength ) [MPa] | Opening Type | Flange Configuration * | Flange/Wall Length Ratio (lf/l) | Height/Length Aspect Ratio (h/l) | Length/Thickness Slenderness Ratio (h/t) | No. Wythes | Wall Thickness (t) [mm] | Loading Scenario and Sequence | IP Loading (Procedure, Apparatus, Boundary Conditions) | OOP Loading (Procedure, Apparatus, Boundary Conditions) | Vertical Overburden Stress/Strength (Flanges + Wall) [%] |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OOP/IP | 2012 | [56,71] | 5—Wt | 1:1 | HCLB (V) | 1:3 (C:S) | 8.0 | – | – | – | 1.0 | 6 | 1 | 100 | CB (OOP, IP) | QSM, DiC, – | QSM, WFMiPL, 2WB | 0 |
2015 | [75] | 5—Wt | 1:1 | SFAB | Dry-Joint | 6.8 | – | – | – | 0.67 | 4 | 1 | 115 | CB (OOP, IP) | QSM, DiC, – | QSM, WFMiPL, 2WB | 9.2 | |
2015 | [54,74] | 1—NFW | 1:1 | SCLB | 1:1:5 (C:L:S) | 4.5 | – | – | – | 0.9 | 15.2 | 1 | 100 | CB (OOP, IP) | QSM, ToD, DC | QSM, ToL, 1WB-Ct | 16 | |
1—NFW | 1:1 | SCLB | 1:1:5 (C:L:S) | 4.5 | – | – | – | 1.0 | 15.9 | 1 | 100 | CB (OOP, IP) | QSC, ToD, DC | QSM, ToL, 1WB-Ct | 16 | |||
2—NFW | 1:1 | SCLB | 1:1:5 (C:L:S) | 4.5 (1) 1.6 (1) | – | – | – | 1.0 | 15.9 | 1 | 100 | CB (OOP, IP) | QSC, ToD, DC | QSM, ToD, 1WB-Ct | 16 | |||
2023 | [68] | 2—NFW | 1:1 | SCLB | 1:6 (C:S) | 3.3 | – | – | – | 1.0 | 6.3 | 1 | 230 | CB (OOP, IP) | QSM, ToD, Ct | QSM, ToD, 1WB-Ct | 0 | |
2—NFW | 1:1 | SCLB | 1:6 (C:S) | 4.8 | – | – | – | 1.25 | 6.3 | 1 | 230 | CB (OOP, IP) | QSM, ToD, Ct | QSM, ToD, 1WB-Ct | 0 | |||
IP/OOP | 2020 | [72,73] | 2—Wt | 1:1 | HCLB (H) | 1:1:5 (C:L:S) | 4.0 | – | – | – | 1.0 | 10.8 | 1 | 80 | SQ (IP, OOP) | QSM, DiC, – | QSM, WF3PL, 1WB-B | 0 |
F/IP | 2010 | [77,79,113] | 2—FW | 1:1 | SCLB | 1:2:9 (C:L:S) | 18.1 | – | ⌶ | 0.24 | 0.63 (1) 1.0 (1) | 5.2 (1) 8.2 (1) | 2 | 230 | IP | QSC, ToD, DC | – | 0 + [0.1 to 0.6] |
1—FW | 1:1 | SCLB | 1:2:9 (C:L:S) | 10.1 | – | ⌶ | 0.12 | 0.5 | 8.7 | 2 | 230 | IP | QSC, ToD, DC | – | 0 + [0.1 to 0.6] | |||
3–FW | 1:1 | SCLB | 1:2:9 (C:L:S) | 9.2 (1) 11.9 (1) 9.1 (1) | – | ⌶ (1) ⟙ (1) ⊏ (1) | 0.24 | 0.5 | 8.7 | 2 | 230 | IP | QSC, ToD, DC | – | 0 + [0.1 to 0.6] | |||
2013 | [78] | 2—FW | 1:1 | SCSBL | Adhesive | 27.3 | – | ⟙ | 0.20 | 2.5 | 14.8 | 1 | 175 | IP | QSC, ToD, Ct | – | 8 + 8 (1) 17 + 17 (1) | |
2—FW | 1:1 | SCSBL | Adhesive | 22.7 | – | ⟙ | 0.22 | 2.85 | 14.8 | 1 | 175 | IP | QSC, ToD, Ct | – | 9 + 9 (1) 20 + 20 (1) | |||
2014 | [81] | 1—FW | 1:2 | SCLB | 2:13 (C:S) | 3.24 | – | ⌶ | 0.25 | 0.48 | 8.4 | 1 | 160 | IP | QSC, ToD, DC | – | 3.1 + 3.1 | |
1—FW | 1:2 | SCLB | 2:13 (C:S) | 3.24 | – | ⊏ | 0.36 | 0.7 | 12.3 | 1 | 110 | IP | QSC, ToD, DC | – | 3.1 + 3.1 | |||
2018 | [83] | 2—FW | 1:1 | SCLB | 1:4 (C:S) | 4.34 | W | ⊏ | 0.32 | 1.0 | 13.5 | 2 | 225 | IP | QSC, ToD, DC | – | 1.8 + 1.1 (1) 5.3 + 3.7 (1) | |
F/OOP | 2014 | [80] | 2—FW | 1:5 | SMB | Dry-Joint | NS | – | ⎾ | 0.8 | 0.63 (1) 0.9 (1) | 14.9 | 1 | 40 | OOP | – | QSM, BR, 1WB-Ct | 0 + 0 |
1—FW | 1:5 | SMB | Dry-Joint | NS | – | ⎾ | 1.1 | 1.25 | 14.9 | 1 | 40 | OOP | – | QSM, BR, 1WB-Ct | 0 + 0 | |||
1—FW | 1:5 | SMB | Dry-Joint | NS | – | ⨆ | 0.4 | 0.9 | 14.9 | 1 | 40 | OOP | – | QSM, BR, 1WB-Ct | 0 + 0 | |||
5—FW | 1:5 | SMB | Dry-Joint | NS | – | ⨆ | 0.3 | 0.60 (1) 0.67 (4) | 14.9 | 1 | 40 | OOP | – | QSM, BR, 1WB-Ct | 0 + 0 | |||
2—FW | 1:5 | SMB | Dry-Joint | NS | – | ⟙ | 1.1 | 1.25 | 14.9 | 1 | 40 | OOP | – | QSM, BR, 1WB-Ct | 0 + 0 | |||
4—FW | 1:5 | SMB | Dry-Joint | NS | – | ⟙ | 0.8 | 0.63 (2) 0.9 (2) | 14.9 | 1 | 40 | OOP | – | QSM, BR, 1WB-Ct | 0 + 0 | |||
2—FW | 1:5 | SMB | Dry-Joint | NS | – | ⨅ | 1.1 | 1.25 | 14.9 | 1 | 40 | OOP | – | QSM, BR, 1WB-Ct | 0 + 0 | |||
2—FW | 1:5 | SMB | Dry-Joint | NS | – | ⨅ | 0.8 | 0.63 (1) 0.9 (1) | 14.9 | 1 | 40 | OOP | – | QSM, BR, 1WB-Ct | 0 + 0 | |||
2—FW | 1:5 | SMB | Dry-Joint | NS | W | ⨅ | 0.7 | 0.53 | 14.9 | 1 | 40 | OOP | – | QSM, BR, 1WB-Ct | 0 + 0 | |||
3—FW | 1:5 | SMB | Dry-Joint | NS | – (2) D (OF) (1) | 0.7 | 0.53 | 14.9 | 1 | 40 | OOP | – | QSM, BR, 1WB-Ct | 0 + 0 | ||||
2015 | [84,85,86] | 2—FW | 1:1 | HCLB (V) | 1:2 (C:S) (DHJ) | 5.6 | D | ⨅ (1) ⊢ (1) | 0.18 | 1.67 | 14.3 | 1 | 140 | OOP | – | Dyn, ST, 1WB-Ct | 2.4 + 2.4 (1) 4.4 + 4.4 (1) | |
2017 | [82] | 4—FW | 1:10 | SSB | Dry-Joint | NS | – | ⨆ | 0.78 (1) 0.34 (1) 0.28 (1) 0.25 (1) | 0.31 (1) 0.36 (1) 0.43 (1) 1.0 (1) | 7.3 | 1 | 17 | OOP | – | QSM, BR, 1WB-Ct | 0 + 0 |
Interaction Scenario | Year | Publication(s) | URM Interaction Specimens (Number—Type) | Numerical Modeling Approach | Masonry Unit Type | Mortar Type | Masonry Prism Compressive Strength ) [MPa] | Opening Type | Flange Configuration * | Flange/Wall Length Ratio (lf/l) | Height/Length Aspect Ratio (h/l) | Length/ Thickness Slenderness Ratio (h/t) | No. Wythes | Wall Thickness (t) [mm] | Loading Scenario and Sequence | IP Loading (Procedure, Apparatus, Boundary Conditions) | OOP Loading (Procedure, Apparatus, Boundary Conditions) | Vertical Overburden Stress/Strength (Flanges + Wall) [%] | Pre-Damage Levels |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OOP/IP | 2013 | [56] | 3—NFW | CoB | HCLB (V) | 1:3 (C:S) | 8.0 | – | – | – | 0.5 (1) 1.0 (1) 2.0 (1) | 30 | 1 | 100 | CB (OOP, IP) | QSM, ToD, DC-RTU | QSM, WFP, 2WB-FR4E | 0 | 6 (3) |
2014 | [57] | 5—NFW | CoB | HCLB (V) | 1:3 (C:S) | 8.0 | – | – | – | 1.0 | 20 (1) 30 (1) 36 (1) 40 (1) 60 (1) | 1 | 100 | CB (OOP, IP) | QSM, ToD, DC-RTU | QSM, WFP, 2WB-FR4E | 0 | 6 (5) | |
