Multi-Objective Optimization Design of Foamed Cement Mix Proportion Based on Response Surface Methodology
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Single-Variable Experimental Approach
2.3. Response Surface Methodology Experimental Design
2.4. Sample Preparation
2.5. Experimental Methods
3. Results and Discussion
3.1. Single-Factor Analysis
3.1.1. Effect of NSA Content
3.1.2. Effect of Foaming Agent Content
3.1.3. Effect of PP Fiber Content
3.2. Response Surface Modeling and Analysis
3.2.1. Model Development and Analysis of Variance
3.2.2. Response Surface Analysis
3.3. Multi-Objective Optimization and Model Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Adhikary, S.K.; Ashish, D.K. Turning waste expanded polystyrene into lightweight aggregate: Towards sustainable construction industry. Sci. Total Environ. 2022, 837, 155852. [Google Scholar] [CrossRef]
- Guo, X.H.; Wang, Y.F.; Liu, Y.S.; Fan, L.; Xue, S.Q.; Shi, C.C.; Pan, L.; Zhang, B.Q.; Wang, L.P.; Chang, X.L. Multi-Objective Optimization of Building Energy Consumption: A Case Study of Temporary Buildings on Construction Sites. Buildings 2025, 15, 420. [Google Scholar] [CrossRef]
- Song, Y.; Xue, C.; Guo, W.; Bai, Y.; Shi, Y.; Zhao, Q. Foamed geopolymer insulation materials: Research progress on insulation performance and durability. J. Clean. Prod. 2024, 444, 140991. [Google Scholar] [CrossRef]
- Peng, Z.; Fan, W.; Tang, H.; Xiang, C.; Ye, L.; Yin, T.; Rao, M. Direct conversion of blast furnace ferronickel slag to thermal insulation materials. Constr. Build. Mater. 2024, 412, 134499. [Google Scholar] [CrossRef]
- Mohamed, A.M.; Tayeh, B.A.; Majeed, S.S.; Aisheh, Y.I.A.; Salih, M.N.A. Ultra-light foamed concrete mechanical properties and thermal insulation perspective: A comprehensive review. J. CO2 Util. 2024, 83, 102827. [Google Scholar] [CrossRef]
- Tobbala, D.E. Comparative study on the durability of nano-silica and nano-ferrite concrete. Mater. Sci. Eng. 2021, 4, 124–130. [Google Scholar] [CrossRef]
- Tobbala, D.E.; Rashed, A.S.; Tayeh, B.A.; Ahmed, T.I. Performance and microstructure analysis of high-strength concrete incorporated with nanoparticles subjected to high temperatures and actual fires. Arch. Civ. Mech. Eng. 2022, 22, 85. [Google Scholar] [CrossRef]
- Tawfik, T.A.; Metwally, K.A.; El-Beshlawy, S.A.; Saffar, D.M.A.; Tayeh, B.A.; Hassan, H.S. Exploitation of the nanowaste ceramic incorporated with nano silica to improve concrete properties. J. King Saud Univ.-Eng. Sci. 2021, 33, 581–588. [Google Scholar] [CrossRef]
- Megahed, M.; Tobbala, D.E.; El-baky, M.A.A. The effect of incorporation of hybrid silica and cobalt ferrite nanofillers on the mechanical characteristics of glass fiber-reinforced polymeric composites. Polym. Compos. 2021, 42, 271–284. [Google Scholar] [CrossRef]
- Ahmed, T.I.; El-Shafai, N.M.; El-Mehasseb, I.M.; Sharshir, S.W.; Tobbala, D.E. Recent advances in the heating resistance. thermal gravimetric analysis, and microstructure of green concrete incorporating palm-leaf and cotton-stalk nanoparticles. J. Build. Eng. 2022, 61, 105252. [Google Scholar] [CrossRef]
