Climate-Conscious Sustainable Practices in the Romanian Building Sector
Abstract
:1. Introduction
2. Methodology of Research
Climate Policy Framework in Romania
3. The Impact of the Built Environment on Accelerating Global Warming: Climate-Responsive Architecture
4. Architecture Adapted to Climate Change
4.1. Passive Design Adapted to Climate Change and Energy-Efficient Buildings
Implementation of Passive Design Principles in Romania
4.2. Smart Materials
Emerging Trends and Romanian Implementation of Smart Materials
4.3. The Supply of Local Materials: The Circular Economy and Off-Site Construction
Examples from Romanian Practice
4.4. Biophilic Design
Biophilic Design in Romania Targeting Local Initiatives and Best Practices
4.5. Durable and Adaptive Design
Romanian Perspectives on Durable and Adaptive Architecture
4.6. Smart Water Management
Romanian Practices Targeting Smart Water Management
4.7. Reversible Design: Adaptive Reuse and Reuse of Buildings
Romanian Practices Targeting Reversible Design
4.8. Rehabilitation—A Sustainable Strategy for the Preservation of the Built Environment
Romanian Practices Targeting Retrofitting Concepts
5. Measures That Can Be Applied in Landscape and Infrastructure
6. Future Climate Projections
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GHG | Greenhouse gas emissions |
CO2 | Carbon dioxide |
CH4 | Methane |
EU | European Union |
ANM | National Meteorological Administration |
ZMO | Oradea Metropolitan Area |
nZEB | Nearly zero-energy building |
BREEAM | Building Research Establishment Environmental Assessment Method |
LEED | Leadership in Energy and Environmental Design |
LCCE | Lifecycle carbon emissions |
LCC | Lifecycle cost |
IDH | Indoor thermal discomfort duration |
AI | Artificial intelligence |
References
- Stephen, S.; Aigbavboa, C.; Oke, A. Revolutionising Green Construction: Harnessing Zeolite and AI-Driven Initiatives for Net-Zero and Climate-Adaptive Buildings. Buildings 2025, 15, 885. [Google Scholar] [CrossRef]
- IPCC Sixth Assessment Report. Climate Change 2021: The Physical Science Basis. Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 1 May 2025).
- Cruces-Correa, M.; Pardo-Ferreira, M.C.; Suarez-Cebadsazor, M.; Rubio-Romero, J.C. Climate Change and the Construction Sector. Unveiling the Impact of Rising Temperatures on Construction Workers: An Introduction to the Systematic Literature Review Protocol. In Proceedings of the Organizational Engineering, Coping with Complexity; Carrasco-Gallego, R., Moreno-Serna, J., Gutierrez, M., Avilés-Palacios, C., Eds.; Springer: Cham, Switzerland, 2025; pp. 519–524. [Google Scholar]
- Tajuddeen, I.; Sajjadian, S.M. Climate Change and the Built Environment—A Systematic Review. Environ. Dev. Sustain. 2024. [Google Scholar] [CrossRef]
- Gurney, K.R.; Kılkış, Ş.; Seto, K.C.; Lwasa, S.; Moran, D.; Riahi, K.; Keller, M.; Rayner, P.; Luqman, M. Greenhouse Gas Emissions from Global Cities under SSP/RCP Scenarios, 1990 to 2100. Glob. Environ. Change 2022, 73, 102478. [Google Scholar] [CrossRef]
- Urban Content of NDCs: Local Climate Action Explored through in-Depth Country Analyses: 2024 Report. Available online: https://unhabitat.org/urban-content-of-ndcs-local-climate-action-explored-through-in-depth-country-analyses-2024-report?utm_source=chatgpt.com (accessed on 2 May 2025).
- NOAA’s Global Greenhouse Gas Reference Network. Available online: https://www.climate.gov/ghg/current-levels (accessed on 2 May 2025).
- Filonchyk, M.; Peterson, M.P.; Zhang, L.; Hurynovich, V.; He, Y. Greenhouse Gases Emissions and Global Climate Change: Examining the Influence of CO2, CH4, and N2O. Sci. Total Environ. 2024, 935, 173359. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Climate Change Impacts on the Built Environment. Available online: https://www.epa.gov/climateimpacts/climate-change-impacts-built-environment#2foot (accessed on 2 May 2025).
- Ministry of Environment, Waters and Forests Romania, Climate Change. Available online: https://mmediu.ro/categorie/schimbari-climatice/ (accessed on 2 May 2025).
- National Meteorological Administration (ANMH). Annual Report 2022. Available online: https://www.meteoromania.ro/despre-noi/raport-anual/raport-anual-2022/ (accessed on 29 April 2024).
- Intergovernmental Panel on Climate Change. Climate Change 2023. Synthesis Report. Available online: https://www.ipcc.ch/report/ar6/syr/ (accessed on 29 April 2024).
- Department of Climate and Sustainability, Presidential Administration of Romania, Executive Summary of the Report Limiting Climate Change and Its Impact: An Integrated Approach for Romania. Available online: https://www.presidency.ro/files/userfiles/2023ExecutivesummaryinEnglish.pdf (accessed on 29 April 2024).
- Ahmed, N.; Abdel-Hamid, M.; Abd El-Razik, M.M.; El-Dash, K.M. Impact of Sustainable Design in the Construction Sector on Climate Change. Ain Shams Eng. J. 2021, 12, 1375–1383. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, C.Z.; Shen, G.Q.; Teng, Y.; Wu, H.; Liu, R. Managing Carbon Emissions in Construction: Current Status and Emerging Trends. Renew. Sustain. Energy Rev. 2025, 211, 115237. [Google Scholar] [CrossRef]
- Romania Signature and Ratification of the United Nations Framework Convention on Climate Change by Law No. 24/1994. Available online: https://hub.climate-governance.org/Primer/Geography/ro (accessed on 7 June 2025).