4—NFW | CoB | HCLB (V) | 1:3 (C:S) | 4.0 (1) 6.0 (1) 8.0 (1) 10.0 (1) | – | – | – | 1.0 | 30 | 1 | 100 | CB (OOP, IP) | QSM, ToD, DC-RTU | QSM, WFP, 2WB-FR4E | 0 | 6 (4) | |||
60—NFW | CoB | HCLB (V) | 1:3 (C:S) | 8.0 | – | – | – | 0.5 (12) 1.0 (36) 2.0 (12) | 30 | 1 | 100 | CB (OOP, IP) | QSM, ToD, DC-RTU | QSM, WFP, 2WB-FR4E | 0 | 6 (60) | |||
2014 | [59] | 17—NFW | SMSBB | SCLB | 1:2:9 (C:L:S) | 10.5 | – | – | – | 1.0 | 10.0 | 1 | 100 | SM (IP + OOP) | QSM, ToD, DC-RTU | QSM, ToD, 1WB-DC-RTU | 1.14 | 1 (17) | |
1—NFW | SMSBB | SCLB | 1:2:9 (C:L:S) | 10.5 | – | – | – | 1.0 | 10.0 | 1 | 100 | SM (IP + OOP) | QSC, ToD, DC-RTU | QSC, ToD, 1WB-DC-RTU | 1.14 | 1 (1) | |||
2015 | [61] | 1—NFW | SMSBB | SCLB | 1:2:9 (C:L:S) | 3.5 | – | – | – | 1.0 | 10.0 | 1 | 100 | SM (IP + OOP) | QSM, ToD, DC-RTU | QSM, WFP, 1WB-B-RTRU | 1.14 | 17 (1) | |
2017 | [62] | 28—NFW | SMSBB | SCLB | 1:1:6 (C:L:S) | 10.0 | – | – | – | 0.5 (7) 1.0 (7) 1.5 (7) 2.0 (7) | 16.0 | 1 | 137 | SQ (OOP, IP) | QSM, ToD, DC | QSM, MHD, 1WB-B | 1 to 25 | 5 (28) | |
28—NFW | SMSBB | SCLB | 1:1:6 (C:L:S) | 10.0 | – | – | – | 0.5 (7) 1.0 (7) 1.5 (7) 2.0 (7) | 16.0 | 1 | 137 | CB (OOP, IP) | QSM, ToD, DC | QSM, MHD, 1WB-B | 1 to 25 | 5 (28) | |||
2018 | [63] | 12—NFW | CoB | HCB (V) | 1:1:6 (C:L:S) | 8.5 | – | – | – | 0.6 (4) 0.8 (4) 1.0 (4) | 22.7 | 1 | 110 | CB (OOP, IP) | QSM, ToD, Ct | QSM, WFP, 2WB-FR4E | 0, 9.1 to 27.3 | Various | |
2018 | [64] | 11—NFW | CoB | HCLB (V) | 1:2:9 (C:L:S) | 7.0 (1) 11.0 (9) 15.0 (1) | – | – | – | 1.0 | 22.7 | 1 | 110 | CB (OOP, IP) | QSM, ToD, Ct | QSM, WFP, 2WB-FR4E-F1SE | 0, 6.7 to 18.2 | Various | |
1—NFW | CoB | HCLB (V) | 1:2:9 (C:L:S) | 11.0 | – | – | – | 1.0 | 22.7 | 1 | 110 | CB (OOP, IP) | QSM, ToD, Ct | QSM, WFP, 2WB-FR4E-FTE | 0 | 7 (1) | |||
2019 | [65] | 28—NFW | SMSBB | SCLB | 1:1:6 (C:L:S) | 10.0 | – | – | – | 0.5 (7) 1.0 (7) 1.5 (7) 2.0 (7) | 8.8 | 1 | 250 | SQ (OOP, IP) | QSM, ToD, DC | QSM, MHD, 1WB-B | 1 to 25 | 5 (28) | |
4—NFW | SMSBB | SCLB | 1:1:6 (C:L:S) | 10.0 | – | – | – | 0.5 (2) 1.5 (2) | 8.8 | 1 | 250 | SM (IP + OOP) | Dyn, ST, DC | Dyn, ST, 1WB-B | 1 to 25 | 10 (4) | |||
2022 | [66] | 5—NFW | SMSBB | SCLB | 1:1:6 (C:L:S) | 11.5 | – | – | – | 0.7 | 11.0 | 1 | 90 | CB (OOP, IP) | QSM, ToD, DC | QSM, WFP, 1WB-B | 0, 5 to 20 | Various | |
20—NFW | SMSBB | SCLB | 1:1:6 (C:L:S) | 11.5 | – | – | – | 1.0 (5) 1.5 (5) 2.0 (5) 2.5 (5) | 11.0 (5) 16.5 (5) 22.1 (5) 27.7 (5) | 1 | 90 | CB (OOP, IP) | QSM, ToD, DC | QSM, WFP, 1WB-B | 0, 5 to 20 | Various | |||
2023 | [76] | 3—NFW | SMSBB | SCLB | 1:2:9 (C:L:S) | 16.0 | – | – | – | 1.3 | 37.3 | 1 | 110 | CB (OOP, IP) | QSM, ToD, Ct | QSM, WFP, 2WB-FR3E-NLC | 0 (1) 6.25 (1) 12.5 (1) | 5 (3) | |
3—NFW | SMSBB | SCLB | 1:2:9 (C:L:S) | 16.0 | – | – | – | 1.0 | 26.8 | 1 | 110 | CB (OOP, IP) | QSM, ToD, Ct | QSM, WFP, 2WB-FR3E-NLC | 0 (1) 6.25 (1) 12.5 (1) | 5 (3) | |||
3—NFW | SMSBB | SCLB | 1:2:9 (C:L:S) | 16.0 | – | – | – | 0.5 | 13.4 | 1 | 110 | CB (OOP, IP) | QSM, ToD, Ct | QSM, WFP, 2WB-FR3E-NLC | 0 (1) 6.25 (1) 12.5 (1) | 5 (3) | |||
2023 | [68] | 2—NFW | CoB | SCLB | 1:6 (C:S) | 3.1 (1) 4.7 (1) | – | – | – | 1.0 (1) 1.25 (1) | 6.3 | 1 | 230 | CB (OOP, IP) | QSM, ToD, Ct | QSM, ToD, 1WB-Ct | 0.0 | 4 (2) | |
2024 | [69,94] | 16—NFW | SMSBB | SCLB | 1:1:6 (C:L:S) | 11.5 | – | – | – | 1.0 | 9.9 (6) 15.5 (2) 21.1 (2) 32.2 (6) | 1 | 100 | CB (OOP, IP) | QSM, ToD, Ct | QSM, WFP, 1WB-B | 0, 2.4 to 19.1 | 4 (16) | |
6—NFW | SMSBB | SCLB | 1:1:6 (C:L:S) | 11.5 | – | – | – | 0.75 | 9.9 | 1 | 100 | CB (OOP, IP) | QSM, ToD, Ct | QSM, WFP, 1WB-B | 0, 2.4 to 19.1 | 4 (6) | |||
2—NFW | SMSBB | SCLB | 1:1:6 (C:L:S) | 11.5 | – | – | – | 1.5 | 9.9 | 1 | 100 | CB (OOP, IP) | QSM, ToD, Ct | QSM, WFP, 1WB-B | 0 (1) 19.1 (1) | 4 (2) | |||
6—NFW | SMSBB | SCLB | 1:1:6 (C:L:S) | 11.5 | – | – | – | 2.25 | 9.9 | 1 | 100 | CB (OOP, IP) | QSM, ToD, Ct | QSM, WFP, 1WB-B | 0, 2.4 to 19.1 | 4 (6) | |||
IP/OOP | 2013 | [55] | 5—NFW | CoB | SCLB | 1:1:6 (C:L:S) | 7.6 | – | – | – | 0.85 | 10 (1) 12 (1) 20 (1) 25 (1) 30 (1) | 1 | 300 (1) 250 (1) 150 (1) 120 (1) 100 (1) | SC (IP, OOP, IP) | QSC, ToD, DC | QSLUC, WFP, 1WB-B | 2.78 | 12 (5) |
7—NFW | CoB | SCLB | 1:1:6 (C:L:S) | 7.6 | – | – | – | 0.34 (1) 0.4 (1) 0.5 (1) 0.67 (1) 0.85 (1) 1.0 (1) 1.34 (1) | 16 | 1 | 187.5 | SC (IP, OOP, IP) | QSC, ToD, DC | QSLUC, WFP, 1WB-B | 2.78 | 12 (7) | |||
2015 | [60] | 1—NFW | SMSBB | SCLB | 1:2:9 (C:L:S) | 10.5 | – | – | – | 1.0 | 10.0 | 1 | 100 | CB (IP, OOP) | QSM, ToD, Ct | QSM, WFP, 1WB-B | 1.14 | 3 (1) | |
2—NFW | SMSBB | SCLB | 1:2:9 (C:L:S) | 10.5 | – | – | – | 1.0 (1) 2.0 (1) | 10.0 (1) 20.0 (1) | 1 | 100 | SQ (IP, OOP) | QSLUC, ToD, DC-RTU | QSM, WFP, 1WB-B-RTRU | 1.14 | 3 (2) | |||
1—NFW | SMSBB | SCLB | 1:2:9 (C:L:S) | 10.5 | – | – | – | 1.0 | 10.0 | 1 | 100 | SQ (IP, OOP) | QSC, ToD, Ct | QSM, WFP, 1WB-B | 1.14 | 3 (1) | |||
2—NFW | SMSBB | SCLB | 1:2:9 (C:L:S) | 10.5 | – | – | – | 1.0 (1) 2.0 (1) | 10.0 (1) 20.0 (1) | 1 | 100 | SQ (IP, OOP) | QSC, ToD, DC-RTU | QSM, WFP, 1WB-B-RTRU | 1.14 | 3 (2) | |||
2023 | [67] | 3—NFW | SMSBB | SCSB | 2:1:16 (C:L:S) | 6.3 | – (2) W (1) | – | – | 0.7 | 27.0 | 1 | 100 | SQ (IP, OOP) | QSC, ToD, DC | QSM, WFP, 2WB-FRSE | 7.8 (IP)—0.8 (OOP) | 4 (3) | |
2—NFW | SMSBB | SCSB | 2:1:16 (C:L:S) | 6.3 | – (1) W (1) | – | – | 0.7 | 27.0 | 1 | 100 | CB (IP, OOP) | QSM, ToD, DC | QSM, WFP, 2WB-FRSE | 7.8 (IP)—0.8 (OOP) | 4 (2) | |||
