Bridge Tower Warning Method Based on Improved Multi-Rate Fusion Under Strong Wind Action
Abstract
1. Introduction
2. Bridge Monitoring System and Preprocessing of Monitoring Data
2.1. Description of the Bridge Monitoring System
2.2. Repair Methods for Skipped Abnormal Monitoring Data
2.2.1. Repair Method for Skipped Abnormal Monitoring Data Based on Eliminating the Maximum Value
2.2.2. Repair Method for Skipped Abnormal Monitoring Data Based on Triple Standard Deviation
2.3. Repair Methods for Missing Abnormal Monitoring Data
2.3.1. Repair Method for Missing Abnormal Monitoring Data Based on Multiple Linear Regression
2.3.2. Repair Method for Missing Abnormal Monitoring Data Based on Interpolation
2.4. Statistics of Wind Speed Monitoring Data After Preprocessing
3. Improved Multi-Rate Fusion Method
3.1. Improved Multi-Rate Fusion Method Theory
3.2. Comparison of the Simulation Data Corrected by the Traditional Multi-Rate Fusion Method and the İmproved Multi-Rate Fusion Method
3.3. Improved Multi-Rate Fusion Method Corrects the Displacement and Acceleration Monitoring Data
4. Correlation Modeling of Lateral Wind Speed and Displacement of Bridge Towers
4.1. Correlation Analysis of Lateral Wind Speed and Displacement of Bridge Towers
4.2. Regression Model of Lateral Wind Speed and Displacement of Bridge Towers
5. Bridge Tower Damage Performance Warning
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, D.L.; Yang, D.H.; Yi, T.H.; Zhang, S.H.; Li, W.J.; Li, C. Anomaly diagnosis of stay cables based on vehicle-induced cable force sums. Eng. Struct. 2023, 289, 116239. [Google Scholar] [CrossRef]
- Zheng, X.W.; Hou, Y.Z.; Cheng, J.; Xu, S.; Wang, W.M. Rapid Damage Assessment and Bayesian-Based Debris Prediction for Building Clusters Against Earthquakes. Buildings 2025, 15, 1481. [Google Scholar] [CrossRef]
- Zheng, X.W.; Lv, H.L.; Fan, H.; Zhou, Y.B. Physics-Based Shear-Strength Degradation Model of Stud Connector with the Fatigue Cumulative Damage. Buildings 2022, 12, 2141. [Google Scholar] [CrossRef]
- Zheng, X.W.; Li, H.N.; Gardoni, P. Hybrid Bayesian-Copula-based risk assessment for tall buildings subject to wind loads considering various uncertainties. Reliab. Eng. Syst. Safe. 2023, 233, 109100. [Google Scholar] [CrossRef]
- Xue, M.S.; Dong, J.C.; You, R.Z.; Yi, T.H.; Luo, L.Y. Bridge Cable Force Identification Method Under the Phenomenon of Bimodal Fundamental Frequency in Vibration. Int. J. Struct. Stab. Dy. 2025, 2650207. [Google Scholar] [CrossRef]
- Pei, X.Y.; Hou, Y.; Huang, H.B.; Zheng, J.X. A Multi-Objective Sensor Placement Method Considering Modal Identification Uncertainty and Damage Detection Sensitivity. Buildings 2025, 15, 821. [Google Scholar] [CrossRef]
- Pei, X.Y.; Hou, Y.; Huang, H.B.; Zheng, J.X. A Deep Learning-Based Structural Damage Identification Method Integrating CNN-BiLSTM-Attention for Multi-Order Frequency Data Analysis. Buildings 2025, 15, 763. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, D.H.; Yi, T.H.; Zhang, G.H.; Han, J.G. Eliminating environmental and operational effects on structural modal frequency: A comprehensive review. Struct. Control Health Monit. 2022, 29, e3073. [Google Scholar] [CrossRef]
- Zheng, X.W.; Li, H.N.; Gardoni, P. Reliability-based design approach for high-rise buildings subject to earthquakes and strong winds. Eng. Struct. 2021, 244, 112771. [Google Scholar] [CrossRef]
- Tao, T.Y.; Wang, H.; Wen, X.H.; Fenerci, A. Flutter analysis of a long-span triple-tower suspension bridge under typhoon winds with non-uniform spanwise profile. Structures 2024, 68, 107156. [Google Scholar] [CrossRef]
