A Study of the Fractal Bending Behavior of Timoshenko Beams Using a Fourth-Order Single Equation
Abstract
1. Introduction
2. Theoretical Aspects
2.1. Mechanical Implications
2.2. Generalization from Integer to Fractal Space
2.3. Scope and Limitations
3. Fundamental Definitions of Fractal Continuum Calculus
3.1. Fractal Continuum Calculus
- i
- A norm fractal continuum , where , and the transformation of the integer coordinates to the fractal coordinates is given by the proportionality constant
- ii
- The distance between two points is defined as , where .
- iii
- The fractal continuum gradient , where denotes basis vectors and
- iv
3.2. Fractal Continuum Elasticity
- (a)
- The momentum conservation equation is
- (b)
- The strain tensor is defined in fractal continuum dimensions as follows [18]:
- (c)
- The constitutive relationship between stress and strain for a linear elastic isotropic domain is given as , where the term in parentheses is the deformation tensor , where and are the Lamé parameters of the fractal continuum and the components of the fractal displacement vectors can be expressed in Cartesian coordinates as
4. Timoshenko Beam Fourth-Order Fractal Equation
Deduction in Fractal Space
5. Bending and Rotation on Timoshenko Fractal Beams
Fractal Beams
- 1
- For the simply supported beam with distributed load,
- 2
- For the cantilever fractal beam with load at the free end,
6. Discussion
7. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Falconer, K. Fractal Geometry: Mathematical Foundations and Applications; John Wiley and Sons, Ltd.: Chichester, UK, 2014. [Google Scholar]
- Damian-Adame, L.; Gutiérrez-Torres, C.; Figueroa-Espinoza, B.; Barbosa-Saldaña, J.; Jiménez-Bernal, J. A Mechanical Picture of Fractal Darcy’s Law. Fractal Fract. 2023, 7, 639. [Google Scholar] [CrossRef]
- Samayoa, D.; Damián, L.; Kriyvko, A. Map of bending problem for self-similar beams into fractal continuum using Euler-Bernoulli principle. Fractal Fract. 2022, 6, 230. [Google Scholar] [CrossRef]
- Samayoa, D.; Kriyvko, A.; Velázquez, G.; Mollinedo, H. Fractal Continuum Calculus of Functions on Euler-Bernoulli Beam. Fractal Fract. 2022, 6, 552. [Google Scholar] [CrossRef]
- Golmankhaneh-Amirreza, K.; Tunc, S.; Schlichtinger, A.M.; Asanza, D.M.; Golmankhaneh, A.K. Modeling tumor growth using fractal calculus: Insights into tumor dynamics. Biosystems 2024, 235, 105071. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Luo, X.; Luan, W.-L. Multi-Viewpoint Assessment of Urban Waterfront Skylines: Fractal and Spatial Hierarchy Analysis in Shanghai. Buildings 2025, 15, 1407. [Google Scholar] [CrossRef]
- Huang, Y.; Gong, A.; Jin, Z.; Peng, Y.; Shao, S.; Yong, K. Synergistic Effects of Alkali Activator Dosage on Carbonation Resistance and Microstructural Evolution of Recycled Concrete: Insights from Fractal Analysis and Optimal Threshold Identification. Buildings 2025, 15, 1742. [Google Scholar] [CrossRef]
- Golmankhaneh, A. Fractal Calculus and Its Applications; World Scientific: London, UK, 2022. [Google Scholar]
- Zhang, Y.; Sun, H.; Stowell, H.; Zayernouri, M.; Hansen, S. A review of applications of fractional calculus in Earth system dynamics. Chaos Solitons Fractals 2017, 102, 29–46. [Google Scholar] [CrossRef]
- Parvate, A.; Satin, S.; Gangal, A.D. Calculus on fractal curves in Rn. Fractals 2011, 19, 15–27. [Google Scholar] [CrossRef]
- Tarasov, V.E. General Fractional Vector Calculus. Phys. Lett. A 2005, 336, 167–178. [Google Scholar] [CrossRef]
- Balankin, A.S.; Elizarraraz, B.E. Hydrodynamics of fractal continuum flow. Phys. Rev. E 2012, 85, 025302(R). [Google Scholar] [CrossRef]