2024 | [70] | 27—NFW | SMSBB | SCLB | 1:1:6 (C:L:S) | 4.0 | – (3) W (9) D (9) W + D (6) | – | 0.18 | 1.0 | 27.3 | 1 | 110 | CB (IP, OOP) | QSM, ToD, Ct | QSM, WFP, 2WB-FR3E-NLC | 0 (9) 12.5 (9) 25 (9) | 4 (27) | |
F/IP | 2012 | [91] | 4—FW | CoB | Not Specified | Not Specified | 4.2 | – | ⟘ | 0.7 (1) 0.8 (1) 0.9 (1) 1.0 (1) | 1.43 | 10.8 | 1 | 240 | IP | QSC, ToD, DC | – | 0 + 14.2 | – |
2013 | [87] | 8—FW | SMSBB | HCB (V) | 1:3 (C:S) | 6.0 | – | ⌶ | 0.36 (2) 0.65 (2) 0.9 (2) 1.2 (2) | 1.0 | 14 | 1 | 200 | IP | QSM, ToD, Ct (4) QSM, ToD, DC-RTU (4) | – | 10 + 10 (4) 20 + 20 (4) | – | |
4—FW | SMSBB | HCB (V) | 1:3 (C:S) | 6.0 | – | ⟙ | 0.36 (1) 0.65 (1) 0.9 (1) 1.2 (1) | 1.0 | 14 | 1 | 200 | IP | QSM, ToD, Ct | – | 10 + 10 | – | |||
8—FW | SMSBB | HCB (V) | 1:3 (C:S) | 6.0 | – | ⟘ | 0.36 (2) 0.65 (2) 0.9 (2) 1.2 (2) | 1.0 | 14 | 1 | 200 | IP | QSM, ToD, Ct (4) QSM, ToD, DC-RTU (4) | – | 10 + 10 (4) 20 + 20 (4) | – | |||
2015 | [92] | 3—FW | CoB | HCB (V) | 1:3 (C:S) | 6.0 | – | ⌶ | 0.16 (1) 0.37 (1) 0.58 (1) | 1.0 | 14 | 1 | 200 | IP | QSM, ToD, Ct | – | 10 + 10 | – | |
2021 | [88,89] | 60—FW | SMSBB | SCLB | 1:4 (C:S) | 4.3 | – | ⌶ | 0.1 (12) 0.25 (12) 0.5 (12) 0.75 (12) 1.0 (12) | 0.6 (12) 0.84 (12) 1.1 (12) 1.43 (12) 2.0 (12) | 13.9 | 1 | 230 | IP | QSM, ToD, Ct | – | 0 + 15 (20) 0 + 20 (20) 0 + 30 (20) | – | |
60—FW | SMSBB | SCLB | 1:4 (C:S) | 4.3 | – | ⌶ | 0.1 (12) 0.25 (12) 0.5 (12) 0.75 (12) 1.0 (12) | 0.6 (12) 0.84 (12) 1.1 (12) 1.43 (12) 2.0 (12) | 13.9 | 1 | 230 | IP | QSM, ToD, SCt | – | 0 + 15 (20) 0 + 20 (20) 0 + 30 (20) | – | |||
60—FW | SMSBB | SCLB | 1:4 (C:S) | 4.3 | – | ⌶ | 0.1 (12) 0.25 (12) 0.5 (12) 0.75 (12) 1.0 (12) | 0.6 (12) 0.84 (12) 1.1 (12) 1.43 (12) 2.0 (12) | 13.9 | 1 | 230 | IP | QSM, ToD, DC | – | 0 + 15 (20) 0 + 20 (20) 0 + 30 (20) | – | |||
60—FW | SMSBB | SCLB | 1:4 (C:S) | 4.3 | – | ⊏ | 0.1 (12) 0.25 (12) 0.5 (12) 0.75 (12) 1.0 (12) | 0.6 (12) 0.84 (12) 1.1 (12) 1.43 (12) 2.0 (12) | 13.9 | 1 | 230 | IP | QSM, ToD, Ct | – | 0 + 15 (20) 0 + 20 (20) 0 + 30 (20) | – | |||
60—FW | SMSBB | SCLB | 1:4 (C:S) | 4.3 | – | ⊏ | 0.1 (12) 0.25 (12) 0.5 (12) 0.75 (12) 1.0 (12) | 0.6 (12) 0.84 (12) 1.1 (12) 1.43 (12) 2.0 (12) | 13.9 | 1 | 230 | IP | QSM, ToD, SCt | – | 0 + 15 (20) 0 + 20 (20) 0 + 30 (20) | – | |||
60—FW | SMSBB | SCLB | 1:4 (C:S) | 4.3 | – | ⊏ | 0.1 (12) 0.25 (12) 0.5 (12) 0.75 (12) 1.0 (12) | 0.6 (12) 0.84 (12) 1.1 (12) 1.43 (12) 2.0 (12) | 13.9 | 1 | 230 | IP | QSM, ToD, DC | – | 0 + 15 (20) 0 + 20 (20) 0 + 30 (20) | – | |||
2022 | [90] | 60—FW | SMSBB | SCLB | 1:2:9 (C:L:S) | 2.0 (24) 4.0 (12) 6.0 (12) 8.0 (12) | – | ⌶ | 0.66 | 0.5 (15) 1.0 (15) 1.5 (15) 2.0 (15) | 6.8 (15) 13.6 (15) 20.5 (15) 27.3 (15) | 1 | 110 | IP | QSM, ToD, DC-RTU | – | 0 + 1.25 to 0 + 100 | – | |
48—FW | SMSBB | SCLB | 1:2:9 (C:L:S) | 2.0 (12) 4.0 (12) 6.0 (12) 8.0 (12) | – | ⟙ | 0.66 | 0.5 (15) 1.0 (15) 1.5 (15) 2.0 (15) | 6.8 (12) 13.6 (12) 20.5 (12) 27.3 (12) | 1 | 110 | IP | QSM, ToD, DC-RTU | – | 0 + 1.25 to 0 + 100 | – | |||
72—FW | SMSBB | SCLB | 1:2:9 (C:L:S) | 2.0 (36) 4.0 (12) 6.0 (12) 8.0 (12) | – | ⟘ | 0.66 | 0.5 (18) 1.0 (18) 1.5 (18) 2.0 (18) | 6.8 (18) 13.6 (18) 20.5 (18) 27.3 (18) | 1 | 110 | IP | QSM, ToD, DC-RTU | – | 0 + 1.25 to 0 + 100 | – | |||
48—FW | SMSBB | SCLB | 1:2:9 (C:L:S) | 2.0 (12) 4.0 (12) 6.0 (12) 8.0 (12) | – | ⊏ | 0.66 | 0.5 (12) 1.0 (12) 1.5 (12) 2.0 (12) | 6.8 (12) 13.6 (12) 20.5 (12) 27.3 (12) | 1 | 110 | IP | QSM, ToD, DC-RTU | – | 0 + 1.25 to 0 + 100 | – | |||
2023 | [76] | 3—FW | SMSBB | SCLB | 1:2:9 (C:L:S) | 16.0 | – | ⌶ (1) ⊏ (1) ⟘ (1) | 0.14 | 1.3 | 37.3 | 1 | 110 | IP | QSM, ToD, Ct | – | 0 + 0 | – | |
9—FW | SMSBB | SCLB | 1:2:9 (C:L:S) | 16.0 | – | ⌶ (3) ⊏ (3) ⟘ (3) | 0.14 | 1.0 | 26.8 | 1 | 110 | IP | QSM, ToD, Ct | – | 0 + 0 (3) 12.5 + 12.5 (3) 25 + 25 (3) | – | |||
3—FW | SMSBB | SCLB | 1:2:9 (C:L:S) | 16.0 | – | ⌶ (1) ⊏ (1) ⟘ (1) | 0.14 | 0.5 | 13.4 | 1 | 110 | IP | QSM, ToD, Ct | – | 0 + 0 | – | |||
2024 | [93] | 16—FW | CoB | SCLB | Not Specified | 2.7 | – | ⌶ (4) ⟙ (4) ⊏ (4) ⎾ (4) | 1.5 (4) 1.0 (4) 0.75 (4) 0.5 (4) | 0.5 (4) 0.75 (4) 1.0 (4) 1.5 (4) | 15.0 | 1 | 200 | IP | QSM, ToD, DC | – | 3.7 + 3.7 | – | |
16—FW | CoB | SCLB | Not Specified | 2.7 | – | ⌶ (4) ⟙ (4) ⊏ (4) ⎾ (4) | 1.5 (4) 1.0 (4) 0.75 (4) 0.5 (4) | 0.5 (4) 0.75 (4) 1.0 (4) 1.5 (4) | 6.0 | 1 | 500 | IP | QSM, ToD, DC | – | 3.7 + 3.7 | – | |||
16—FW | CoB | SCLB | Not Specified | 2.7 | – | ⌶ (4) ⟙ (4) ⊏ (4) ⎾ (4) | 1.5 (4) 1.0 (4) 0.75 (4) 0.5 (4) | 0.5 (4) 0.75 (4) 1.0 (4) 1.5 (4) | 8.6 | 1 | 350 | IP | QSM, ToD, DC | – | 1.8 + 1.8 | – | |||
16—FW | CoB | SCLB | Not Specified | 2.7 | – | ⌶ (4) ⟙ (4) ⊏ (4) ⎾ (4) | 1.5 (4) 1.0 (4) 0.75 (4) 0.5 (4) | 0.5 (4) 0.75 (4) 1.0 (4) 1.5 (4) | 8.6 | 1 | 350 | IP | QSM, ToD, DC | – | 3.7 + 3.7 | – | |||
16—FW | CoB | SCLB | Not Specified | 2.7 | – | ⌶ (4) ⟙ (4) ⊏ (4) ⎾ (4) | 1.5 (4) 1.0 (4) 0.75 (4) 0.5 (4) | 0.5 (4) 0.75 (4) 1.0 (4) 1.5 (4) | 8.6 | 1 | 350 | IP | QSM, ToD, DC | – | 7.3 + 7.3 | – | |||
2024 | [70] | 27—FW | SMSBB | SCLB | 1:1:6 (C:L:S) | 4.0 | – (3) W (9) D (9) W + D (6) | ⌶ | 0.18 | 1.0 | 27.3 | 1 | 110 | IP | QSM, ToD, Ct | – | 0 + 0 (9) 12.5 + 12.5 (9) 25 + 25 (9) | – | |
F/OOP | 2023 | [76] | 3—FW | SMSBB | SCLB | 1:2:9 (C:L:S) | 16.0 | – | ⨆ (1) ⟘ (1) | 0.14 | 1.3 | 37.3 | 1 | 110 | OOP | – | QSM, WFP, 2WB-FRTE-NLC | 0 + 0 | – |
9—FW | SMSBB | SCLB | 1:2:9 (C:L:S) | 16.0 | – | ⨆ (3) ⊢ (3) | 0.14 | 1.0 | 26.8 | 1 | 110 | OOP | – | QSM, WFP, 2WB-FRTE-NLC | 0 + 0 (3) 6.25 + 6.25 (3) 12.5 + 12.5 (3) | – | |||
