Simplified Reliability Analysis Method of Pile-Wall Combined Supporting Embankment Considering Spatial Variability of Filling Parameters
Abstract
:1. Introduction
2. Numerical Model and Working Condition Analysis
2.1. Numerical Model
2.2. Working Condition Analysis
3. Soil Pressure Calculation Model
3.1. Calculation Model of Mean Soil Pressure
3.2. Calculation Model of Standard Deviation of Soil Pressure
3.3. Verification of the Calculation Model
4. Simplified Reliability Analysis
4.1. Failure Mode and Limit State Equation
4.2. Reliability Analysis
4.3. Results Analysis
4.3.1. The Influence of Mean Value on Reliability Index of Pile-Wall Combined Supporting Structure
4.3.2. The Influence of Variation Coefficient on Reliability Index of Pile-Wall Combined Supporting Structure
4.3.3. The Influence of Correlation Length on Reliability Index of Pile-Wall Combined Support Structure
5. Conclusions
- (1)
- The mean value of internal friction angle has a limited influence on the reliability index of supporting structure, but its coefficient of variation has a significant influence on reliability. When the coefficient of variation is less than 0.4, the anti-sliding and anti-overturning reliability indexes decrease rapidly, and the failure probability increases significantly, indicating that the uncertainty of filling parameters is a key factor that cannot be ignored in slope stability evaluation.
- (2)
- The influence of the horizontal and vertical correlation length of the filling parameters on the reliability index is negligible. Within the range of variation (horizontal 8–40 m, vertical 2–10 m), the fluctuation range of the reliability index is less than 5%, indicating that the analysis process of the correlation length can be simplified in practical engineering.
- (3)
- The proposed empirical formula of earth pressure and the linear superposition method can efficiently replace the traditional random field model, which can significantly reduce the computational complexity and provide theoretical support for the rapid stability evaluation of embankments with complex terrain.
- (4)
- It is assumed that the cohesion of filling soil is zero. In the future, the influence of cohesion and its spatial variability on stability should be further discussed to improve the applicability of the model.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Planning and Research Institute of Ministry of Communications. National Highway Network Planning; Planning and Research Institute of Ministry of Communications: 2004. Available online: https://www.gov.cn/zhengce/zhengceku/2022-07/12/5700633/files/1ca992f13a81434b89e222eb000acada.pdf (accessed on 12 July 2022).
- Yang, C.; Yang, G. Analysis of factors affecting the stability of high-fill embankments on slope foundation. In Proceedings of the 2023 5th International Conference on Civil Architecture and Urban Engineering (ICCAUE 2023), Online, 18 November 2023. [Google Scholar]
- Qi, X.; Li, D. Effect of spatial variability of shear strength parameters on critical slip surfaces of slopes. Eng. Geol. 2018, 239, 41–49. [Google Scholar] [CrossRef]
- Jiang, S.; Li, D.; Zhang, L.; Zhou, C. Slope reliability analysis considering spatially variable shear strength parameters using a non-intrusive stochastic finite element method. Eng. Geol. 2014, 168, 120–128. [Google Scholar] [CrossRef]
- Hamrouni, A.; Dias, D.; Sbartai, B. Soil spatial variability impact on the behavior of a reinforced earth wall. Front. Struct. Civ. Eng. 2020, 14, 518–531. [Google Scholar] [CrossRef]