- Zhao, L.; Cheng, Y.; Liu, S.Y.; Fang, G.S.; Cui, W.; Ge, Y.J. Instantaneous Power Balance Algorithm for Flutter Critical Wind Speed Prediction of Bridge Girders. J. Eng. Mech. 2024, 150, 04023120. [Google Scholar] [CrossRef]
- Wen, S.X.; Fang, G.S.; Chang, Y.; Zhao, L.; Ge, Y.J. Probability analysis of rain-wind induced vibration of stay cables due to tropical cyclone. J. Wind Eng. Ind. Aerod. 2024, 250, 105754. [Google Scholar] [CrossRef]
- Ye, X.W.; Ding, Y.; Wan, H.P. Statistical evaluation of wind properties based on long-term monitoring data. J. Civ. Struct. Health 2020, 10, 987–1000. [Google Scholar] [CrossRef]
- Ding, Y.; Ye, X.W.; Su, Y.H. Wind-induced fatigue life prediction of bridge hangers considering the effect of wind direction. Eng. Struct. 2025, 327, 119523. [Google Scholar] [CrossRef]
- Kim, S.; Cheon, H.; Jung, S.; Kim, H.K. Wind-Induced Accidents on the Transition Section of a Cable-Stayed Bridge: Cause and Remedy. J. Bridge Eng. 2024, 29, 05023013. [Google Scholar] [CrossRef]
- Kim, S.; Lee, S.H.; Kim, S. Pointwise multiclass vibration classification for cable-supported bridges using a signal-segmentation deep network. Eng. Struct. 2023, 279, 115599. [Google Scholar] [CrossRef]
- Huang, H.B.; Yi, T.H.; Li, H.N.; Liu, H. Sparse Bayesian Identification of Temperature-Displacement Model for Performance Assessment and Early Warning of Bridge Bearings. J. Struct. Eng. 2022, 148, 04022052. [Google Scholar] [CrossRef]
- Huang, H.B.; Yi, T.H.; Li, H.N. Anomaly Identification of Structural Health Monitoring Data Using Dynamic Independent Component Analysis. J. Comput. Civil Eng. 2021, 34, 04020025. [Google Scholar] [CrossRef]
- Salvatori, L.; Marra, A.M.; De Stefano, M.; Spinelli, P. Downburst wind loading on bridge decks through an analytical model. Eng. Struct. 2024, 319, 118802. [Google Scholar] [CrossRef]
- Parsa, G.; Seyed, S.K.; Andy, N. The Differential Evolution Algorithm. In Data Driven Methods for Civil Structural Health Monitoring and Resilience, 1st ed.; Mohammad, N., Carlo, R., Marco, D., Vasilis, S., Eds.; CRC Press: Boca Raton, FL, USA, 2023; pp. 1–44. [Google Scholar] [CrossRef]
- Gomez-Cabrera, A.; Escamilla-Ambrosio, P.J. Review of Machine-Learning Techniques Applied to Structural Health Monitoring Systems for Building and Bridge Structures. Appl. Sci. 2025, 12, 10754. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Wang, H.; Wan, H.P.; Mao, J.X.; Xu, Y.C. Anomaly detection of structural health monitoring data using the maximum likelihood estimation-based Bayesian dynamic linear model. Struct. Health Monit. 2021, 20, 2936–2952. [Google Scholar] [CrossRef]
- Su, X.; Mao, J.X.; Wang, H.; Gui, G. Reconstruction of Missing Vibration Data for Long-Span Bridges by Fusing Multiple-Frequency Information Utilizing LSTM with Bayesian Optimization. Int. J. Struct. Stab. Dy. 2025, 2650219. [Google Scholar] [CrossRef]
- Mao, J.X.; Su, X.; Gui, G.; Wang, H.; Fu, Y.G.; Li, D. ResNet transfer learning for accurate and efficient anomaly detection of bridge vibration data. Smart Struct. Syst. 2024, 34, 415–429. [Google Scholar] [CrossRef]
- Wang, X.W.; Zhao, Y.H.; Wang, Z.H.; Hu, N. An ultrafast and robust structural damage identification framework enabled by an optimized extreme learning machine. Mech. Syst. Signal Process. 2024, 216, 111509. [Google Scholar] [CrossRef]
- Huang, H.B.; Yi, T.H.; Li, H.N.; Liu, H. Strain-Based Performance Warning Method for Bridge Main Girders under Variable Operating Conditions. J. Bridge Eng. 2020, 25, 04020013. [Google Scholar] [CrossRef]