- LAW No. 3 of February 2, 2001 for the Ratification of the Kyoto Protocol to the United Nations Framework Convention on Climate Change, Adopted on December 11, 1997. Available online: https://legislatie.just.ro/Public/DetaliiDocumentAfis/26717 (accessed on 7 June 2025).
- Romania’s Initial Report under the Kyoto Protocol. Available online: https://unfccc.int/files/national_reports/initial_reports_under_the_kyoto_protocol/application/pdf/romanias_initial_report_under_the_kyoto_protocol.pdf (accessed on 7 June 2025).
- The Kyoto Protocol. Available online: https://climate.ec.europa.eu/eu-action/international-action-climate-change/kyoto-protocol_en (accessed on 7 June 2025).
- National Strategy on Climate Change of Romania 2005–2007. Available online: https://unfccc.int/resource/docs/nap/romadd1.pdf (accessed on 7 June 2025).
- Romania’s Third National Communication on Climate Change under the United Nations Framework Convention on Climate Change. Available online: https://unfccc.int/resource/docs/natc/romnc3.pdf (accessed on 7 June 2025).
- The National Strategy of Romania on Climate Change 2013–2020. Available online: https://climate-laws.org/documents/the-national-strategy-of-romania-on-climate-change-2013-2020_05ce?id=the-national-climate-change-strategy-2013-2020_bdf7 (accessed on 7 June 2025).
- Romania: Climate Change and Low Carbon Green Growth Program. Available online: https://www.worldbank.org/en/country/romania/brief/romania-climate-change-and-low-carbon-green-growth-program (accessed on 7 June 2025).
- The Paris Agreement. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement (accessed on 7 June 2025).
- Romania Signature and Ratification of the Paris Agreement by Law No. 57/2017. Available online: https://hub.climate-governance.org/Primer/Geography/ro (accessed on 7 June 2025).
- European Green Deal National Energy & Climate Plans. Available online: https://e-nergia.ro/wp-content/uploads/2020/10/summary_of_swd_assessment_necp_romania_en.pdf (accessed on 7 June 2025).
- Romanian Implementation of the National Integrated Plan for Energy and Climate Change. Available online: https://dih.green/romania-on-the-path-to-sustainability-an-analysis-of-the-national-integrated-plan-for-energy-and-climate-change-2025-2030/#:~:text=ForRomania%2CtheNationalIntegratedPlanforEnergy,andthespecificneedsofthelocaleconomy (accessed on 7 June 2025).
- Long Term Strategy of Romania. Available online: https://ec.europa.eu/clima/sites/lts/lts_ro_en.pdf (accessed on 7 June 2025).
- Romanian Adoption of the National Strategy on Adaptation to Climate Change. Available online: https://www.sustainability-today.ro/index.php/2024/08/19/romania-approved-the-national-strategy-on-adaptation-to-climate-change-for-2024-2030/ (accessed on 7 June 2025).
- Romanian National Strategy for Disaster Risk Reduction 2024-2035. Available online: https://climate-laws.org/documents/national-strategy-for-disaster-risk-reduction-2024-2035_68c5?id=national-strategy-for-disaster-risk-reduction-2024-2035_cdb6 (accessed on 7 June 2025).
- Cheval, S.; Bulai, A.; Croitoru, A.-E.; Dorondel, Ș.; Micu, D.; Mihăilă, D.; Sfîcă, L.; Tișcovschi, A. Climate Change Perception in Romania. Theor. Appl. Climatol. 2022, 149, 253–272. [Google Scholar] [CrossRef] [PubMed]
- Panton, A.J. Making Romania Fit and Resilient for the Net-Zero Transition; IMF Country Report No 23/396; International Monetary Fund: Washignton, DC, USA, 2023. [Google Scholar]
- Fenner, A.E.; Kibert, C.J.; Woo, J.; Morque, S.; Razkenari, M.; Hakim, H.; Lu, X. The Carbon Footprint of Buildings: A Review of Methodologies and Applications. Renew. Sustain. Energy Rev. 2018, 94, 1142–1152. [Google Scholar] [CrossRef]
- Andrić, I.; Koc, M.; Al-Ghamdi, S.G. A Review of Climate Change Implications for Built Environment: Impacts, Mitigation Measures and Associated Challenges in Developed and Developing Countries. J. Clean. Prod. 2019, 211, 83–102. [Google Scholar] [CrossRef]
- Malmqvist, T.; Nehasilova, M.; Moncaster, A.; Birgisdottir, H.; Nygaard Rasmussen, F.; Houlihan Wiberg, A.; Potting, J. Design and Construction Strategies for Reducing Embodied Impacts from Buildings—Case Study Analysis. Energy Build. 2018, 166, 35–47. [Google Scholar] [CrossRef]
- Chen, C.X.; Pierobon, F.; Ganguly, I. Life Cycle Assessment (LCA) of Cross-Laminated Timber (CLT) Produced in Western Washington: The Role of Logistics and Wood Species Mix. Sustainability 2019, 11, 1278. [Google Scholar] [CrossRef]
- Mishra, V.; Sadhu, A. Towards the Effect of Climate Change in Structural Loads of Urban Infrastructure: A Review. Sustain. Cities Soc. 2023, 89, 104352. [Google Scholar] [CrossRef]
- Oruc, S.; Dikbas, H.A.; Gumus, B.; Yucel, I. The Impact of Climate Change on Construction Activity Performance. Buildings 2024, 14, 372. [Google Scholar] [CrossRef]
- The European Green Deal Goals and Benefits. Available online: https://www.europarl.europa.eu/topics/en/article/20200618STO81513/green-deal-key-to-a-climate-neutral-and-sustainable-eu (accessed on 30 April 2024).
- Building Materials And The Climate: Constructing A New Future. Available online: https://www.unep.org/resources/report/building-materials-and-climate-constructing-new-future (accessed on 30 April 2024).