3—FW | SMSBB | SCLB | 1:2:9 (C:L:S) | 16.0 | – | ⨆ (1) ⟘ (1) | 0.14 | 0.5 | 13.4 | 1 | 110 | OOP | – | QSM, WFP, 2WB-FRTE-NLC | 0 + 0 | – | |||
2024 | [70] | 27—FW | SMSBB | SCLB | 1:1:6 (C:L:S) | 4.0 | – (3) W (9) D (9) W + D (6) | 0.18 | 1.0 | 27.3 | 1 | 110 | OOP | – | QSM, WFP, 2WB-FRTE-NLC | 0 + 0 (9) 12.5 + 12.5 (9) 25 + 25 (9) | – | ||
F/IP-OOP | 2013 | [87] | 4—FW | SMSBB | HCB (V) | 1:3 (C:S) | 5.95 | – | ⌶ | 0.36 (1) 0.65 (1) 0.9 (1) 1.2 (1) | 1.0 | 14 | 1 | 200 | SM (IP + OOP) | QSM, ToD, Ct | QSM, ToD, 1WB-Ct | 10 + 10 | 4 (4) |
4—FW | SMSBB | HCB (V) | 1:3 (C:S) | 5.95 | – | ⌶ | 0.36 (1) 0.65 (1) 0.9 (1) 1.2 (1) | 1.0 | 14 | 1 | 200 | SM (IP + OOP) | QSM, ToD, DC-RTU | QSM, ToD, 1WB-DC-RTU | 20 + 20 | 4 (4) | |||
2023 | [76] | 9—FW | SMSBB | SCLB | 1:2:9 (C:L:S) | 16.0 | – | ⌶ (3) ⊏ (3) ⊢ (3) | 0.14 | 1.3 | 37.3 | 1 | 110 | CB (OOP, IP) | QSM, ToD, Ct | QSM, WFP, 2WB-FRTE-NLC | 0 + 0 (3) 6.25 + 6.25 (3) 12.5 + 12.5 (3) | Various | |
9—FW | SMSBB | SCLB | 1:2:9 (C:L:S) | 16.0 | – | ⌶ (3) ⊏ (3) ⊢ (3) | 0.14 | 1.0 | 26.8 | 1 | 110 | CB (OOP, IP) | QSM, ToD, Ct | QSM, WFP, 2WB-FRTE-NLC | 0 + 0 (3) 6.25 + 6.25 (3) 12.5 + 12.5 (3) | Various | |||
9—FW | SMSBB | SCLB | 1:2:9 (C:L:S) | 16.0 | – | ⌶ (3) ⊏ (3) ⊢ (3) | 0.14 | 0.5 | 13.4 | 1 | 110 | CB (OOP, IP) | QSM, ToD, Ct | QSM, WFP, 2WB-FRTE-NLC | 0 + 0 (3) 6.25 + 6.25 (3) 12.5 + 12.5 (3) | Various | |||
2024 | [70] | 27—FW | SMSBB | SCLB | 1:1:6 (C:L:S) | 4.0 | – (3) W (9) D (9) W + D (6) | ⌶ | 0.18 | 1.0 | 27.3 | 1 | 110 | CB (IP, OOP) | QSM, ToD, Ct | QSM, WFP, 2WB-FRTE-NLC | 0 + 0 (9) 12.5 + 12.5 (9) 25 + 25 (9) | 4 (27) |
4. Current Findings Regarding Interaction Effects in Non-Framed URM Walls
4.1. Direct Interactions: IP-OOP Interaction Effects
4.1.1. Effects of OOP Response on the IP Wall Behavior (OOP/IP Interaction Effects)
Boundary Conditions
Vertical Pre-Compression
Wall Geometry
Materials Properties
Loading Scenario and Methodology
- OOP Pre-Load and Pre-Deformation
- OOP Pre-Damage
- OOP Simultaneous Load
4.1.2. Effects of IP Response on the OOP Wall Behavior (IP/OOP Interaction Effects)
Loading Scenario, Methodology, and Boundary Conditions
- Loading Scenario
- Boundary Conditions
- Loading Procedure
Geometry
Presence of Openings
4.2. Indirect Interactions: Flange Effects
4.2.1. Flange Effects on the IP Response of Main Walls (F/IP Interaction Effects)
Boundary Conditions
Vertical Pre-Compression
Main Panel Configuration and Geometry
Flange Configuration and Geometry
4.2.2. Flange Effects on the OOP Response of Main Walls (F/OOP Interaction Effects)
Flange Configuration and Geometry
Vertical Pre-Compression
Main Panel Geometry
4.2.3. Flange Influence on Response Under Direct IP-OOP Interaction Effects (F/IP-OOP Interaction)
5. Available Extrapolations of Wall-Level Findings to the Building-Level Response
5.1. Regression-Based Design and Assessment Formula
5.2. Macro-Element Numerical Models Capable of Simulating IP-OOP Interaction Effects in Buildings
6. Current Knowledge Gaps in the Study of Interaction Effects in Non-Framed URM Walls
6.1. Scientific Gaps in Understanding the Interaction Effects
6.2. Limitations in Experimental and Numerical Methodologies
6.3. Practical Gaps in Design and Assessment Guidelines
7. Conclusions
- A consistent framework for classifying interaction scenarios is lacking in the literature. This study introduces a unified terminology to support clearer communication and comparison across studies.
- Boundary conditions are a decisive factor in shaping interaction effects. The strongest interactions occur when IP and OOP failure mechanisms produce overlapping crack patterns.
- Flange effects significantly influence both IP and OOP responses, but their impact varies depending on wall geometry, vertical pre-compression, and loading configuration.
- Current predictive models and macro-element formulations only partially capture the complexity of interaction effects, and their applicability to building-level analysis remains limited.
- Existing design and assessment guidelines do not adequately incorporate IP–OOP interactions or Flange effects, leaving a gap between research findings and engineering practice.
- Expanded experimental campaigns: development of testing facilities capable of simulating realistic seismic loading scenarios, including simultaneous IP and OOP actions, is essential. Full-scale tests on flanged and non-flanged walls with varied geometries and boundary conditions will provide critical data for model validation.
- Advanced numerical modeling: refinement of continuum-based and discrete element models to incorporate complex interaction mechanisms, including IP/OOP and F/OOP effects, is needed. These models should be calibrated against experimental data and capable of simulating building-level behavior.
- Analytical frameworks: mechanics-based approaches that account for multi-directional loading, flange configurations, and material heterogeneity should be developed. These frameworks must be adaptable to different wall typologies and loading histories.
- Integration into design codes: collaboration with regulatory bodies to translate research findings into practical design provisions is crucial. This includes the development of simplified assessment tools and design charts that incorporate interaction effects.