- Li, Z.; Wang, G.; Deng, X.; Liu, Q.; Shulga, Y.M.; Chen, Z.; Wu, X. Preparation and characterization of silica aerogel foam concrete: Effects of particle size and content. J. Build. Eng. 2024, 82, 108243. [Google Scholar] [CrossRef]
- Liu, P.; Gong, Y.F.; Tian, G.H.; Miao, Z.K. Preparation and experimental study on the thermal characteristics of lightweight prefabricated nano-silica aerogel foam concrete wallboards. Constr. Build. Mater. 2021, 272, 121895. [Google Scholar] [CrossRef]
- Song, Z.H.; Zhao, Y.F.; Yuan, M.; Huang, L.J.; Yuan, M.Y.; Cui, S. Thermal Insulation and Moisture Resistance of High-Performance Silicon Aerogel Composite Foam Ceramic and Foam Glass. Adv. Eng. Mater. 2022, 24, 202101508. [Google Scholar] [CrossRef]
- Tan, T.H.; Shah, S.N.; Ng, C.C.; Putra, A.; Othman, M.N.; Mo, K.H. Insulating foamed lightweight cementitious composite with co-addition of micro-sized aerogel and hydrogen peroxide. Constr. Build. Materials. 2022, 360, 129485. [Google Scholar] [CrossRef]
- Pan, P.F.; Yang, W.W.; Guo, Z.W. Improvement of thermal properties of foam concrete by incorporating silica aerogel particles. Constr. Build. Mater. 2025, 478, 141450. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, H.; Zhang, G.; Liu, J.; Liu, Z.; Du, F. Study on preparation and performance of advanced aerogel foamed concrete with ultra-light aerogel. Constr. Build. Mater. 2023, 366, 130166. [Google Scholar] [CrossRef]
- Hou, L.; Li, J.; Lu, Z.Y.; Niu, Y.H. Influence of foaming agent on cement and foam concrete. Constr. Build. Mater. 2021, 280, 122399. [Google Scholar] [CrossRef]
- Dhasindrakrishna, K.; Pasupathy, K.; Ramakrishnan, S.; Sanjayan, J. Progress, current thinking and challenges in geopolymer foam concrete technology. Cem. Concr. Compos. 2021, 116, 103886. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, H.H.; Fang, S.Y.; Luo, J. Effect of Mineral Powders on the Properties of Foam Concrete Prepared by Cationic and Anionic Surfactants as Foaming Agents. Materials 2024, 17, 606. [Google Scholar] [CrossRef]
- Rodhia, R.; Sahdeo, S.K.; Kumar, B. Optimizing foaming agent concentration and recycled fine aggregate content to enhance mechanical and durable properties of foam concrete mixes. J. Build. Eng. 2024, 97, 110801. [Google Scholar] [CrossRef]
- Maglad, A.M.; Mydin, M.A.O.; Datta, S.D.; Abbood, I.S.; Tayeh, B.A. Impact of anionic surfactant-based foaming agents on the properties of lightweight foamed concrete. Constr. Build. Mater. 2024, 438, 137119. [Google Scholar] [CrossRef]
- Gencel, O.; Nodehi, M.; Bayraktar, O.Y.; Kaplan, G.; Benli, A.; Gholampour, A.; Ozbakkaloglu, T. Basalt fiber-reinforced foam concrete containing silica fume: An experimental study. Constr. Build. Mater. 2022, 326, 126861. [Google Scholar] [CrossRef]
- Sangkeaw, P.; Thongchom, C.; Sanit-in, P.K.; Prasittisopin, L.; Pansuk, W. Restrained Shrinkage Behavior of High-Strength Concrete with Various Synthetic Fiber and Cellulose Fiber Proportions. J. Mater. Civ. Eng. 2025, 37, 12. [Google Scholar] [CrossRef]
- Li, J.H.; Hajimohammadi, A.; Kim, T. The surface treatment of PVA fibres to enhance fibre distribution and mechanical properties of foam concrete. Constr. Build. Mater. 2024, 425, 136111. [Google Scholar] [CrossRef]