- International Energy Agency. World Energy Outlook 2023. Report. Available online: https://www.iea.org/reports/world-energy-outlook-2023 (accessed on 30 April 2024).
- Bouramdane, A.-A. Shaping Resilient Buildings and Cities: Climate Change Impacts, Metrics, and Strategies for Mitigation and Adaptation. Inf. Syst. Smart City 2024, 3, 190. [Google Scholar] [CrossRef]
- Brugger, H.; Eichhammer, W.; Mikova, N.; Dönitz, E. Energy Efficiency Vision 2050: How Will New Societal Trends Influence Future Energy Demand in the European Countries? Energy Policy 2021, 152, 112216. [Google Scholar] [CrossRef]
- Hildebrandt, J.; Hagemann, N.; Thrän, D. The Contribution of Wood-Based Construction Materials for Leveraging a Low Carbon Building Sector in Europe. Sustain. Cities Soc. 2017, 34, 405–418. [Google Scholar] [CrossRef]
- van Ellen, L.A.; Bridgens, B.N.; Burford, N.; Heidrich, O. Rhythmic Buildings- a Framework for Sustainable Adaptable Architecture. Build. Environ. 2021, 203, 108068. [Google Scholar] [CrossRef]
- Lamberti, G.; Contrada, F.; Kindinis, A. Exploring Adaptive Strategies to Cope with Climate Change: The Case Study of Le Corbusier’s Modern Architecture Retrofitting. Energy Build. 2024, 302, 113756. [Google Scholar] [CrossRef]
- Warren-Myers, G.; Moosavi, S.; Hurlimann, A.; Raisbeck, P.; Bush, J.; March, A.; Browne, G. Barriers to and Facilitators of Climate Change Action in Architecture Practice. J. Clean. Prod. 2024, 469, 143149. [Google Scholar] [CrossRef]
- Hu, S.; Cabeza, L.F.; Yan, D. Review and Estimation of Global Halocarbon Emissions in the Buildings Sector. Energy Build. 2020, 225, 110311. [Google Scholar] [CrossRef]
- Liu, Z.; Li, W.; Chen, Y.; Luo, Y.; Zhang, L. Review of Energy Conservation Technologies for Fresh Air Supply in Zero Energy Buildings. Appl. Therm. Eng. 2019, 148, 544–556. [Google Scholar] [CrossRef]
- Roux, C.; Schalbart, P.; Assoumou, E.; Peuportier, B. Integrating Climate Change and Energy Mix Scenarios in LCA of Buildings and Districts. Appl. Energy 2016, 184, 619–629. [Google Scholar] [CrossRef]
- European Commission: Directorate-General for Climate Action. EU-Level Technical Guidance on Adapting Buildings to Climate Change—Best Practice Guidance; Publications Office of the European Union: Luxembourg, 2023. [Google Scholar]
- Saifudeen, A.; Mani, M. Adaptation of Buildings to Climate Change: An Overview. Front. Built Environ. 2024, 10, 1327747. [Google Scholar] [CrossRef]
- Bamdad, K. Cool Roofs: A Climate Change Mitigation and Adaptation Strategy for Residential Buildings. Build. Environ. 2023, 236, 110271. [Google Scholar] [CrossRef]
- Machard, A.; Inard, C.; Alessandrini, J.M.; Devys-Peyre, F.; Martinez, S.; Ribéron, J.; Pelé, C. Climate Change Influence on Buildings Dynamic Thermal Behavior during Summer Overheating Periods: An in-Depth Sensitivity Analysis. Energy Build. 2023, 284, 112758. [Google Scholar] [CrossRef]
- Rodrigues, E.; Fernandes, M.S.; Carvalho, D. Future Weather Generator for Building Performance Research: An Open-Source Morphing Tool and an Application. Build. Environ. 2023, 233, 110104. [Google Scholar] [CrossRef]
- Lamberti, G.; Leccese, F.; Salvadori, G.; Contrada, F.; Kindinis, A. Investigating the Effects of Climate on Thermal Adaptation: A Comparative Field Study in Naturally Ventilated University Classrooms. Energy Build. 2023, 294, 113227. [Google Scholar] [CrossRef]
- Shen, P.; Li, Y.; Gao, X.; Chen, S.; Cui, X.; Zhang, Y.; Zheng, X.; Tang, H.; Wang, M. Climate Adaptability of Building Passive Strategies to Changing Future Urban Climate: A Review. Nexus 2025, 2, 100061. [Google Scholar] [CrossRef]
- Umoh, A.A.; Adefemi, A.; Ibekwe, K.I.; Etukudoh, E.A.; Ilojianya, V.I.; Nwokediegwu, Z.Q. Green Architecture and Energy Efficiency: A Review of Innovative Design and Construction Techniques. Eng. Sci. Technol. J. 2023, 5, 185–200. [Google Scholar] [CrossRef]
- Welch, S.; Obonyo, E.; Memari, A.M. A Review of the Previous and Current Challenges of Passive House Retrofits. Build. Environ. 2023, 245, 110938. [Google Scholar] [CrossRef]
- Wang, Y.; Kuckelkorn, J.; Zhao, F.-Y.; Spliethoff, H.; Lang, W. A State of Art of Review on Interactions between Energy Performance and Indoor Environment Quality in Passive House Buildings. Renew. Sustain. Energy Rev. 2017, 72, 1303–1319. [Google Scholar] [CrossRef]
- Attia, S. Evolution of Definitions and Approaches. In A state of Art of Review on Interactions Between Energy Performance and Indoor Environment Quality in Passive House Buildings; Net Zero Energy Buildings; Butterworth-Heinemann: Oxford, UK, 2018; pp. 21–51. ISBN 978-0-12-812461-1. [Google Scholar]
- Anand, V.; Kadiri, V.L.; Putcha, C. Passive Buildings: A State-of-the-Art Review. J. Infrastruct. Preserv. Resil. 2023, 4, 3. [Google Scholar] [CrossRef]
- Elnagar, E.; Köhler, B. Reduction of the Energy Demand With Passive Approaches in Multifamily Nearly Zero-Energy Buildings Under Different Climate Conditions. Front. Energy Res. 2020, 8, 545272. [Google Scholar] [CrossRef]
- Murtagh, N.; Scott, L.; Fan, J. Sustainable and Resilient Construction: Current Status and Future Challenges. J. Clean. Prod. 2020, 268, 122264. [Google Scholar] [CrossRef]
- D’Agostino, D.; Congedo, P.M.; Albanese, P.M.; Rubino, A.; Baglivo, C. Impact of Climate Change on the Energy Performance of Building Envelopes and Implications on Energy Regulations across Europe. Energy 2024, 288, 129886. [Google Scholar] [CrossRef]
- European Commission. The European Green Deal-A Growth Strategy That Protects the Climate. Available online: https://ec.europa.eu/stories/european-green-deal/ (accessed on 22 April 2024).