- Consideration of induced seismicity and cumulative damage: regions experiencing frequent low-magnitude earthquakes require tailored methodologies that account for cumulative damage and settlement effects on OOP stability.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
General Terms * | ||||||||||||||||||||||
URM: Unreinforced Masonry | IP: In-Plane | OOP: Out-of-Plane | ||||||||||||||||||||
Interaction Scenarios | ||||||||||||||||||||||
IP-OOP: Influence of IP response on OOP behavior of walls and vice versa | ||||||||||||||||||||||
IP/OOP: Effects of IP pre-damage, pre-deformation, pre-load, or concurrent load on OOP response of walls | ||||||||||||||||||||||
OOP/IP: Effects of OOP pre-damage, pre-deformation, pre-load, or concurrent load on IP response of walls | ||||||||||||||||||||||
F/IP: Effects of the presence of flanges on the IP response of the main walls | ||||||||||||||||||||||
F/OOP: Effects of the presence of flanges on the OOP response of the main walls | ||||||||||||||||||||||
F/IP-OOP: Effects of the presence of flanges on the response of the main walls to direct IP-OOP interaction effects | ||||||||||||||||||||||
Numerical Modeling Approaches | ||||||||||||||||||||||
SMSBB: Simplified Micro-Scale Block-Based | CoB: Continuum-Based | |||||||||||||||||||||
Specimen Type | ||||||||||||||||||||||
Wt: Wallet | NFW: Non-Flanged Wall | FW: Flanged Wall | ||||||||||||||||||||
Masonry Unit Type | ||||||||||||||||||||||
HCLB: Hollow Clay Block/Brick | HCB: Hollow Concrete Block/Brick | SFAB: Solid Fly Ash Block | SCLB: Solid Clay Brick | |||||||||||||||||||
SCSBL: Solid Calcium Silicate Block | SMB: Solid Marble Brick | SSB: Solid Sugar Block | ||||||||||||||||||||
Masonry Unit Configuration1 | ||||||||||||||||||||||
H: Horizontal Holes | V: Vertical Holes | : Masonry Prism Compressive Strength | ||||||||||||||||||||
Mortar Type and Configuration | ||||||||||||||||||||||
C: Cement | L: Lime | S: Sand | DHJ: Dry Head Joints | |||||||||||||||||||
Opening Type and Position | ||||||||||||||||||||||
D: Door | W: Window | OF: Opening on Flanges | ||||||||||||||||||||
Geometrical Properties | ||||||||||||||||||||||
h/l: Height/Length Aspect Ratio | h/t: Height/Thickness Slenderness Ratio | lf/l: Flange/Wall Length Ratio | t: Wall Thickness | |||||||||||||||||||
Loading Scenarios | ||||||||||||||||||||||
SQ: Sequential | SC: Successive | CB: Combined | SM: Simultaneous | |||||||||||||||||||
Loading Sequences | ||||||||||||||||||||||
IP, OOP: IP load, then OOP | IP, OOP, IP: Alternative loading starting from IP | IP + OOP: Concurrent IP and OOP loads | ||||||||||||||||||||
OOP, IP: OOP load, then IP | OOP, IP, OOP: Alternative loading starting from OOP | |||||||||||||||||||||
Loading Procedures | ||||||||||||||||||||||
QSM: Quasi-Static Monotonic | QSC: Quasi-Static Cyclic | QSLUC: Quasi-Static Load-Unload Cycles | Dyn: Dynamic | |||||||||||||||||||
Loading Apparatus | ||||||||||||||||||||||
DiC: Diagonal Compression | ToD: Top Displacement | ToL: Top Load | ||||||||||||||||||||
WFMiPL: Wall Face Middle-Point Load | WF3PL: Wall Face Three-Point Load | WFP: Wall Face Pressure | ||||||||||||||||||||
MHD: Mid-Height Displacement | BR: Base Rotation | ST: Shake Table | ||||||||||||||||||||
Boundary Conditions | ||||||||||||||||||||||
Ct: Cantilever | SCt: Semi-Cantilever | DC: Double-Clamped | ||||||||||||||||||||
1WB: One-Way Bending | 2WB: Two-Way Bending | B: Beam-like | ||||||||||||||||||||
RTU: Restricted Top Uplift | RTRU: Restricted Top Rotation and Uplift | FR4E: Free Rotation at All Four Edges | ||||||||||||||||||||
FR3E: Free Rotation at Top and Side Edges | FRSE: Free Rotation at Two Side Edges | FRTE: Free Rotation at Top Edge | ||||||||||||||||||||
FTE: Free OOP Motion of Top Edge | F1SE: Free OOP Motion of One Side Edge | NLC: No IP Confinement at Two Side Edges |
References
- Hendry, E.A.W. Masonry walls: Materials and construction. Constr. Build. Mater. 2001, 15, 323–330. [Google Scholar] [CrossRef]
- Moon, L.; Dizhur, D.; Senaldi, I.; Derakhshan, H.; Griffith, M.; Magenes, G.; Ingham, J. The demise of the URM building stock in Christchurch during the 2010-2011 Canterbury earthquake sequence. Earthq. Spectra 2014, 30, 253–276. [Google Scholar] [CrossRef]
- Page, A.W. The Newcastle Earthquake—Behaviour of Masonry Structures. Mason. Int. 1991, 5, 11–18. [Google Scholar]
- Penna, A.; Morandi, P.; Rota, M.; Manzini, C.F.; da Porto, F.; Magenes, G. Performance of masonry buildings during the Emilia 2012 earthquake. Bull. Earthq. Eng. 2014, 12, 2255–2273. [Google Scholar] [CrossRef]
- Oyarzo-Vera, C.; Griffith, M.C. The Mw 6.3 Abruzzo (Italy) earthquake of april 6th, 2009: On site observations. Bull. N. Z. Soc. Earthq. Eng. 2009, 42, 302–307. [Google Scholar]
- D’Ayala, D.F.; Paganoni, S. Assessment and analysis of damage in L’Aquila historic city centre after 6th April 2009. Bull. Earthq. Eng. 2011, 9, 81–104. [Google Scholar] [CrossRef]
- İzol, R.; Işık, E.; Avcil, F.; Arslan, M.H.; Arkan, E.; Büyüksaraç, A. Seismic performance of masonry structures after 06 February 2023 earthquakes; site survey and FE modelling approach. Soil Dyn. Earthq. Eng. 2024, 186, 108904. [Google Scholar] [CrossRef]
- Işık, E.; Bilgin, H.; Avcil, F.; İzol Arkan, E.; Büyüksaraç, A.; Harirchian, E.; Hysenlliu, M. Seismic Performances of Masonry Educational Buildings during the 2023 Türkiye (Kahramanmaraş) Earthquakes. GeoHazards 2024, 5, 700–731. [Google Scholar] [CrossRef]
- Frankie, T.M.; Gencturk, B.; Elnashai, A.S. Simulation-Based Fragility Relationships for Unreinforced Masonry Buildings. J. Struct. Eng. 2013, 139, 400–410. [Google Scholar] [CrossRef]
- Aşıkoğlu, A. Performance-Based Approach on Masonry Buildings by Means of Experimental and Numerical Pushover Analysis. Ph.D. Thesis, Universidade do Minho, Guimarães, Portugal, 2024. [Google Scholar]
- Graziotti, F.; Tomassetti, U.; Sharma, S.; Grottoli, L.; Magenes, G. Experimental response of URM single leaf and cavity walls in out-of-plane two-way bending generated by seismic excitation. Constr. Build. Mater. 2019, 195, 650–670. [Google Scholar] [CrossRef]
- Tondelli, M.; Beyer, K.; DeJong, M. Influence of boundary conditions on the out-of-plane response of brick masonry walls in buildings with RC slabs. Earthq. Eng. Struct. Dyn. 2016, 45, 1337–1356. [Google Scholar] [CrossRef]
- Sumerente, G.; Lovon, H.; Tarque, N.; Chácara, C. Assessment of combined in-plane and out-of-plane fragility functions for adobe masonry buildings in the peruvian andes. Front. Built Environ. 2020, 6, 52. [Google Scholar] [CrossRef]
- Clough, R.W.; Gülkan, P.; Manos, G.C.; Mayes, R.L. Seismic Testing of Single-Story Masonry Houses: Part 2. J. Struct. Eng. 1990, 116, 235–256. [Google Scholar] [CrossRef]
- Mojsilovic, N. Masonry walls with a multi-layer bed joint subjected to in-plane cyclic loading: An experimental investigation. Eng. Struct. 2017, 143, 189–203. [Google Scholar] [CrossRef]
- Morandi, P.; Albanesi, L.; Graziotti, F.; Piani, T.L.; Penna, A.; Magenes, G. Development of a dataset on the in-plane experimental response of URM piers with bricks and blocks. Constr. Build. Mater. 2018, 190, 593–611. [Google Scholar] [CrossRef]
- Messali, F.; Esposito, R.; Ravenshorst, G.J.P.; Rots, J.G. Experimental Investigation of the In-Plane Cyclic Behaviour of Calcium Silicate Brick Masonry Walls; Springer: Dordrecht, The Netherlands, 2020; Volume 18. [Google Scholar] [CrossRef]
- Pereira, J.M.; Correia, A.A.; Lourenço, P.B. In-plane behaviour of rubble stone masonry walls: Experimental, numerical and analytical approach. Constr. Build. Mater. 2021, 271, 121548. [Google Scholar] [CrossRef]
- Petry, S.; Beyer, K. Cyclic Test Data of Six Unreinforced Masonry Walls with Different Boundary Conditions. Earthq. Spectra 2015, 31, 2459–2484. [Google Scholar] [CrossRef]
- Mojsilović, N. Strength of masonry subjected to in-plane loading: A contribution. Int. J. Solids Struct. 2011, 48, 865–873. [Google Scholar] [CrossRef]
- Liu, Z.; Crewe, A. Effects of size and position of openings on in-plane capacity of unreinforced masonry walls. Bull. Earthq. Eng. 2020, 18, 4783–4812. [Google Scholar] [CrossRef]
- Vaculik, J.; Griffith, M.C. Out-of-plane shaketable testing of unreinforced masonry walls in two-way bending. Bull. Earthq. Eng. 2018, 16, 2839–2876. [Google Scholar] [CrossRef]
- Malomo, D.; DeJong, M.J. A Macro-Distinct Element Model (M-DEM) for simulating in-plane/out-of-plane interaction and combined failure mechanisms of unreinforced masonry structures. Earthq. Eng. Struct. Dyn. 2022, 51, 793–811. [Google Scholar] [CrossRef]
- Vanin, F.; Penna, A.; Beyer, K. A three-dimensional macroelement for modelling the in-plane and out-of-plane response of masonry walls. Earthq. Eng. Struct. Dyn. 2020, 49, 1365–1387. [Google Scholar] [CrossRef]
- Malomo, D.; Pinho, R.; Penna, A. Numerical modelling of the out-of-plane response of full-scale brick masonry prototypes subjected to incremental dynamic shake-table tests. Eng. Struct. 2020, 209, 110298. [Google Scholar] [CrossRef]
- Nodargi, N.A.; Bisegna, P. A variational-based non-smooth contact dynamics approach for the seismic analysis of historical masonry structures. Comput. Methods Appl. Mech. Eng. 2024, 432, 117346. [Google Scholar] [CrossRef]
- Nodargi, N.A.; Bisegna, P. A variational event-driven approach for the dynamic analysis of multi-block historical masonry structures under ground excitation. Eng. Struct. 2024, 306, 117804. [Google Scholar] [CrossRef]
- Portioli, F.P.A. Rigid block modelling of historic masonry structures using mathematical programming: A unified formulation for non-linear time history, static pushover and limit equilibrium analysis. Bull. Earthq. Eng. 2020, 18, 211–239. [Google Scholar] [CrossRef]
- Chong, V.L. The Behaviour of Laterally Loaded Masonry Panels with Openings. Ph.D. Thesis, University of Polymouth, Polymouth, UK, 1993. [Google Scholar]
- Van der Pluijm, R. Out-Of-Plane Bending of Masonry: Behaviour and Strength. Ph.D. Thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands, 1999. [Google Scholar]
- Liang, C. Experimental and Theoretical Investigation of the Behaviour of Brickwork Cladding Panel Subjected to Lateral Loading. Ph.D. Thesis, University of Edinburgh, Edinburgh, UK, 1996. [Google Scholar]
- Derakhshan, H.; Lucas, W.; Visintin, P.; Griffith, M.C. Out-of-plane Strength of Existing Two-way Spanning Solid and Cavity Unreinforced Masonry Walls. Structures 2018, 13, 88–101. [Google Scholar] [CrossRef]
- Bui, T.T.; Limam, A. Out-of-plane behaviour of hollow concrete block masonry walls unstrengthened and strengthened with CFRP composite. Compos. Part B Eng. 2014, 67, 527–542. [Google Scholar] [CrossRef]
- Messali, F.; Ravenshorst, G.; Esposito, R.; Rots, J.G. Large-Scale Testing Program for the Seismic Characterization of Dutch Masonry Walls. In Proceedings of the 16th World Conference on Earthquake, Santiago, Chile, 9–13 January 2017. [Google Scholar]
- Griffith, M.C.; Vaculik, J.; Lam, N.T.K.; Wilson, J.; Lumantarna, E. Cyclic testing of unreinforced masonry walls in two-way bending. Earthq. Eng. Struct. Dyn. 2007, 36, 801–821. [Google Scholar] [CrossRef]
- Padalu, P.K.V.R.; Singh, Y.; Das, S. Cyclic two-way out-of-plane testing of unreinforced masonry walls retrofitted using composite materials. Constr. Build. Mater. 2020, 238, 117784. [Google Scholar] [CrossRef]
- Candeias, P.X.; Costa, A.C.; Mendes, N.; Costa, A.A.; Lourenço, P.B. Experimental Assessment of the Out-of-Plane Performance of Masonry Buildings Through Shaking Table Tests. Int. J. Archit. Herit. 2016, 11, 31–58. [Google Scholar] [CrossRef]
- Bothara, J.K.; Dhakal, R.P.; Mander, J.B. Seismic performance of an unreinforced masonry building: An experimental investigation. Earthq. Eng. Struct. Dyn. 2009, 39, 45–68. [Google Scholar] [CrossRef]
- Ghezelbash, A.; Beyer, K.; Dolatshahi, K.M.; Yekrangnia, M. Shake table test of a masonry building retrofitted with shotcrete. Eng. Struct. 2020, 219, 110912. [Google Scholar] [CrossRef]
- Cattari, S.; Alfano, S.; Lagomarsino, S. A Practice-Oriented Proposal to Consider the Flange Effect in Equivalent Frame Modeling of Masonry Buildings. Buildings 2023, 13, 462. [Google Scholar] [CrossRef]
- IS 1905; Code of Practise for Structural use of Unreinforced Masonry. Bureau of Indian Standards: New Delhi, India, 1987.