- Balankin, A.S.; Elizarraraz, B.E. Map of fluid flow in fractal porous medium into fractal continuum flow. Phys. Rev. E 2012, 85, 056314. [Google Scholar] [CrossRef]
- Stempin, P.; Sumelka, W. Space-fractional Euler-Bernoulli beam model—Theory and identification for silver nanobeam bending. Int. J. Mech. Sci. 2020, 186, 105902. [Google Scholar] [CrossRef]
- Lazopoulos, K.A.; Lazopoulos, A.K. On fractional bending of beams with A-fractional derivative. Arch. Appl. Mech. 2020, 90, 573–584. [Google Scholar] [CrossRef]
- Stempin, P.; Sumelka, W. Formulation and experimental validation of space-fractional Timoshenko beam model with functionally graded materials effects. Comput. Mech. 2021, 68, 697–708. [Google Scholar] [CrossRef]
- Wang, C.M.; Reddy, J.N.; Lee, K.H. Shear Deformable Beam and Plates; Elsevier: Oxford, UK, 2000. [Google Scholar]
- Samayoa, D.; Alcántara, A.; Mollinedo, H.; Barrera-Lao, F.; Torres-SanMiguel, C. Fractal Continuum Mapping Applied to Timoshenko Beams. Mathematics 2023, 11, 3492. [Google Scholar] [CrossRef]
- Balankin, A.S. A continuum framework for mechanics of fractal materials I: From fractional space to continuum with fractal metric. Eur. Phys. J. B 2015, 88, 90. [Google Scholar] [CrossRef]
- Shan, J.; Zhuang, C.; Loong, C.N. Parametric identification of Timoshenko-beam model for shear-wall structures using monitoring data. Mech. Syst. Signal Process. 2023, 189, 110100. [Google Scholar] [CrossRef]
- Ochsner, A. Classical Beam Theories of Structural Mechanics; Springer Nature: Cham, Switzerland, 2021. [Google Scholar]
- Ahmed, A.; Abdussalam, M. Euler-Bernoulli and Timoshenko Beam Theories Analytical and Numerical Comprehensive Revision. Eur. J. Eng. Technol. Res. 2021, 6, 20–32. [Google Scholar] [CrossRef]
- Li, X.F. A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler–Bernoulli beams. J. Sound Vib. 2008, 318, 1210–1229. [Google Scholar] [CrossRef]
- Jiang, L.; Yan, Z. Timoshenko beam model for static bending of nanowires with surface effects. Phys. E Low-Dimens. Syst. Nanostruct. 2010, 42, 2274–2279. [Google Scholar] [CrossRef]
- Doeva, O.; Masjedi, P.K.; Weaver, P.M. Exact analytical solution for static deflection of Timoshenko composite beams on two-parameter elastic foundations. Thin-Walled Struct. 2022, 172, 108812. [Google Scholar] [CrossRef]
- Pirrotta, A.; Cutrona, S.; Lorenzo, S.D.; Matteo, A.D. Fractional visco-elastic Timoshenko beam deflection via single equation. Int. J. Numer. Methods Eng. 2015, 104, 869–886. [Google Scholar] [CrossRef]
- Lu, G.; Liu, X.; Cai, G.; Sun, J.; Zhu, D. Hybrid control of attitude maneuver and structural vibration for a large phased array antenna satellite. J. Frankl. Inst. 2024, 361, 398–417. [Google Scholar] [CrossRef]
- Guzman-Acevedo, G.M.; Vazquez-Becerra, G.E.; Quintana-Rodriguez, J.A.; Gaxiola-Camacho, J.R.; Anaya-Diaz, M.; Mediano-Martinez, J.C.; Viramontes, F.J.C. Structural health monitoring and risk assessment of bridges integrating InSAR and a calibrated FE model. Structures 2024, 63, 106353. [Google Scholar] [CrossRef]
- Relaño, C.; Muñoz, J.; Monje, C.A.; Martínez, S.; González, D. Modeling and Control of a Soft Robotic Arm Based on a Fractional Order Control Approach. Fractal Fract. 2023, 7, 8. [Google Scholar] [CrossRef]
- Liu, L.; Jiang, L.; Zhou, W.; Liu, X.; Feng, Y. An Analytical Solution for the Geometry of High-Speed Railway CRTS III Slab Ballastless Track. Mathematics 2022, 10, 3306. [Google Scholar] [CrossRef]
- Chen, K.; Wang, R.; Niu, Z.; Wang, P.; Sun, T. Topology design and performance optimization of six-limbs 5-DOF parallel machining robots. Mech. Mach. Theory 2023, 185, 105333. [Google Scholar] [CrossRef]