- Shady, A. Net Zero Energy Buildings (NZEB) Concepts, Frameworks and Roadmap for Project Analysis and Implementation; Butterworth-Heinemann: Oxford, UK, 2018; ISBN 978-0-12-812461-1. [Google Scholar]
- Action Plan on Sustainable Energy and Climate at the Level of Oradea Municipality and of Oradea Metropolitan Area for the Period 2021–2027. Available online: https://zmo.ro/download/PAED al Municipiului Oradea.pdf (accessed on 20 April 2024).
- World Resources Institute. Laying the Foundation of Cement and Concrete Decarbonization. Available online: https://www.wri.org/update/laying-foundation-cement-and-concrete-decarbonization (accessed on 20 April 2024).
- Boca, M.C. Bioarchitecture—An Architect’s Contribution to a Healthy Environment. In Proceedings of the International Technical Scientific Conference Modern Technologies for the 3rd Millennium, Oradea, Romania, 5–6 April 2019; pp. 111–116. [Google Scholar]
- Boca, M.C. Sustainable Public Buildings. Oșorhei City Hall, Bihor County. Available online: https://arhitectura-1906.ro/nr/1-2-2021/ (accessed on 3 May 2025).
- EvoHouse. Available online: https://soflete.ro/evo-house/ (accessed on 3 May 2025).
- Multifamily Residential Building in Cluj-Napoca. EvoHouse. Available online: https://platform.nzebready.eu/nzeb-example/multifamily-residential-building-in-cluj-napoca/?utm_source=chatgpt.com (accessed on 13 June 2025).
- House RIA. Romania’s Most Efficient Passive House. Available online: https://www.romaniapozitiva.ro/coltul-verde/casa-pasiva-cu-cel-mai-mic-consum-de-energie-din-romania-este-scoasa-la-vanzare/ (accessed on 3 May 2025).
- House RIA. Available online: https://e-nergia.ro/romanii-de-la-biobuilds-au-facut-langa-targoviste-cea-mai-eficienta-casa-pasiva-din-lume-intretinerea-costa-18-lei-pe-an?utm_source=chatgpt.com (accessed on 13 June 2025).
- PlanRadar. Passive and Energy Efficient Houses in Romania. Available online: https://www.planradar.com/ro/case-pasive-romania/ (accessed on 3 May 2025).
- Buhnici House. Project. Available online: https://buhnici.ro/despre-casa-buhnici/ (accessed on 13 June 2025).
- Buhnici House. Passive Premium. Available online: https://extranews.ro/e-singura-casa-pasiva-premium-din-europa-de-est-cum-arata-acum-casa-supertehnologizata-lui-george-buhnici/ (accessed on 13 June 2025).
- Mihai, M.-I.; Tanasiev, V.; Dinca, C.; Badea, A.; Vidu, R. Passive House Analysis in Terms of Energy Performance. Energy Build. 2017, 144, 74–86. [Google Scholar] [CrossRef]
- Passive Villa in Hambar44 Residential Development. Available online: https://www.wall-street.ro/articol/Real-Estate/293762/top-3-case-din-romania-care-pot-genera-economii-de-pana-la-90-la-facturile-pentru-incalzire-si-apa-calda.html#gref (accessed on 3 May 2025).
- Dwellii Passive Houses. Available online: https://www.businessmagazin.ro/analize/imobiliare/doi-antreprenori-romani-au-adus-un-nou-tip-de-casa-in-romania-model-22499495 (accessed on 3 May 2025).
- Solar Neighborhood. Available online: https://cartierulsolar.ro/ (accessed on 3 May 2025).
- Urban Regeneration Real Estate Project Timpuri Noi Square. Available online: https://vastint.eu/ro/ro/vastint-romania-demareaza-cea-de-a-doua-faza-a-proiectului-imobiliar-de-regenerare-urbana-timpuri-noi-square/ (accessed on 3 May 2025).
- Green-Certified Buildings and Real Estate Projects in Romania. Available online: https://www.constructiv.ro/2020/02/romania-depaseste-pragul-de-250-de-cladiri-verzi/# (accessed on 3 May 2025).
- Romania’s Most Sustainable Buildings. Available online: https://www.forbes.ro/buildgreen-care-sunt-cele-mai-sustenabile-cladiri-din-romania-429858 (accessed on 3 May 2025).
- Environmental Fund Administration. Green House Plus. Energy Efficient House. Green House Photovoltaic. Available online: https://www.afm.ro/ (accessed on 3 May 2025).