- Xu, Y.L.; Xia, Y. (Eds.) Structural Damage Detection. In Structural Health Monitoring of Long-Span Suspension Bridges, 1st ed.; CRC Press: London, UK, 2011; pp. 1–28. [Google Scholar] [CrossRef]
- Pal, A.; Nagarajaiah, S. Data fusion based on short-term memory Kalman filtering using intermittent-displacement and acceleration signal with a time-varying bias. Mech. Syst. Signal Process. 2024, 216, 111482. [Google Scholar] [CrossRef]
- Fu, X.; Zhang, Q.; Ren, L.; Li, H.N. Global Displacement Reconstruction of Lattice Tower Using Limited Acceleration and Strain Sensors. Int. J. Struct. Stab. Dyn. 2024, 24, 2450242. [Google Scholar] [CrossRef]
- Smyth, A.; Wu, M. Multi-rate Kalman filtering for the data fusion of displacement and acceleration response measurements in dynamic system monitoring. Mech. Syst. Signal Process. 2007, 21, 706–723. [Google Scholar] [CrossRef]
- Yang, T.Y.; Liu, K.; Nie, G.B. Improved Time Domain Substructural Damage Identification Method on Large-Span Spatial Structure. Shock. Vib. 2021, 2021, 1069470. [Google Scholar] [CrossRef]
- Nie, G.B.; Yang, T.Y.; Zhi, X.D.; Liu, K. Damage evaluation of square steel tubes at material and component levels based on a cyclic loading experiment. Adv. Mech. Eng. 2018, 10, 1687814018797786. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, D.H.; Yi, T.H. Displacement model error-based method for symmetrical cable-stayed bridge performance warning after eliminating variable load effects. J. Civ. Struct. Health 2022, 12, 81–99. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, D.H.; Zhou, Y.Z.; Yi, T.H. Cable effective length Model Error-based Bridge Performance Warning Method under Thermal Action. Adv. Struct. Eng. 2021, 25, 306–320. [Google Scholar] [CrossRef]
- Wang, W.N.; Gong, J.X. New relaxation function and age-adjusted effective modulus expressions for creep analysis of concrete structures. Eng. Struct. 2019, 188, 1–10. [Google Scholar] [CrossRef]
- Wang, W.N.; Gong, J.X.; Wu, X.Y.; Wang, X.C. A general equation for estimation of time-dependent prestress losses in prestressed concrete members. Structures 2023, 55, 278–293. [Google Scholar] [CrossRef]
Monitoring Subject | Position | Serial Number | Sampling Frequency (Hz) | Unit |
---|---|---|---|---|
Wind speed | North tower | FS01 | 1 | |
South tower | FS02 | 1 | ||
Wind direction | North tower | FD01 | 1 | |
South tower | FD02 | 1 | ||
Displacement | North tower | GPS01 | 1 | |
South tower | GPS02 | 1 | ||
Acceleration | North tower | ACC01 | 20 | |
South tower | ACC02 | 20 |
Month | Statistical Analysis of Wind Speeds in 2014 (m/s) | Statistical Analysis of Wind Speeds in 2015 (m/s) | ||||
---|---|---|---|---|---|---|
AWS | 10 Min AWS | IWS | AWS | 10 Min AWS | IWS | |
1 | 3.16 | 9.42 | 15.66 | 3.19 | 9.46 | 15.73 |
2 | 4.19 | 10.26 | 16.01 | 4.25 | 10.35 | 16.21 |
3 | 3.52 | 9.11 | 17.39 | 3.71 | 9.21 | 17.45 |
4 | 3.37 | 11.16 | 17.34 | 3.26 | 11.16 | 17.21 |
5 | 2.48 | 7.50 | 12.34 | 2.50 | 7.50 | 12.46 |
6 | 2.97 | 8.08 | 12.88 | 2.79 | 8.12 | 12.70 |
7 | 2.60 | 15.35 | 23.07 | 2.55 | 15.45 | 20.12 |
8 | 3.05 | 11.97 | 15.75 | 3.15 | 11.77 | 15.15 |
9 | 3.45 | 8.55 | 15.94 | 3.46 | 8.56 | 15.66 |
10 | 3.19 | 9.72 | 16.09 | 3.21 | 9.89 | 16.21 |
11 | 3.20 | 8.23 | 15.44 | 3.26 | 8.11 | 15.61 |
12 | 3.17 | 9.95 | 17.15 | 3.22 | 9.81 | 17.31 |
Methods | Measured Value | Multi-Rate Fusion | Smoothed |
---|---|---|---|
Traditional multi-rate fusion | Displacement | 0.128 | 0.116 |