- Luo, W.; Wang, B.; Wang, W.; Li, Q.; Liu, X. Track structure influence analysis on metro bogie frame dynamic stress with a rigid-flexible coupled model. Eng. Fail. Anal. 2025, 171, 109357. [Google Scholar] [CrossRef]
- Kryvko, A.; González, E.J.B.; Samayoa, D. Failure analysis of anchorage of cable-stayed bridge with internal defects. Sci. Prog. 2021, 104, 368504211041481. [Google Scholar] [CrossRef]
- López, J.A.; Carrión, F.J.; Quintana, J.A.; Samayoa, D.; Lomelí, M.G.; Orozco, P.R. Verification of the Ultrasonic Qualification for Structural Integrity of Partially Concrete Embedded Steel Elements. In Proceedings of the XVII International Materials Research Congress, Cancún, Mexico, 18–21 August 2008; Advanced Materials Research. Trans Tech Publications Ltd.: Zurich, Switzerland, 2009; Volume 65, pp. 69–78. [Google Scholar] [CrossRef]
- Liu, Z.; Tang, Z.; Li, J.; Hu, Z.; Qin, X.; Shi, B.; Mao, S.; Qiu, Y.; Zhu, Z. Tri-cortical pedicle screw fixation in the most cranial instrumented segment to prevent proximal junctional kyphosis. Spine J. 2025, 1–10. [Google Scholar] [CrossRef]
- Carpinteri, A.; Pugno, N.; Sapora, A. Asymptotic analysis of a von Koch beam. Chaos Soliton Fractals 2009, 41, 795–802. [Google Scholar] [CrossRef]
- Loong, C.; Dimitrakopoulos, E. The static stability of evolving fractal beams as a dynamical system. Proc. R. Soc. A 2025, 481, 48120240918. [Google Scholar] [CrossRef]
- Carpinteri, A.; Pugno, N.; Sapora, A. Free vibration analysis of a von Koch beam. Int. J. Solids Struct. 2010, 47, 1555–1562. [Google Scholar] [CrossRef]
- Carpinteri, A.; Pugno, N.; Sapora, A. Dynamic response of damped von Koch antennas. J. Vib. Control 2011, 17, 733–740. [Google Scholar] [CrossRef]
- Méndez-Márquez, E.; Reyes de Luna, E.; De León, D.; Carrión-Viramontes, F.J.; Kryvko, A.; Samayoa, D. Free vibration analysis on fractal beams. Eur. J. Mech. A/Solids 2025, 114, 105719. [Google Scholar] [CrossRef]
- Balankin, A.S. Stresses and strains in a deformable fractal medium and in its fractal continuum model. Phys. Lett. A 2013, 377, 2535–2541. [Google Scholar] [CrossRef]
Parameter | |||
---|---|---|---|
3 | 2.98 | 2.9317 | |
2 | 1.99 | 1.9746 | |
1 | 0.97 | 0.9571 | |
ℓ | 0 | ||
2.70 | 2.58 | 2.23 | |
() | 675 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alcántara, A.; Gutiérrez-Torres, C.d.C.; Jiménez-Bernal, J.A.; Barbosa-Saldaña, J.G.; Pascual-Francisco, J.B.; Samayoa, D. A Study of the Fractal Bending Behavior of Timoshenko Beams Using a Fourth-Order Single Equation. Buildings 2025, 15, 2172. https://doi.org/10.3390/buildings15132172
Alcántara A, Gutiérrez-Torres CdC, Jiménez-Bernal JA, Barbosa-Saldaña JG, Pascual-Francisco JB, Samayoa D. A Study of the Fractal Bending Behavior of Timoshenko Beams Using a Fourth-Order Single Equation. Buildings. 2025; 15(13):2172. https://doi.org/10.3390/buildings15132172
Chicago/Turabian StyleAlcántara, Alexandro, Claudia del C. Gutiérrez-Torres, José Alfredo Jiménez-Bernal, Juan Gabriel Barbosa-Saldaña, Juan B. Pascual-Francisco, and Didier Samayoa. 2025. "A Study of the Fractal Bending Behavior of Timoshenko Beams Using a Fourth-Order Single Equation" Buildings 15, no. 13: 2172. https://doi.org/10.3390/buildings15132172
APA StyleAlcántara, A., Gutiérrez-Torres, C. d. C., Jiménez-Bernal, J. A., Barbosa-Saldaña, J. G., Pascual-Francisco, J. B., & Samayoa, D. (2025). A Study of the Fractal Bending Behavior of Timoshenko Beams Using a Fourth-Order Single Equation. Buildings, 15(13), 2172. https://doi.org/10.3390/buildings15132172