- Sommese, F.; Badarnah, L.; Ausiello, G. Smart Materials for Biomimetic Building Envelopes: Current Trends and Potential Applications. Renew. Sustain. Energy Rev. 2023, 188, 113847. [Google Scholar] [CrossRef]
- Yildirim, M.; Candan, Z. Smart Materials: The next Generation in Science and Engineering. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Dobrescu, L.A. From Traditional to Smart Building Materials in Architecture. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1203, 32113. [Google Scholar] [CrossRef]
- Uddin, M.A.; Shahabuddin, M.; Jameel, M.; Rahman, M.; Hosen, M.A.; Alanazi, F.; AbdelMongy, M.; El-kady, M.S. Sustainable Construction Practices in Urban Areas: Innovative Materials, Technologies, and Policies to Address Environmental Challenges. Energy Build. 2025, 341, 115831. [Google Scholar] [CrossRef]
- Macías-Silva, M.A.; Cedeño-Muñoz, J.S.; Morales-Paredes, C.A.; Tinizaray-Castillo, R.; Perero-Espinoza, G.A.; Rodríguez-Díaz, J.M.; Jarre-Castro, C.M. Nanomaterials in Construction Industry: An Overview of Their Properties and Contributions in Building House. Case Stud. Chem. Environ. Eng. 2024, 10, 100863. [Google Scholar] [CrossRef]
- Davila Delgado, J.M.; Oyedele, L.; Demian, P.; Beach, T. A Research Agenda for Augmented and Virtual Reality in Architecture, Engineering and Construction. Adv. Eng. Inform. 2020, 45, 101122. [Google Scholar] [CrossRef]
- Boca, M.C.; Ploae, M.R. The Integration of New Technologies and Automation into the Architecture-to-Construction Pipeline. In Proceedings of the Modern Technologies for the 3rd Millenium; University of Oradea: Oradea, Romania, 2022; pp. 7–15. [Google Scholar]
- Fineceramic®. Available online: https://www.roca.ro/materiale/fineceramic (accessed on 4 May 2025).
- Jayaraman, A. Smart Materials in Construction. In Futuristic Trends in Construction Materials & Civil Engineering; Iterative International Publishers (IIP), Selfypage Developers Pvt Ltd.: Chikmagalur, India, 2024; pp. 132–145. ISBN 9789357479929. [Google Scholar]
- Cazacu, M. Smart Composite System with Self-Controlled Configuration Developed from Shape Memory/Amorphous Magnetic Materials in Elastomeric Matrices; Institutul Național de Cercetare-Dezvoltare pentru Fizică Tehnică—IFT Iaşi: Iasi, Romania, 2020. [Google Scholar]
- Shchegolkov, A.V.; Jang, S.-H.; Shchegolkov, A.V.; Rodionov, Y.V.; Sukhova, A.O.; Lipkin, M.S. A Brief Overview of Electrochromic Materials and Related Devices: A Nanostructured Materials Perspective. Nanomaterials 2021, 11, 2376. [Google Scholar] [CrossRef]
- Simion, C.-P.; Nicolescu, C.; Vrîncuț, M. Green Procurement in Romanian Construction Projects. A Cluster Analysis of the Barriers and Enablers to Green Procurement in Construction Projects from the Bucharest-Ilfov Region of Romania. Sustainability 2019, 11, 6231. [Google Scholar] [CrossRef]
- Khan, N.R.; Sharmin, T.; Bin Rashid, A. Exploring the Versatility of Aerogels: Broad Applications in Biomedical Engineering, Astronautics, Energy Storage, Biosensing, and Current Progress. Heliyon 2024, 10, e23102. [Google Scholar] [CrossRef]
- Hassan, M.S.; Zaman, S.; Dantzler, J.Z.R.; Leyva, D.H.; Mahmud, M.S.; Ramirez, J.M.; Gomez, S.G.; Lin, Y. 3D Printed Integrated Sensors: From Fabrication to Applications—A Review. Nanomaterials 2023, 13, 3148. [Google Scholar] [CrossRef] [PubMed]
- Cazacu, M. Soft Electromechanical Transducers Based on 3D Printed Silicones. Available online: https://icmpp.ro/projects/l6/about.php?id=5 (accessed on 7 June 2025).
- The Bridge and Oregon Park. Available online: https://constructive--voices-com.translate.goog/romania-top-green-buildings/?_x_tr_sl=en&_x_tr_tl=ro&_x_tr_hl=ro&_x_tr_pto=sc (accessed on 4 May 2025).
- Haţeg House. Available online: https://case-lemn-cabane.ro/hateg/ (accessed on 4 May 2025).
- Norouzi, M.; Chàfer, M.; Cabeza, L.F.; Jiménez, L.; Boer, D. Circular Economy in the Building and Construction Sector: A Scientific Evolution Analysis. J. Build. Eng. 2021, 44, 102704. [Google Scholar] [CrossRef]
- Bungau, C.C.; Hanga Prada, F.I.; Bungau, T.; Bungau, C.; Bendea, G.; Prada, M.F. Web of Science Scientometrics on the Energy Efficiency of Buildings to Support Sustainable Construction Policies. Sustainability 2023, 15, 8772. [Google Scholar] [CrossRef]
- Oliveira, J.D.; Schreiber, D.; Jahno, V.D. Circular Economy and Buildings as Material Banks in Mitigation of Environmental Impacts from Construction and Demolition Waste. Sustainability 2024, 16, 5022. [Google Scholar] [CrossRef]
- Harala, L.; Alkki, L.; Aarikka-Stenroos, L.; Al-Najjar, A.; Malmqvist, T. Industrial Ecosystem Renewal towards Circularity to Achieve the Benefits of Reuse—Learning from Circular Construction. J. Clean. Prod. 2023, 389, 135885. [Google Scholar] [CrossRef]
- Hasik, V.; Escott, E.; Bates, R.; Carlisle, S.; Faircloth, B.; Bilec, M.M. Comparative Whole-Building Life Cycle Assessment of Renovation and New Construction. Build. Environ. 2019, 161, 106218. [Google Scholar] [CrossRef]
- Topliceanu, L.; Puiu, P.G.; Drob, C.; Topliceanu, V.V. Analysis Regarding the Implementation of the Circular Economy in Romania. Sustainability 2023, 15, 333. [Google Scholar] [CrossRef]
- Dobre-Baron, O.; Nițescu, A.; Niță, D.; Mitran, C. Romania’s Perspectives on the Transition to the Circular Economy in an EU Context. Sustainability 2022, 14, 5324. [Google Scholar] [CrossRef]
- Action Plan for the National Strategy on Circular Economy. Available online: https://circulareconomy.europa.eu/platform/sites/default/files/2023-10/planul_naional_de_aciune_privind_economia_circulara.pdf (accessed on 5 May 2025).