- AS 3700; Australian Standard for Masonry Structures. Standards Australia Committee BD-004: Sydney, Australia, 2011.
- EN 1996-1-1; Eurocode 6: Design of Masonry Structures—Part 1-1: General Rules for Reinforced and Unreinforced Masonry Structures. European Committee for Standardization: Brussels, Belgium, 2005.
- NPR 9998:2020; Assessment of Structural Safety of Buildings in Case of Erection, Reconstruction and Disapproval—Induced Earthquakes—Basis of Design, Actions and Resistance. Netherlands Standardization Institute: Delft, The Netherlands, 2020.
- ACI 530-02/ASCE 5-02/TMS 402-02; Building code Requirements for Masonry Structures. Masonry Standards Joint Committee (MSJC): Boulder, CO, USA; American Concrete Institute: Farmington Hills, MI, USA; Structural Engineering Institute of the American Society of Civil Engineers: Reston, Virginia; The Masonry Society: Fort Collins, Colorado, 2002.
- Dauda, J.A.; Iuorio, O.; Muhit, I.B.; da Silva, L.C.M. Systematic review of experimental testing of masonry walls’ failure: Comparative analysis and future directions. Eng. Fail. Anal. 2024, 163, 108571. [Google Scholar] [CrossRef]
- Celano, T.; Argiento, L.U.; Ceroni, F.; Casapulla, C. Literature Review of the In-Plane Behavior of Masonry Walls: Theoretical vs. Experimental Results. Materials 2021, 14, 3063. [Google Scholar] [CrossRef]
- Chang, L.; Messali, F.; Esposito, R. Capacity of unreinforced masonry walls in out-of-plane two-way bending: A review of analytical formulations. Structures 2020, 28, 2431–2447. [Google Scholar] [CrossRef]
- Bozyigit, B.; Ozdemir, A.; Donmez, K.; Dalgic, K.D.; Durgut, E.; Yesilyurt, C.; Dizgin, Y.; Yıldeniz, C.; İspir Arslan, M.; Bedirhanoglu, I.; et al. Damage to monumental masonry buildings in Hatay and Osmaniye following the 2023 Turkey earthquake sequence: The role of wall geometry, construction quality, and material properties. Earthq. Spectra 2024, 40, 1870–1904. [Google Scholar] [CrossRef]
- Cheng, Q.; Wang, Y.; Dai, D.; Xi, N.; Tian, Y.; Lu, X. Post-event seismic damage assessment of 2023 M6.2 Gansu Jishishan earthquake based on RED-ACT system. Earthq. Eng. Resil. 2024, 3, 475–489. [Google Scholar] [CrossRef]
- Imtiaz, A.; Saloustros, S.; Beqiraj, M.; Cortés, G.; Devaux, M.; Lattion, E.; Zhu, Y.; Sehaqui, H. Understanding building damage through the lens of the Swiss post-seismic reconnaissance mission of 2023 Al Haouz, Morocco, earthquake. Sci. Rep. 2025, 15, 16587. [Google Scholar] [CrossRef]
- Royal Netherlands Meteorological Institute (KNMI). Aardbevingen Door Gaswinning. Available online: https://www.knmi.nl/kennis-en-datacentrum/uitleg/aardbevingen-door-gaswinning (accessed on 12 August 2025).
- Dolatshahi, K.M.; Aref, A.J. Computational, Analytical and Experimental Modeling of Masonry Structures; Buffalo: New York, NY, USA, 2015. [Google Scholar]
- Yi, T.; Moon, F.; Leon, R.; Kahn, L. Flange effects on the nonlinear behavior of URM pier. Mason. Soc. J. 2008, 26, 31–42. [Google Scholar] [CrossRef]
- Najafgholipour, M.A.; Maheri, M.R.; Lourenço, P.B. Capacity interaction in brick masonry under simultaneous in-plane and out-of-plane loads. Constr. Build. Mater. 2013, 38, 619–626. [Google Scholar] [CrossRef]
- Najafgholipour, M.A.; Maheri, M.R.; Lourenço, P.B. Definition of interaction curves for the in-plane and out-of-plane capacity in brick masonry walls. Constr. Build. Mater. 2014, 55, 168–182. [Google Scholar] [CrossRef]
- Bakhshi, A.; Soleymanzadeh, A.; Yekrangnia, M. Interaction of In-plane and Out-of-plane Behavior of Masonry Walls. In Proceedings of the 9th International Masonry Conference (IMC), Guimarães, Portugal, 7–9 July 2014. [Google Scholar]
- Dolatshahi, K.M.; Aref, A.J.; Yekrangnia, M. Bidirectional behavior of unreinforced masonry walls. Earthq. Eng. Struct. Dyn. 2014, 43, 2377–2397. [Google Scholar] [CrossRef]
- Dolatshahi, K.M.; Yekrangnia, M. Out-of-plane strength reduction of unreinforced masonry walls because of in-plane damages. Earthq. Eng. Struct. Dyn. 2015, 44, 2157–2176. [Google Scholar] [CrossRef]
- Dolatshahi, K.M.; Aref, A.J.; Whittaker, A.S. Interaction Curves for In-Plane and Out-of-Plane Behaviors of Unreinforced Masonry Walls. J. Earthq. Eng. 2015, 19, 60–84. [Google Scholar] [CrossRef]
- Kollerathu, J.A.; Menon, A. Interaction of In-Plane and Out-of-Plane Responses in Unreinforced Masonry Walls under Seismic Loads. J. Struct. Eng. 2017, 44, 422–441. [Google Scholar]
- Noor-E-Khuda, S.; Dhanasekar, M. Masonry Walls under Combined In-Plane and Out-of-Plane Loadings. J. Struct. Eng. 2018, 144, 04017186. [Google Scholar] [CrossRef]
- Noor-E-Khuda, S.; Dhanasekar, M. Three sides supported unreinforced masonry walls under multi-directional loading. Constr. Build. Mater. 2018, 188, 1207–1220. [Google Scholar] [CrossRef]
- Kollerathu, J.A.; Menon, A. Biaxial Effects in Unreinforced Masonry (URM) Load-Bearing Walls. In Recent Advances in Structural Engineering; Rao, A.R.M., Ramanjaneyulu, K., Eds.; Springer: Singapore, 2019; Volume 11. [Google Scholar] [CrossRef]
- Kesavan, P.; Menon, A. Investigation of in-plane and out-of-plane interaction in unreinforced masonry piers by block-based micro-modeling. Structures 2022, 46, 1327–1344. [Google Scholar] [CrossRef]
- Sharma, S. Numerical Study of the Effect of Seismic In-Plane Damage on Out-Of-Plane Performance of Unreinforced Masonry Walls. M.Sc. Thesis, Delft University of Technology, Delft, The Netherlands, 2023. [Google Scholar]
- Krishnachandran, S.; Menon, A. Effect of out-of-plane displacements on the in-plane capacity of lightly precompressed rocking unreinforced masonry piers. Eng. Struct. 2023, 281, 115756. [Google Scholar] [CrossRef]
- Zeng, B.; Li, Y. In-plane and out-of-plane one-way vertical bending behavior interaction analysis of unreinforced masonry walls with newly developed load capacity interaction curve. Eng. Struct. 2024, 305, 117729. [Google Scholar] [CrossRef]
- Patel, K.P.; Dubey, R.N. Effect of in-plane damage on the out-of-plane strength of masonry walls with openings. Structures 2024, 65, 106708. [Google Scholar] [CrossRef]
- Maheri, M.R.; Najafgholipour, M.A. In-Plane Shear and Out-of-Plane Bending Capacity Interaction In Brick Masonry Walls. In Proceedings of the 15th World Conference on Earthquake Engineering (12WCEE), Lisbon, Portugal, 24–28 September 2012. [Google Scholar]
- Gkournelos, P.D.; Triantafillou, T. Integrated Structural and Energy Retrofitting of Masonry Walls: The Effect of In-Plane Damage on the Out-Of-Plane Response. In Proceedings of the 10th International Conference on FRP Composites in Civil Engineering (CICE), Istanbul, Turkey, 8–10 December 2021; Springer International Publishing: Cham, Germany, 2022. [Google Scholar] [CrossRef]
- Gkournelos, P.D.; Triantafillou, T.C.; Bournas, D.A. Integrated Structural and Energy Retrofitting of Masonry Walls: Effect of In-Plane Damage on the Out-of-Plane Response. J. Compos. Constr. 2020, 24, 04020049. [Google Scholar] [CrossRef]
- Dolatshahi, K.M.; Aref, A.J. Multi-directional response of unreinforced masonry walls: Experimental and computational investigations. Earthq. Eng. Struct. Dyn. 2016, 45, 1427–1449. [Google Scholar] [CrossRef]
- Sudhakar, M.; Raj, M.P.; Natarajan, C. Interaction study on interlocking masonry wall under simultaneous in-plane and out-of-plane loading. In Advances in Structural Engineering: Materials; Springer: New Delhi, India, 2015; Volume 3. [Google Scholar] [CrossRef]
- Patel, K.P.; Dubey, R.N. Effect of cross walls on the interaction curves of the unreinforced masonry walls. Earthq. Eng. Struct. Dyn. 2023, 52, 4518–4545. [Google Scholar] [CrossRef]
- Russel, A.P.; Ingham, J. The Influence of Flanges on the In-Plane Seismic Performance of URM Walls in New Zealand Buildings; New Zealand Society of Earthquake Engineering: Wellington, New Zealand, 2010. [Google Scholar]
- van der Meer, L.J.; Martens, D.R.W.; Vermeltfoort, A.T. UPT rectangular and flanged shear walls of high-strength CASIEL-TLM masonry: Experimental and numerical push-over analysis. Eng. Struct. 2013, 49, 628–642. [Google Scholar] [CrossRef]
- Russell, A.P.; Elwood, K.J.; Ingham, J.M. Lateral Force–Displacement Response of Unreinforced Masonry Walls with Flanges. J. Struct. Eng. 2014, 140, 04013087. [Google Scholar] [CrossRef]
- Vélez, L.F.R.; Magenes, G.; Griffith, M.C. Dry Stone Masonry Walls in Bending—Part I: Static Tests. Int. J. Archit. Herit. 2014, 8, 1–28. [Google Scholar] [CrossRef]
- Khanmohammadi, M.; Behnam, H.; Marefat, M.S. Seismic Behavior Prediction of Flanged Unreinforced Masonry (FURM) Walls. J. Earthq. Eng. 2014, 18, 759–784. [Google Scholar] [CrossRef]
- Bui, T.T.; Limam, A.; Sarhosis, V.; Hjiaj, M. Discrete element modelling of the in-plane and out-of-plane behaviour of dry-joint masonry wall constructions. Eng. Struct. 2017, 136, 277–294. [Google Scholar] [CrossRef]
- Sajid, H.U.; Ashraf, M.; Ali, Q.; Sajid, S.H. Effects of vertical stresses and flanges on seismic behavior of unreinforced brick masonry. Eng. Struct. 2018, 155, 394–409. [Google Scholar] [CrossRef]