- Xu, Y.D.; Yao, L.; Yu, X.N. Effect of polypropylene fibers on mechanical and wetting properties of overall superhydrophobic foamed concrete. Constr. Build. Mater. 2024, 448, 138207. [Google Scholar] [CrossRef]
- Wang, K.Q.; Ling, C.W.; Li, D. Optimizing properties of 3D printing mortar using response surface methodology. J. Build. Mater. 2024, 27, 543–550, (In Chinese with English Abstract). [Google Scholar]
- Hu, J.; Zhang, P.L.; Wu, L. Study on mechanical properties of cementitious matrix based on response surface method and optimization of the fitting ratio. Mater. Rep. 2022, 36, 165–169, (In Chinese with English Abstract). [Google Scholar]
- Liu, Z.Y.; Shao, S.M. Optimal design of hybrid fiber-composite cementitious material system based on response surface methodology. Bull. Chin. Ceram. Soc. 2023, 42, 4197–4207, (In Chinese with English Abstract). [Google Scholar]
- Wang, J.W.; Wang, W. Response Surface Based Multi-objective Optimization of Basalt Fiber Reinforced Foamed Concrete. Mater. Rep. 2019, 33, 4092–4097, (In Chinese with English Abstract). [Google Scholar]
- Zhang, Q.; Feng, X.; Chen, X.; Lu, K. Mix design for recycled aggregate pervious concrete based on response surface methodology. Constr. Build. Mater. 2020, 259, 119776. [Google Scholar] [CrossRef]
- Li, Z.; Lu, D.; Gao, X. Multi-objective optimization of gap-graded cement paste blended with supplementary cementitious materials using response surface methodology. Constr. Build. Mater. 2020, 248, 118552. [Google Scholar] [CrossRef]
- Kaliyavaradhan, S.K.; Li, L.; Ling, T.-C. Response surface methodology for the optimization of CO2 uptake using waste concrete powder. Constr. Build. Mater. 2022, 340, 127758. [Google Scholar] [CrossRef]
- Hammoudi, A.; Moussaceb, K.; Belebchouche, C.; Dahmoune, F. Comparison of artificial neural network (ANN) and response surface methodology (RSM) prediction in compressive strength of recycled concrete aggregates. Constr. Build. Mater. 2019, 209, 425–436. [Google Scholar] [CrossRef]
- Mermerdaş, K.; Algın, Z.; Oleiwi, S.M.; Nassani, D.E. Optimization of lightweight GGBFS and FA geopolymer mortars by response surface method. Constr. Build. Mater. 2017, 139, 159–171. [Google Scholar] [CrossRef]
- JG/T266-2011; Foamed Concrete. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2011.
- Yang, J.M.; Guo, S.T.; Xu, X.H. Study on thermal performance of aerogel insulation panels. J. Build. Mater. 2019, 22, 786–791, (In Chinese with English Abstract). [Google Scholar]
- Shu, X.; Liu, Z.H.; Ding, Y.D. Research progress on preparation and application of nano-SiO2 aerogels for heat insulation. Mater. Rev. 2018, 32, 788–795, (In Chinese with English Abstract). [Google Scholar]
- Zhao, T.Y.; Zhang, Q.Z. Effect of SiO2 aerogel on the properties of foamed concrete. New Build. Mater. 2018, 45, 144–147, (In Chinese with English Abstract). [Google Scholar]
- Wang, J.; Wang, W.C.; Xu, Y.Q. Effect of nano-sio2 on fracture behavior of rubber concrete. J. Build. Mater. 2023, 26, 731–738, (In Chinese with English Abstract). [Google Scholar]