Velocity | 0.229 | 0.213 | |
Improved multi-rate fusion | Displacement | 0.032 | 0.027 |
Velocity | 0.201 | 0.190 | |
Acceleration | 1.247 | 1.124 |
Position | Correlation Coefficient | |||
---|---|---|---|---|
Before Fusion | After Fusion | Difference Value | Percentage Increase | |
North tower | 0.753 | 0.818 | 0.065 | 8.63% |
South tower | 0.781 | 0.842 | 0.061 | 7.81% |
Position | Statistical Significance p-Value | Mean Absolute Error (MAE) | ||
---|---|---|---|---|
Before Fusion | After Fusion | Before Fusion | After Fusion | |
North tower | 6.06 | 5.16 | ||
South tower | 6.17 | 5.23 |
Position | ||||
---|---|---|---|---|
Before Fusion | After Fusion | Difference Value | Percentage Increase | |
North tower | 0.567 | 0.669 | 0.102 | 17.99% |
South tower | 0.610 | 0.709 | 0.099 | 16.23% |
Position | Fitting Equations | Width of Confidence Interval | |||
---|---|---|---|---|---|
Before Fusion | After Fusion | Difference Value | Percentage Decrease | ||
North tower | D = 2.243 V − 3.859 | 4.676 | 4.233 | 0.443 | 9.47% |
South tower | D = 2.340 V − 4.086 | 5.281 | 4.853 | 0.428 | 8.10% |
North Bridge Tower Degradation Simulation (mm) | South Bridge Tower Degradation Simulation (mm) | ||||||
---|---|---|---|---|---|---|---|
Case | Before Fusion | Case | After Fusion | Case | Before Fusion | Case | After Fusion |
1 | = 0 | 7 | = 0 | 13 | = 0 | 19 | = 0 |
2 | = 5 | 8 | = 5 | 14 | = 5 | 20 | = 5 |
3 | = 10 | 9 | = 10 | 15 | = 10 | 21 | = 10 |
4 | = 15 | 10 | = 15 | 16 | = 15 | 22 | = 15 |
5 | = 20 | 11 | = 20 | 17 | = 20 | 23 | = 20 |
6 | = 25 | 12 | =25 | 18 | = 25 | 24 | = 25 |
Case | North Tower Warning Rate Before Fusion (mm) | Case | North Tower Warning Rate After Fusion (mm) | ||||
---|---|---|---|---|---|---|---|
= 0.05 | = 0.01 | = 0.003 | = 0.05 | = 0.01 | = 0.003 | ||
1 | 0 | 0 | 0 | 7 | 0 | 0 | 0 |
2 | 5.71 | 0 | 0 | 8 | 11.43 | 8.57 | 5.71 |
3 | 31.43 | 20.00 | 17.14 | 9 | 31.43 | 31.43 | 22.86 |
4 | 48.57 | 40.00 | 40.00 | 10 | 68.57 | 62.86 | 62.86 |
5 | 74.29 | 71.43 | 60.00 | 11 | 88.57 | 88.57 | 85.71 |
6 | 91.43 | 85.71 | 82.86 | 12 | 100 | 100 | 100 |
Case | South Tower Warning Rate Before Fusion (mm) | Case | South Tower Warning Rate After Fusion (mm) | ||||
---|---|---|---|---|---|---|---|
= 0.05 | = 0.01 | = 0.003 | = 0.05 | = 0.01 | = 0.003 | ||
13 | 0 | 0 | 0 | 19 | 0 | 0 | 0 |
14 | 8.57 | 2.857 | 0 | 20 | 8.57 | 5.71 | 5.71 |
15 | 34.29 | 25.71 | 20.00 | 21 | 31.43 | 31.43 | 22.86 |
16 | 51.43 | 42.86 | 40.00 | 22 | 65.71 | 60.00 | 57.14 |
17 | 74.29 | 71.43 | 68.57 | 23 | 88.57 | 88.57 | 82.86 |
18 | 88.57 | 82.86 | 82.86 | 24 | 100 | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Y.; Wang, Y.; Wang, L.-N.; Wang, W.-N.; Yang, T.-Y. Bridge Tower Warning Method Based on Improved Multi-Rate Fusion Under Strong Wind Action. Buildings 2025, 15, 2733. https://doi.org/10.3390/buildings15152733
Shi Y, Wang Y, Wang L-N, Wang W-N, Yang T-Y. Bridge Tower Warning Method Based on Improved Multi-Rate Fusion Under Strong Wind Action. Buildings. 2025; 15(15):2733. https://doi.org/10.3390/buildings15152733
Chicago/Turabian StyleShi, Yan, Yan Wang, Lu-Nan Wang, Wei-Nan Wang, and Tao-Yuan Yang. 2025. "Bridge Tower Warning Method Based on Improved Multi-Rate Fusion Under Strong Wind Action" Buildings 15, no. 15: 2733. https://doi.org/10.3390/buildings15152733
APA StyleShi, Y., Wang, Y., Wang, L.-N., Wang, W.-N., & Yang, T.-Y. (2025). Bridge Tower Warning Method Based on Improved Multi-Rate Fusion Under Strong Wind Action. Buildings, 15(15), 2733. https://doi.org/10.3390/buildings15152733