- Clitan, A.C. Narratives of Vernacular Habitat in Maramureș. Int. J. Energy Prod. Manag. 2022, 7, 373–387. [Google Scholar]
- The Ark. Available online: https://theark.ro/attheark/ (accessed on 5 May 2025).
- Zhong, W.; Schröder, T.; Bekkering, J. Biophilic Design in Architecture and Its Contributions to Health, Well-Being, and Sustainability: A Critical Review. Front. Archit. Res. 2022, 11, 114–141. [Google Scholar] [CrossRef]
- Africa, J.; Heerwagen, J.; Loftness, V.; Ryan Balagtas, C. Biophilic Design and Climate Change: Performance Parameters for Health. Front. Built Environ. 2019, 5, 28. [Google Scholar] [CrossRef]
- Lee, S.; Kim, Y. A Framework of Biophilic Urbanism for Improving Climate Change Adaptability in Urban Environments. Urban For. Urban Green. 2021, 61, 127104. [Google Scholar] [CrossRef]
- Kellert, S.; Calabrese, E. The Practice of Biophilic Design. 2015. Available online: https://www.biophilic-design.com/ (accessed on 25 May 2025).
- Zhao, Y.; Zhan, Q.; Xu, T. Biophilic Design as an Important Bridge for Sustainable Interaction between Humans and the Environment: Based on Practice in Chinese Healthcare Space. Comput. Math. Methods Med. 2022, 2022, 8184534. [Google Scholar] [CrossRef]
- Green Court Bucharest. Available online: https://www.skanska.ro/what-we-do/projects/57821/Green-Court-Bucharest/ (accessed on 6 May 2025).
- Cosmopolis Neighborhood. Available online: https://cosmopolis.ro/ (accessed on 6 May 2025).
- One Cotroceni Park. Available online: https://skia.one.ro/ro/one-cotroceni-park/ (accessed on 6 May 2025).
- Uptown Family Living Residential Complex. Available online: https://www.vitacom-uptown.ro/ (accessed on 6 May 2025).
- Bungau, C.C.; Bungau, T.; Prada, I.F.; Prada, M.F. Green Buildings as a Necessity for Sustainable Environment Development: Dilemmas and Challenges. Sustainability 2022, 14, 13121. [Google Scholar] [CrossRef]
- Boca, M.C. Sustainable Public Buildings. Rev. Arhit. 2021, 1, 162–164. [Google Scholar]
- One Floreasca City. Available online: https://www.one.ro/en/one-floreasca-city/ (accessed on 7 May 2025).
- Palas Complex, Iasi, Romania. Available online: https://www.palasiasi.ro/ (accessed on 7 May 2025).
- Lindner, A.; Stamm, J. Integrating Climate Change Adaptation and Water Resource Management: A Critical Overview. Standards 2025, 5, 4. [Google Scholar] [CrossRef]
- Ludwig, F.; van Slobbe, E.; Cofino, W. Climate Change Adaptation and Integrated Water Resource Management in the Water Sector. J. Hydrol. 2014, 518, 235–242. [Google Scholar] [CrossRef]
- Palermo, S.A.; Maiolo, M.; Brusco, A.C.; Turco, M.; Pirouz, B.; Greco, E.; Spezzano, G.; Piro, P. Smart Technologies for Water Resource Management: An Overview. Sensors 2022, 22, 6225. [Google Scholar] [CrossRef]
- Sijakovic, M.; Peric, A. Sustainable Architectural Design: Towards Climate Change Mitigation. Archnet-IJAR Int. J. Archit. Res. 2021, 15, 385–400. [Google Scholar] [CrossRef]
- Ahmad, S.; Peng, X.; Ashraf, A.; Yin, D.; Chen, Z.; Ahmed, R.; Israr, M.; Jia, H. Building Resilient Urban Drainage Systems by Integrated Flood Risk Index for Evidence-Based Planning. J. Environ. Manag. 2025, 374, 124130. [Google Scholar] [CrossRef] [PubMed]
- Durmisevic, E. Circular Economy in Construction Design Strategies for Reversible Buildings. 2019. Available online: https://www.bamb2020.eu/wp-content/uploads/2019/05/Reversible-Building-Design-Strateges.pdf (accessed on 12 June 2025).
- Purchase, C.K.; Al Zulayq, D.M.; O’Brien, B.T.; Kowalewski, M.J.; Berenjian, A.; Tarighaleslami, A.H.; Seifan, M. Circular Economy of Construction and Demolition Waste: A Literature Review on Lessons, Challenges, and Benefits. Materials 2022, 15, 76. [Google Scholar] [CrossRef]
- Hossain, M.U.; Ng, S.T.; Antwi-Afari, P.; Amor, B. Circular Economy and the Construction Industry: Existing Trends, Challenges and Prospective Framework for Sustainable Construction. Renew. Sustain. Energy Rev. 2020, 130, 109948. [Google Scholar] [CrossRef]
- Islam, N.; Sandanayake, M.; Muthukumaran, S.; Navaratna, D. Review on Sustainable Construction and Demolition Waste Management—Challenges and Research Prospects. Sustainability 2024, 16, 3289. [Google Scholar] [CrossRef]
- Turecki, A.; Tur, M.; Czarnecki, B.; Januszkiewicz, K.; Fiuk, P. Renovation of Modernist Housing Developments in the Pursuit of Modernity for Well-Being and Clean Energy. Energies 2022, 15, 3737. [Google Scholar] [CrossRef]
- SEMA PARC. Urban Regeneration Project in Bucharest. Available online: https://semaparc.ro/ (accessed on 9 May 2025).