- Mordant, C.; Dietz, M.; Degée, H. Experimental tests on the seismic behaviour of unreinforced load-bearing masonry structures. In Proceedings of the Earthquake Engineering and Structural Dynamics 2013 (VEESD 2013), Vienna, Austria, 28–30 August 2013. [Google Scholar]
- Mordant, C.; Dietz, M.; Taylor, C.; Degée, H. Seismic Behaviour of Thin-Bed Layered Unreinforced Clay Masonry Frames with T- or L-Shaped Piers. In Experimental Research in Earthquake Engineering; Springer: Cham, Germany, 2015. [Google Scholar] [CrossRef]
- Mordant, C.; Taylor, C.; Dietz, M.; Vasseur, L.; Degée, H. Shaking table tests on unreinforced load bearing masonry structures. In Proceedings of the 9th International Masonry Conference (IMS), Guimarães, Portugal, 7–9 July 2014. [Google Scholar]
- Haach, V.G.; Ramalho, M.A.; Corrêa, M.R.S. Parametrical study of unreinforced flanged masonry walls subjected to horizontal loading through numerical modeling. Eng. Struct. 2013, 56, 207–217. [Google Scholar] [CrossRef]
- Alamdari, B.E. Evaluation of the Effects of the Flanges on Strength and Failure Modes of Masonry Walls. Master’s Thesis, Sharif University of Technology, Tehran, Iran, 2020. [Google Scholar]
- Alamdari, B.E.; Ghezelbash, A.; Dolatshahi, K.M. Evaluation of the effects of the flanges on strength and failure modes of masonry walls. In Proceedings of the 12th International Congress on Civil Engineering, Mashhad, Iran, 25–27 October 2024. [Google Scholar]
- Patel, K.P.; Dubey, R.N. Effect of flanges on the in-plane behavior of the masonry walls. Eng. Struct. 2022, 273, 115059. [Google Scholar] [CrossRef]
- Yao, N.N.; Zhang, W.F.; Wei, J.W. The Flange Effect of Brick Masonry Wall Subjected to Seismic Effect. Appl. Mech. Mater. 2012, 193–194, 1444–1448. [Google Scholar] [CrossRef]
- Mortezaei, A.; Kalantari, M. Seismic evaluation and FRP strengthening of unreinforced flanged masonry walls. Asian J. Civ. Eng. (BHRC) 2015, 16, 1155–1173. [Google Scholar]
- Ghamari, M.; Karimi, M.S.; Lourenço, P.B.; Sousa, H.S. Flanges’ Impact on Persian Historical Masonry Walls: Modeling Safety Factors. Int. J. Eng. 2024, 37, 1136–1145. [Google Scholar] [CrossRef]
- Zeng, B. Computational Modeling and Multi-Fidelity Uncertainty Analysis for Masonry Walls Under In-Plane and/or Out-of-Plane Loading: Development and Applications. Ph.D. Thesis, University of Alberta, Edmonton, Canada, 2024. [Google Scholar]
- Pradhan, B.; Zizzo, M.; Sarhosis, V.; Cavaleri, L. Out-of-plane behaviour of unreinforced masonry infill walls: Review of the experimental studies and analysis of the influencing parameters. Structures 2021, 33, 4387–4406. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, L.; Wei, T.; Huang, P.; Wang, H.; Chen, X. Multi-Hazard Assessment of Masonry Buildings: A State-of-the-Art Review. Buildings 2024, 14, 3711. [Google Scholar] [CrossRef]
- Chourasia, A.; Bhattacharyya, S.K.; Bhandari, N.M.; Bhargava, P. Seismic Performance of Different Masonry Buildings: Full-Scale Experimental Study. J. Perform. Constr. Facil. 2016, 30, 04016006. [Google Scholar] [CrossRef]
- Robazza, B.R.; Brzev, S.; Yang, T.Y.; Elwood, K.J.; Anderson, D.L.; Mcewen, B. Out-of-Plane Behavior of Slender Reinforced Masonry Shear Walls under In-Plane Loading: Experimental Investigation. J. Struct. Eng. 2018, 144, 04018008. [Google Scholar] [CrossRef]
- Hosseinzadeh, S.; Galal, K. Seismic Fragility Assessment and Resilience of Reinforced Masonry Flanged Wall Systems. J. Perform. Constr. Facil. 2020, 34, 04019109. [Google Scholar] [CrossRef]
- de Medeiros, G.F.; Mohamad, G.; Eduardo Kosteski, L.; Quispe Rodriguez, R.; Simonetti Milani, A. Strength capacity of hollow clay blocks structural masonry—Flange, Chases, and slenderness effects. Eng. Struct. 2022, 272, 114943. [Google Scholar] [CrossRef]
- Cheng, J.; Shing, P.B. A beam-column element for modeling nonlinear flexural and shear behaviors of reinforced masonry walls. Earthq. Eng. Struct. Dyn. 2022, 51, 1918–1942. [Google Scholar] [CrossRef]
- Kallioras, S.; Graziotti, F. Experimental insights into the seismic behaviour of flanged URM walls. Eng. Struct. 2025, 322, 119057. [Google Scholar] [CrossRef]
- Sharma, S.; Tomassetti, U.; Grottoli, L.; Graziotti, F. Two-way bending experimental response of URM walls subjected to combined horizontal and vertical seismic excitation. Eng. Struct. 2020, 219, 110537. [Google Scholar] [CrossRef]
- Chang, L.; Rots, J.G.; Esposito, R. Influence of aspect ratio and pre-compression on force capacity of unreinforced masonry walls in out-of-plane two-way bending. Eng. Struct. 2021, 249, 113350. [Google Scholar] [CrossRef]
- Chang, L.; Rots, J.G.; Esposito, R. Influence of openings on two-way bending capacity of unreinforced masonry walls. J. Build. Eng. 2022, 51, 104222. [Google Scholar] [CrossRef]
- Li, Y.; Zeng, B. Modeling of masonry structures using a new 3D cohesive interface material model considering dilatancy softening. Eng. Struct. 2023, 277, 115466. [Google Scholar] [CrossRef]
- Acconcia, E.; Buonocunto, V.; Parisi, F. Numerical investigation on the flange effect in unreinforced masonry wall system through nonlinear finite element modelling. In Proceedings of the 9th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering (COMPDYN), Athens, Greece, 12–14 June 2023. [Google Scholar]
- Vafa, N. Seismic Retrofitting of Masonry Structures with Post-Installed Systems. Ph.D. Thesis, Politecnico di Milano, Milan, Italy, 2023. [Google Scholar]
- Scamardo, M.; Cattaneo, S.; Crespi, P.; Vafa, N. Cyclic behavior of C-shaped masonry wall retrofitted with twisted bars or bonded rebars. Constr. Build. Mater. 2024, 443, 137703. [Google Scholar] [CrossRef]
- Cattaneo, S.; Crespi, P.; Scamardo, M.; Vafa, N. Cyclic behavior of masonry walls retrofitted with post-installed twisted bars or bonded rebars. Constr. Build. Mater. 2023, 409, 134026. [Google Scholar] [CrossRef]
- Cattaneo, S.; Genesio, G.; Piccinin, R. Seismic Design of Anchorages Using Post-installed Reinforcing Bars. In Building for the Future: Durable, Sustainable, Resilient; Springer: Cham, Germany, 2023. [Google Scholar] [CrossRef]
- Chang, L. Parametric Numerical Study on Two-Way Bending Capacity of Unreinforced Masonry Walls. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2022. [Google Scholar] [CrossRef]
- Russell, A.P. Characterisation and Seismic Assessment of Unreinforced Masonry Buildings. Ph.D. Thesis, The University of Auckland, Auckland, New Zealand, 2010. [Google Scholar]
- Ahmed, H.A.; Shahzada, K. Numerical modeling of confined brick masonry structures with parametric analysis and energy absorption calculation. Int. J. Prot. Struct. 2021, 12, 129–152. [Google Scholar] [CrossRef]
- Lourenço, P.B.; Rots, J.G.; Blaauwendraad, J. Continuum Model for Masonry: Parameter Estimation and Validation. J. Struct. Eng. 1998, 124, 642–652. [Google Scholar] [CrossRef]
- D’Altri, A.M.; Sarhosis, V.; Milani, G.; Rots, J.; Cattari, S.; Lagomarsino, S.; Sacco, E.; Tralli, A.; Castellazzi, G.; de Miranda, S. Modeling Strategies for the Computational Analysis of Unreinforced Masonry Structures: Review and Classification. Arch. Comput. Methods Eng. 2020, 27, 1153–1185. [Google Scholar] [CrossRef]
- Sudhakar, M.; Raj, M.P.; Natarajan, C. Advances in Structural Engineering; Springer: New Delhi, India, 2015. [Google Scholar] [CrossRef]
- Drysdale, R.G.; Hamid, A.A.; Baker, L.R. Masonry Structures: Behavior and Design; Prentice Hall: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Korswagen, P.A.; Longo, M.; Prosperi, A.; Rots, J.G.; Terwel, K.C. Modelling of Damage in Historical Masonry Façades Subjected to a Combination of Ground Settlement and Vibrations. In Structural Analysis of Historical Constructions; Springer: Cham, Germany, 2024. [Google Scholar] [CrossRef]
- Khanmohammadi, M.; Behnam, H. A Review on Innovative methods in Silmulation of IO-OP Interaction of Brick Walls. In Proceedings of the 5th Congress of Civil Engineering, Mashhad, Iran, 4 May 2011. [Google Scholar]
- Kesavan, P.; Menon, A. A macro-element with bidirectional interaction for seismic analysis of unreinforced masonry walls. Earthq. Eng. Struct. Dyn. 2023, 52, 1740–1761. [Google Scholar] [CrossRef]
- Salvatori, C.; Guerrini, G.; Galasco, A.; Penna, A. A Macroelement Formulation for Modeling Strengthened and Reinforced Masonry Elements. In Proceedings of the 18th International Brick and Block Masonry Conference, Cham, Germany, 21–24 July 2024. [Google Scholar] [CrossRef]
- Kadysiewski, S.; Mosalam, K.M. Modelling of Unreinforced Masonry Infill Walls Considering In-Plane and Out-of-Plane Interaction. In Proceedings of the 11th Canadian Masonry Symposium, Toronto, ON, Canada, 31 May–3 June 2009. [Google Scholar]
- Agnihotri, P.; Singhal, V.; Rai, D.C. Effect of in-plane damage on out-of-plane strength of unreinforced masonry walls. Eng. Struct. 2013, 57, 1–11. [Google Scholar] [CrossRef]
- ASCE 41-17; Seismic Evaluation and Retrofit of Existing Buildings. American Society of Civil Engineers (ASCE): Reston, VA, USA, 2017.