- Zhou, X.P.; Xie, Y.X.; Huang, X.C.; He, X. Antislip stability analysis of gravity retaining wall by probabilistic approach. Int. J. Geomech. 2019, 19, 04019045. [Google Scholar] [CrossRef]
- Hu, H.; Huang, Y.; Xiong, M. PDEM-based seismic performance assessment of retaining walls considering spatial variability of soil properties. J. Earthq. Eng. 2022, 26, 52–69. [Google Scholar] [CrossRef]
- Tarhini, B.; Kahiel, A.; Najjar, S.; Sadek, S. Reliability-based structural design of retaining walls supporting spatially variable soils. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civ. Eng. 2022, 8, 04022026. [Google Scholar] [CrossRef]
- Bian, X.; Chen, B.; Liu, H.; Chen, J. Effects of soil spatial variability on the behaviour of the embankment supported with a combined retaining structure. Geol. J. 2024, 59, 2584–2593. [Google Scholar] [CrossRef]
- Ji, J.; Zhang, C.; Gao, Y.; Kodikara, J. Effect of 2D spatial variability on slope reliability: A simplified FORM analysis. Geosci. Front. 2017, 9, 1631–1638. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, W.; Chen, F.; Gu, D.; Wang, L.; Wang, Z. Probabilistic assessment of slope failure considering anisotropic spatial variability of soil properties. Geosci. Front. 2022, 13, 101371. [Google Scholar] [CrossRef]
- Gao, X.; Wang, L.; Wang, Q.; Hu, X.; Wang, Y.; Zhang, Y. Stability Analysis and the Random Response of Anti-Sliding Pile for Erdaogou Landslide Considering Spatial Variability. Mathematics 2023, 11, 2318. [Google Scholar] [CrossRef]
- Hicks, M.A.; Varkey, D.; van den Eijnden, A.P.; de Gast, T.; Vardon, P.J. On characteristic values and the reliability-based assessment of dykes. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 2019, 13, 313–319. [Google Scholar] [CrossRef]
- Li, D.-Q.; Qi, X.-H.; Phoon, K.-K.; Zhang, L.-M.; Zhou, C.-B. Effect of spatially variable shear strength parameters with linearly increasing mean trend on reliability of infinite slopes. Struct. Saf. 2014, 49, 45–55. [Google Scholar] [CrossRef]
- Xue, Y.; Fang, C.; Ge, J. Slope reliability in anisotropic random fields. Chin. J. Geotech. Eng. 2013, 35, 77–82. [Google Scholar]
- Karhunen, K. Über Lineare Methoden in der Wahrscheinlichkeitsrechnung: Akademische Abhandlung; Soumalainen Tiedeakatemia: Helsinki, Finland, 1947. [Google Scholar]
- Fenton, G.; Griffiths, D. Risk Assessment in Geotechnical Engineering; John Wiley & Sons: New York, NY, USA, 2008. [Google Scholar]
- Ghanem, R.G.; Spanos, P.D. Stochastic Finite Elements: A Spectral Approach; Springer: New York, NY, USA, 2011. [Google Scholar]
- Zhu, W.; Ren, Y. The stochastic finite element method based on local average of random field. Acta Mech. Solida Sin. 1988, 4, 261–271. [Google Scholar]
- Li, D.-Q.; Jiang, S.-H.; Cao, Z.-J.; Zhou, W.; Zhou, C.-B.; Zhang, L.-M. A multiple response-surface method for slope reliability analysis considering spatial variability of soil properties. Eng. Geol. 2015, 187, 60–72. [Google Scholar] [CrossRef]
- Saseendran, R.; Dodagoudar, G.R. Reliability analysis of slopes stabilised with piles using response surface method. Geomech. Eng. 2020, 21, 513–525. [Google Scholar]
- Kiyonobu, K.; Zentaro, F.; Hu, L. Practical reliability analysis for earthquake-induced 3D landslide using stochastic response surface method. Comput. Geotech. 2021, 137, 104303. [Google Scholar]
- Zhu, B.; Pei, H.; Yang, Q. Probability analysis of submarine landslides based on the Response Surface Method: A case study from the South China Sea. J. Appl. Ocean Res. 2018, 78, 167–179. [Google Scholar] [CrossRef]