- Obor Market, Bucharest, Romania. Available online: https://greencommunity.ro/regenerare-plata-obor-aleea-cu-ceas-primaria-sector-2/ (accessed on 10 May 2025).
- Oliveira, A.M.; Lanzinha, J.C.; Kern, A.P. Building Rehabilitation: A Sustainable Strategy for the Preservation of the Built Environment. Sustainability 2024, 16, 553. [Google Scholar] [CrossRef]
- Martin-Goñi, P.; Avellaneda, J.; González, J.M. Energetic and Functional Rehabilitation of Residential Buildings in Europe: Analysis and Cataloguing of the Strategies Used. Buildings 2024, 14, 525. [Google Scholar] [CrossRef]
- Jagarajan, R.; Abdullah Mohd Asmoni, M.N.; Mohammed, A.H.; Jaafar, M.N.; Lee Yim Mei, J.; Baba, M. Green Retrofitting—A Review of Current Status, Implementations and Challenges. Renew. Sustain. Energy Rev. 2017, 67, 1360–1368. [Google Scholar] [CrossRef]
- Ho, M.Y.; Lai, J.H.K.; Hou, H.; Zhang, D. Key Performance Indicators for Evaluation of Commercial Building Retrofits: Shortlisting via an Industry Survey. Energies 2021, 14, 7327. [Google Scholar] [CrossRef]
- Bungau, C.C.; Bungau, C.; Toadere, M.T.; Prada-Hanga, I.F.; Bungau, T.; Popescu, D.E.; Prada, M.F. Solutions for an Ecological and Healthy Retrofitting of Buildings on the Campus of the University of Oradea, Romania, Built Starting from 1911 to 1913. Sustainability 2023, 15, 6541. [Google Scholar] [CrossRef]
- Bungău, C.; Badulescu, A.; Ilieș, D.C.; Vesa, C.M.; Tit, D.M. Advances in Sustainability Research from the University of Oradea. Sustainability 2024, 16, 2712. [Google Scholar] [CrossRef]
- Craiut, L.; Bungau, C.; Bungau, T.; Grava, C.; Otrisal, P.; Radu, A.F. Technology Transfer, Sustainability, and Development, Worldwide and in Romania. Sustainability 2022, 14, 15728. [Google Scholar] [CrossRef]
- Paskaleva, K.; Evans, J.; Watson, K. Co-Producing Smart Cities: A Quadruple Helix Approach to Assessment. Eur. Urban Reg. Stud. 2021, 28, 395–412. [Google Scholar] [CrossRef]
- Craiut, L.; Bungau, C.; Negru, P.A.; Bungau, T.; Radu, A.-F. Technology Transfer in the Context of Sustainable Development-A Bibliometric Analysis of Publications in the Field. Sustainability 2022, 14, 11973. [Google Scholar] [CrossRef]
- Filip, F.; Ciobanu, A.A.; Chereches, M. Smart City—A Collaborative Process of Adaptation and Innovation. In Proceedings of the Research in Construction, Construction Economics, Urban Planning and Spatial Planning; INCD URBAN-INCERC: Bucharest, Romania, 2019; Volume 16, pp. 29–38. [Google Scholar]
- Nicolae Romanescu Park, Craiova, Romania. Available online: https://raadpflcraiova.ro/domenii-de-activitate/parcul-nicolae-romanescu/ (accessed on 11 May 2025).
- Green Cluj. Available online: https://urbanizehub.ro/starea-vremii-orasele-romanesti-se-pregatesc-sa-faca-fata-schimbarilor-climatice/?utm_ (accessed on 11 May 2025).
- Action Plan. Timisoara, Green City. Available online: https://ebrdgreencities.com/assets/Uploads/PDF/GCAP-Timisoara_March_RO.pdf?utm (accessed on 11 May 2025).
- Renaturation of Green Spaces in Tulcea. Available online: https://ziaruldelta.ro/2021/09/17/renaturarea-spatiilor-verzi-din-municipiu-a-inceput-in-cartierul-dallas/?utm (accessed on 11 May 2025).
- Wolf, K.L.; Lam, S.T.; McKeen, J.K.; Richardson, G.R.A.; van den Bosch, M.; Bardekjian, A.C. Urban Trees and Human Health: A Scoping Review. Int. J. Environ. Res. Public Health 2020, 17, 4371. [Google Scholar] [CrossRef]
- O’Brien, L.E.; Urbanek, R.E.; Gregory, J.D. Ecological Functions and Human Benefits of Urban Forests. Urban For. Urban Green. 2022, 75, 127707. [Google Scholar] [CrossRef]
- Santamouris, M.; Vasilakopoulou, K. Present and Future Energy Consumption of Buildings: Challenges and Opportunities towards Decarbonisation. e-Prime-Adv. Electr. Eng. Electron. Energy 2021, 1, 100002. [Google Scholar] [CrossRef]
- BUILD UP. The European Portal for Energy Efficiency and Renewable Energy in Buildings. Construction Industry: What to Expect in 2025. Available online: https://build-up.ec.europa.eu/en/news-and-events/news/construction-industry-what-expect-2025 (accessed on 10 May 2025).