- Shen, L.; Di Luzio, G.; Cao, M.S.; Ren, Q.W.; Ren, X.H.; Jiang, M.K.; Zhu, D.; Yao, X.P. Insights and theoretical model of thermal conductivity of thermally damaged hybrid steel-fine polypropylene fiber-reinforced concrete. Cem. Concr. Compos. 2023, 138, 105001. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, Y.X.; Zhu, H.H.; Yan, Z.G. Characterizing the thermal properties of hybrid polypropylene-steel fiber reinforced concrete under heat exposure: Insights into fiber geometry and orientation distribution. Compos. Struct. 2021, 275, 114457. [Google Scholar] [CrossRef]
- Guo, Y.X.; Xu, C.Y.; Hu, Z.W.; Wang, L.; Yue, G.B.; Zheng, S.D.; Li, Q.Y.; Wang, P.H. Study on the Performance of Foam Concrete Prepared from Decarburized Fly Ash. Appl. Sci. 2022, 12, 12708. [Google Scholar] [CrossRef]
- Guan, L.L.; Chen, Y.G.; Wu, D.B.; Deng, Y.F. Foamed concrete utilizing excavated soil and fly ash for urban underground space backfilling: Physical properties. mechanical properties, and microstructure. Tunn. Undergr. Space Technol. 2023, 134, 104995. [Google Scholar] [CrossRef]
- Song, Z.G.; Zou, S.M.; Zhou, W.X.; Huang, Y.; Shao, L.W.; Yuan, J.; Gou, X.N.; Jin, W.; Wang, Z.B.; Chen, X.; et al. Clinically applicable histopathological diagnosis system for gastric cancer detection using deep learning. Nat. Commun. 2020, 11, 4294. [Google Scholar] [CrossRef]
- Kabir, H.; Wu, J.R.; Dahal, S.; Joo, T.; Garg, N. Automated estimation of cementitious sorptivity via computer vision. Nat. Commun. 2024, 15, 9935. [Google Scholar] [CrossRef] [PubMed]
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | Loss on Ignition |
---|---|---|---|---|---|---|
24.99 | 8.26 | 4.03 | 51.42 | 3.71 | 2.51 | 3.31 |
Setting Time/min | Compressive Strength/MPa | Flexural Strength/MPa | |||
---|---|---|---|---|---|
Initial setting | Final setting | 3 d | 28 d | 3 d | 28 d |
172 | 234 | 27.2 | 54.5 | 5.5 | 8.7 |
Code | Influence Factor | Code Level | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
A | NSA content/% | 6 | 8 | 10 |
B | Foaming agent content/% | 0.46 | 0.56 | 0.66 |
C | PP fiber content/% | 0.1 | 0.2 | 0.3 |
Sample No. | Factor and Level | Thermal Conductivity/W/(m·K) | 28d Compressive Strength/MPa | ||||
---|---|---|---|---|---|---|---|
A/% | B/% | C/% | Tested Level | Predicted Level | Tested Level | Predicted Level | |
1 | 8 (0) | 0.46 (−1) | 0.3 (1) | 0.128 | 0.129 | 1.08 | 1.06 |
2 | 6 (−1) | 0.66 (1) | 0.2 (0) | 0.116 | 0.115 | 0.8 | 0.9 |
3 | 8 (0) | 0.56 (0) | 0.2 (0) | 0.118 | 0.116 | 0.99 | 1.02 |
4 | 6 (−1) | 0.56 (0) | 0.1 (−1) | 0.131 | 0.131 | 1.22 | 1.21 |
5 | 10 (1) | 0.46 (−1) | 0.2 (0) | 0.136 | 0.138 | 1.31 | 1.29 |
6 | 8 (0) | 0.66 (1) | 0.3 (1) | 0.103 | 0.104 | 0.65 | 0.68 |
7 | 8 (0) | 0.56 (0) | 0.2 (0) | 0.12 | 0.121 | 0.93 | 0.94 |
8 | 10 (1) | 0.56 (0) | 0.3 (1) | 0.126 | 0.128 | 1.05 | 1.08 |
9 | 8 (0) | 0.46 (−1) | 0.1 (−1) | 0.138 | 0.137 | 1.36 | 1.37 |
10 | 8 (0) | 0.66 (1) | 0.1 (−1) | 0.106 | 0.105 | 0.66 | 0.68 |
11 | 8 (0) | 0.56 (0) | 0.2 (0) | 0.114 | 0.113 | 0.87 | 0.87 |
12 | 10 (1) | 0.56 (0) | 0.1 (−1) | 0.119 | 0.117 | 0.98 | 0.97 |
13 | 8 (0) | 0.56 (0) | 0.2 (0) | 0.117 | 0.119 | 0.89 | 0.91 |
14 | 10 (1) | 0.66 (1) | 0.2 (0) | 0.112 | 0.112 | 0.78 | 0.77 |
15 | 6 (−1) | 0.56 (0) | 0.3 (1) | 0.123 | 0.124 | 1.01 | 1.02 |