- Magenes, G.; Calvi, G.M. In-plane seismic response of brick masonry walls. Earthq. Eng. Struct. Dyn. 1997, 26, 1091–1112. [Google Scholar] [CrossRef]
- Lourenço, P.B.; Rots, J.G. Multisurface Interface Model for Analysis of Masonry Structures. J. Eng. Mech. 1997, 123, 660–668. [Google Scholar] [CrossRef]
- van Zijl, G.P.A.G. Computational Modelling of Masonry Creep and Shrinkage; Delft University of Technology: Delft, The Netherlands, 2000. [Google Scholar]
- Macorini, L.; Izzuddin, B.A. A non-linear interface element for 3D mesoscale analysis of brick-masonry structures. Int. J. Numer. Methods Eng. 2011, 85, 1584–1608. [Google Scholar] [CrossRef]
- Aref, A.J.; Dolatshahi, K.M. A three-dimensional cyclic meso-scale numerical procedure for simulation of unreinforced masonry structures. Comput. Struct. 2013, 120, 9–23. [Google Scholar] [CrossRef]
- D’Altri, A.M.; de Miranda, S.; Castellazzi, G.; Sarhosis, V. A 3D detailed micro-model for the in-plane and out-of-plane numerical analysis of masonry panels. Comput. Struct. 2018, 206, 18–30. [Google Scholar] [CrossRef]
- D’Altri, A.M. Advances in Computational Analysis of Masonry Structures. Ph.D. Thesis, University of Bologna, Bologna, Italy, 2019. [Google Scholar]
- Zeng, B.; Li, Y.; Noguez, C.C. Modeling and parameter importance investigation for simulating in-plane and out-of-plane behaviors of un-reinforced masonry walls. Eng. Struct. 2021, 248, 113233. [Google Scholar] [CrossRef]
- Nie, Y.; Sheikh, A.; Visintin, P.; Griffith, M. A robust computational strategy for failure prediction of masonry structures using an improved multi-surface damage-plastic based interface model. Int. J. Numer. Methods Eng. 2023, 124, 2498–2528. [Google Scholar] [CrossRef]
- Nie, Y.; Sheikh, A.; Griffith, M.; Visintin, P. A damage-plasticity based interface model for simulating in-plane/out-of-plane response of masonry structural panels. Comput. Struct. 2022, 260, 106721. [Google Scholar] [CrossRef]
- Bui, T.T.; Limam, A.; Sarhosis, V. Failure analysis of masonry wall panels subjected to in-plane and out-of-plane loading using the discrete element method. Eur. J. Environ. Civ. Eng. 2021, 25, 876–892. [Google Scholar] [CrossRef]
- Baraldi, D.; Cecchi, A. A full 3D rigid block model for the collapse behaviour of masonry walls. Eur. J. Mech.-A/Solids 2017, 64, 11–28. [Google Scholar] [CrossRef]
- Milani, G. 3D upper bound limit analysis of multi-leaf masonry walls. Int. J. Mech. Sci. 2008, 50, 817–836. [Google Scholar] [CrossRef]
- Tiberti, S.; Milani, G. 3D homogenized limit analysis of non-periodic multi-leaf masonry walls. Comput. Struct. 2020, 234, 106253. [Google Scholar] [CrossRef]
- Oktiovan, Y.P.; Messali, F.; Pulatsu, B.; Lemos, J.V.; Rots, J.G. A contact-based constitutive model for the numerical analysis of masonry structures using the distinct element method. Comput. Struct. 2024, 303, 107499. [Google Scholar] [CrossRef]
- Khattak, N.; Derakhshan, H.; Thambiratnam, D.P.; Malomo, D.; Perera, N.J. Modelling the in-plane/out-of-plane interaction of brick and stone masonry structures using Applied Element Method. J. Build. Eng. 2023, 76, 107175. [Google Scholar] [CrossRef]
- Smoljanović, H.; Živaljić, N.; Nikolić, Ž.; Munjiza, A. Numerical analysis of 3D dry-stone masonry structures by combined finite-discrete element method. Int. J. Solids Struct. 2018, 136–137, 150–167. [Google Scholar] [CrossRef]
- Pantò, B.; Cannizzaro, F.; Caliò, I.; Lourenço, P.B. Numerical and Experimental Validation of a 3D Macro-Model for the In-Plane and Out-Of-Plane Behavior of Unreinforced Masonry Walls. Int. J. Archit. Herit. 2017, 11, 946–964. [Google Scholar]
- Caliò, I.; Marletta, M.; Pantò, B. A new discrete element model for the evaluation of the seismic behaviour of unreinforced masonry buildings. Eng. Struct. 2012, 40, 327–338. [Google Scholar] [CrossRef]
- Minga, E.; Macorini, L.; Izzuddin, B.A.; Caliò, I. 3D macroelement approach for nonlinear FE analysis of URM components subjected to in-plane and out-of-plane cyclic loading. Eng. Struct. 2020, 220, 110951. [Google Scholar] [CrossRef]
- Lourenço, P.B.; De Borst, R.; Rots, J.G. A plane stress softening plasticity model for orthotropic materials. Int. J. Numer. Methods Eng. 1997, 40, 4033–4057. [Google Scholar] [CrossRef]
- Lourenço, P.B. Anisotropic Softening Model for Masonry Plates and Shells. J. Struct. Eng. 2000, 126, 1008–1016. [Google Scholar] [CrossRef]
- Noor-E-Khuda, S.; Dhanasekar, M.; Thambiratnam, D.P. An explicit finite element modelling method for masonry walls under out-of-plane loading. Eng. Struct. 2016, 113, 103–120. [Google Scholar] [CrossRef]
- Noor-E-Khuda, S. An Explicit Finite-Element Modeling Method for Masonry Walls Using Continuum Shell Element. J. Archit. Eng. 2021, 27, 04021040. [Google Scholar] [CrossRef]
- Vecchio, F.J.; Collins, M.P. The modified compression field theory for reinforced concrete elements subjected to shear. ACI J. 1986, 83, 219–231. [Google Scholar]
- Rots, J.G.; Messali, F.; Esposito, R.; Jafari, S.; Mariani, V. Thematic Keynote Computational modelling of masonry with a view to Groningen induced seismicity. In Proceedings of the 10th International Conference on Structural Analysis of Historical Constructions, Leuven, Belgium, 13–15 September 2016. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghezelbash, A.; Rots, J.G.; Messali, F. Review of the Influence of the Interaction Between In-Plane and Out-of-Plane Behaviors on the Seismic Response of Non-Framed Unreinforced Masonry Walls. Buildings 2025, 15, 2874. https://doi.org/10.3390/buildings15162874
Ghezelbash A, Rots JG, Messali F. Review of the Influence of the Interaction Between In-Plane and Out-of-Plane Behaviors on the Seismic Response of Non-Framed Unreinforced Masonry Walls. Buildings. 2025; 15(16):2874. https://doi.org/10.3390/buildings15162874
Chicago/Turabian StyleGhezelbash, Amirhossein, Jan G. Rots, and Francesco Messali. 2025. "Review of the Influence of the Interaction Between In-Plane and Out-of-Plane Behaviors on the Seismic Response of Non-Framed Unreinforced Masonry Walls" Buildings 15, no. 16: 2874. https://doi.org/10.3390/buildings15162874
APA StyleGhezelbash, A., Rots, J. G., & Messali, F. (2025). Review of the Influence of the Interaction Between In-Plane and Out-of-Plane Behaviors on the Seismic Response of Non-Framed Unreinforced Masonry Walls. Buildings, 15(16), 2874. https://doi.org/10.3390/buildings15162874