- Rodrigues, C.; Rodrigues, E.; Fernandes, M.S.; Tadeu, S. Prospective Life Cycle Approach to Buildings’ Adaptation for Future Climate and Decarbonization Scenarios. Appl. Energy 2024, 372, 123867. [Google Scholar] [CrossRef]
- Chen, R.; Samuelson, H.; Zou, Y.; Zheng, X.; Cao, Y. Improving Building Resilience in the Face of Future Climate Uncertainty: A Comprehensive Framework for Enhancing Building Life Cycle Performance. Energy Build. 2024, 302, 113761. [Google Scholar] [CrossRef]
- Coronato, T.; Zaninelli, P.G.; Abalone, R.; Carril, A.F. Climate Change Projections for Building Energy Simulation Studies: A CORDEX-Based Methodological Approach to Manage Uncertainties. Clim. Change 2024, 177, 43. [Google Scholar] [CrossRef]
- Jain, H.; Dhupper, R.; Shrivastava, A.; Kumar, D.; Kumari, M. AI-Enabled Strategies for Climate Change Adaptation: Protecting Communities, Infrastructure, and Businesses from the Impacts of Climate Change. Comput. Urban Sci. 2023, 3, 25. [Google Scholar] [CrossRef]
- Romania’s Eight National Communication on Climate Change Under the United Nations Framework Convention on Climate Change. Available online: https://unfccc.int/sites/default/files/resource/Romania%20NC8_EN.pdf (accessed on 13 June 2025).
- Damm, A.; Köberl, J.; Prettenthaler, F.; Rogler, N.; Töglhofer, C. Impacts of +2 °C Global Warming on Electricity Demand in Europe. Clim. Serv. 2017, 7, 12–30. [Google Scholar] [CrossRef]
- IPCC Sixth Assessment Report Impacts, Adaptation and Vulnerability. Chapter 13: Europe. Available online: https://www.ipcc.ch/report/ar6/wg2/chapter/chapter-13/ (accessed on 12 June 2025).
- Integrated National Energy and Climate Plan of Romania 2025-2030 Update. Available online: https://commission.europa.eu/document/download/75df0ac2-ecf9-4212-89ac-2a603bd43e36_en?filename=RO_FINAL%20UPDATED%20NECP%202021-2030%20%28English%29.pdf (accessed on 12 June 2025).
- Delivering the European Green Deal On the Path to a Climate-Neutral Europe by 2050. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal/delivering-european-green-deal_en (accessed on 13 June 2025).
Year | Policy Name | Description | Ref |
---|---|---|---|
1992 | Ratification of UNFCCC | Romania signed the UNFCCC, committing to international efforts to combat climate change (by Law No. 24/1994) | [16] |
2001 | Ratification of the Kyoto Protocol | Romania as an Annex I Party to ratify the Kyoto Protocol (by Law No. 3/2001), committing to an 8% reduction in GHG emissions from 1989 levels during the first commitment period (2008–2012) | [17,18,19] |
2005 | National Strategy and Action Plan on Climate Change | Developed during Romania’s EU accession process, this strategy aimed to align national policies with EU climate objectives | [20,21] |
2013 | National Climate Change Strategy (2013–2020) | Aimed to reduce GHG emissions and integrate climate considerations into sectoral policies | [22] |
2015 | Climate Change and Low-Carbon Green Growth Program | Assisted Romania in developing a comprehensive climate change and low-carbon development strategy, integrating climate actions into EU-funded programs | [23] |
2017 | Ratification of the Paris Agreement | Romania ratified the Paris Agreement through Law No. 57/2017, which entered into force on 1 June 2017. The agreement, adopted by 196 parties at COP21 in Paris, aims to limit global temperature rise to well below 2 °C above pre-industrial levels, with efforts to cap it at 1.5 °C. | [24,25] |
2020 | European Green Deal Alignment | Romania aligned its national policies with the EU’s European Green Deal, aiming for climate neutrality by 2050 | [26] |
2021 | Integrated National Energy and Climate Plan (NECP) 2021–2030 | Outlines Romania’s strategy to meet EU climate and energy targets, focusing on decarbonization, energy efficiency, and renewable energy integration | [27] |
2023 | Long-Term Strategy for Reducing Greenhouse Gas Emissions | Sets Romania’s vision for achieving climate neutrality by 2050, detailing sectoral pathways and measures. The national strategy aims to decarbonize the building sector through energy-efficient technologies, increased renovation rates, electrification, heat pumps, and renewable energy integration | [28] |
2024 | National Strategy on Adaptation to Climate Change (2024–2030) | Aims to enhance Romania’s adaptive capacity and resilience to climate variability and change, facilitating a transition to a sustainable, low-carbon economy | [29] |
2024 | National Strategy for Disaster Risk Reduction (2024–2035) | Provides a framework to mobilize public and private actors to increase Romania’s disaster resilience, focusing on understanding disaster risk and strengthening risk governance | [30] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boca, M.C.; Bungau, C.C.; Hanga-Farcas, I.F. Climate-Conscious Sustainable Practices in the Romanian Building Sector. Buildings 2025, 15, 2106. https://doi.org/10.3390/buildings15122106
Boca MC, Bungau CC, Hanga-Farcas IF. Climate-Conscious Sustainable Practices in the Romanian Building Sector. Buildings. 2025; 15(12):2106. https://doi.org/10.3390/buildings15122106
Chicago/Turabian StyleBoca, Miruna Cristina, Constantin C. Bungau, and Ioana Francesca Hanga-Farcas. 2025. "Climate-Conscious Sustainable Practices in the Romanian Building Sector" Buildings 15, no. 12: 2106. https://doi.org/10.3390/buildings15122106
APA StyleBoca, M. C., Bungau, C. C., & Hanga-Farcas, I. F. (2025). Climate-Conscious Sustainable Practices in the Romanian Building Sector. Buildings, 15(12), 2106. https://doi.org/10.3390/buildings15122106