16 | 8 (0) | 0.56 (0) | 0.2 (0) | 0.119 | 0.120 | 0.82 | 0.83 |
17 | 6 (−1) | 0.46 (−1) | 0.2 (0) | 0.142 | 0.140 | 1.31 | 1.29 |
Source Code | Sum of Squares | Df | Mean Square | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|
Model | 0.0018 | 9 | 0.0002 | 31.12 | <0.0001 | Significance |
A | 0.000 | 1 | 0.0000 | 6.95 | 0.0336 | Significance |
B | 0.0014 | 1 | 0.0014 | 220.42 | <0.0001 | Significance |
C | 0.000 | 1 | 0.0000 | 3.77 | 0.0932 | Not significance |
AB | 1.6 × 10−6 | 1 | 1.6 × 10−6 | 0.1540 | 0.7064 | Not significance |
AC | 0.0001 | 1 | 0.0001 | 8.66 | 0.0216 | Significance |
BC | 0.0000 | 1 | 0.0000 | 1.89 | 0.2119 | Not significance |
A2 | 0.0002 | 1 | 0.0002 | 35.99 | 0.0005 | Significance |
B2 | 8.8 × 10−6 | 1 | 8.8 × 10−6 | 1.36 | 0.2812 | Not significance |
C2 | 3.7 × 10−7 | 1 | 3.7 × 10−7 | 0.0584 | 0.8160 | Not significance |
Residual | 0.0000 | 7 | 6.49 × 10−6 | - | - | - |
Lack of fit | 0.0000 | 3 | 8.08 × 10−6 | 1.53 | 0.3376 | Not significance |
Cor total | 0.0019 | 16 | - | - | - |
Source Code | Sum of Squares | Df | Mean Square | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|
Model | 0.7433 | 9 | 0.0826 | 23.81 | 0.0002 | Significance |
A | 0.0060 | 1 | 0.0060 | 1.74 | 0.2281 | Not significance |
B | 0.5886 | 1 | 0.5886 | 169.73 | <0.0001 | Significance |
C | 0.0231 | 1 | 0.0231 | 6.66 | 0.0364 | Significance |
AB | 0.0001 | 1 | 0.0001 | 0.0288 | 0.8700 | Not significance |
AC | 0.0196 | 1 | 0.0196 | 5.65 | 0.0491 | Significance |
BC | 0.0182 | 1 | 0.0182 | 5.26 | 0.0556 | Not significance |
A2 | 0.0811 | 11 | 0.0811 | 23.37 | 0.0019 | Significance |
B2 | 0.0005 | 1 | 0.0005 | 0.1537 | 0.7067 | Not significance |
C2 | 0.0029 | 1 | 0.0029 | 0.8366 | 0.3908 | Not significance |
Residual | 0.0243 | 7 | 0.0035 | - | - | |
Lack of fit | 0.0079 | 3 | 0.0026 | 0.6402 | 0.6280 | Not significance |
Cor total | 0.7676 | 16 | - | - | - |
Regression Model | R2 | Ra2 | Rp2 | C.V./% | Adeq Precision |
---|---|---|---|---|---|
Y1 | 0.9756 | 0.9443 | 0.7741 | 2.09 | 19.1244 |
Y2 | 0.9684 | 0.9277 | 0.8025 | 5.99 | 15.3048 |
Thermal Conductivity/W/(m·K) | 28 d Compressive Strength/MPa | |
---|---|---|
Predicted value | 0.123 | 1.081 |
Measured value1 | 0.119 | 1.125 |
Measured value2 | 0.121 | 1.118 |
Measured value3 | 0.125 | 1.131 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Qu, W.; Zeng, H. Multi-Objective Optimization Design of Foamed Cement Mix Proportion Based on Response Surface Methodology. Buildings 2025, 15, 2782. https://doi.org/10.3390/buildings15152782
Liu K, Qu W, Zeng H. Multi-Objective Optimization Design of Foamed Cement Mix Proportion Based on Response Surface Methodology. Buildings. 2025; 15(15):2782. https://doi.org/10.3390/buildings15152782
Chicago/Turabian StyleLiu, Kailu, Wanying Qu, and Haoyang Zeng. 2025. "Multi-Objective Optimization Design of Foamed Cement Mix Proportion Based on Response Surface Methodology" Buildings 15, no. 15: 2782. https://doi.org/10.3390/buildings15152782
APA StyleLiu, K., Qu, W., & Zeng, H. (2025). Multi-Objective Optimization Design of Foamed Cement Mix Proportion Based on Response Surface Methodology. Buildings, 15(15), 2782. https://doi.org/10.3390/buildings15152782