- Li, D.-Q.; Zhang, F.-P.; Cao, Z.-J.; Zhou, W.; Phoon, K.-K.; Zhou, C.-B. Efficient reliability updating of slope stability by reweighting failure samples generated by Monte Carlo simulation. Comput. Geotech. 2015, 69, 588–600. [Google Scholar] [CrossRef]
- Xie, M.; Zheng, J.; Zhang, R.; Cui, L.; Miao, C. Performance of a Combined Retaining Wall Structure Supporting a High Embankment on a Steep Slope: Case Study. Int. J. Geomech. 2020, 20, 05020002. [Google Scholar] [CrossRef]
- Kanagasabai, S.; Smethurst, J.A.; Powrie, W. Three-dimensional numerical modelling of discrete piles used to stabilize landslides. Can. Geotech. J. 2011, 48, 1393–1411. [Google Scholar] [CrossRef]
- Jiang, S.; Li, D.; Zhou, C.; Phoon, K. Slope reliability analysis considering effect of autocorrelation functions. Chin. J. Geotech. Eng. 2014, 36, 508–518. [Google Scholar]
- Bithell, M.; Richards, K.S.; Bithell, E.G. Simulation of scree-slope dynamics: Investigating the distribution of debris ava lanche events in an idealized two-dimensional model. Earth Surf. Process. Landf. 2014, 39, 1601–1610. [Google Scholar] [CrossRef]
- Zhang, H.; Luo, Y.; Yuan, S.; Zhou, Y.; Zhou, Q.; Zeng, F.; Feng, W. Shear Characteristics of Gravel Soil with Different Fillers. Front. Mater. 2022, 9, 962372. [Google Scholar] [CrossRef]
- Wan, X.; Ding, J.; Ou, Y.; Mou, C.; Ding, C. Triaxial Testing and Numerical Simulation on High Fill Slopes of Gobi Gravel Soils in Urumchi. J. Test. Eval. 2022, 50, 3220–3236. [Google Scholar] [CrossRef]
- Yu, H.; Peng, S.; Zhao, Q. Field Tests of the Response of Single Pile Subjected to Lateral Load in Gravel Soil Sloping Ground. Geotech. Geol. Eng. 2019, 37, 2659–2674. [Google Scholar] [CrossRef]
- Jin, Z.; Sun, F.; Zhu, Y.; Yang, L.; Yu, B.; Yan, Y.; Du, Y.; Ge, G. An Experimental Study on the Shear Characteristics of Typical Colluvial Soil with Gravel and the Stability of Slopes in Wenzhou, China. Indian Geotech. J. 2020, 51, 627–646. [Google Scholar] [CrossRef]
- Jha, S.K. Effect of Spatial Variability of Soil Properties on Slope Reliability Using Random Finite Element and First Order Second Moment Methods. Indian Geotech. J. 2015, 45, 145–155. [Google Scholar] [CrossRef]
- Wang, M.; He, Z.; Zhao, H. Dimensional Reduction-Based Moment Model for Probabilistic Slope Stability Analysis. Appl. Sci. 2022, 12, 4511. [Google Scholar] [CrossRef]
Interface Friction Angle | Value (°) |
---|---|
δ1 | 28 |
δ2 | 38 |
δ3 | 35 |
δ4 | 31 |
δ5 | 39 |
Parameters | Rock (Elastic) | Pile (Elastic) | Platform (Elastic) | Wall (Elastic) | Retained Soil |
---|---|---|---|---|---|
Unit weight (kN/m3) | 20.5 | 25 | 24 | 24 | 19.8 |
Cohesion (kPa) | — | — | — | — | 0 |
Friction angle (°) | — | — | — | — | 40 |
Modulus of elasticity (MPa) | 11,000 | 30,000 | 22,000 | 21,000 | 59 |
Poisson’s ratio | 0.26 | 0.2 | 0.2 | 0.2 | 0.3 |
Condition | μφ | COVφ | θh/m | θv/m | Simulation Times |
---|---|---|---|---|---|
A0 (Baseline case) | 40 | 0.15 | 40 | 4 | 500 |
B1 | 40 | 0.15 | 40 | 2 | 500 |
B2 | 8 | 500 | |||
B3 | 10 | 500 | |||
C1 | 40 | 0.15 | 8 | 4 | 500 |
C2 | 16 | 500 | |||
C3 | 32 | 500 | |||
D1 | 40 | 0.05 | 40 | 4 | 500 |
D2 | 0.3 | 500 | |||
D3 | 0.4 | 500 | |||
D4 | 0.5 | 500 | |||
E1 | 38 | 0.15 | 40 | 4 | 500 |
E2 | 42 | 500 |
Condition | Soil Pressure of Retaining Wall Eaw/kN·m−1 | Soil Pressure of Platform Eap/kN·m−1 | ||
---|---|---|---|---|
µEaw | COVEaw (×10−3) | µEap | COVEap (×10−3) | |
A0 | 758.87 | 4.20 | 361.83 | 17.00 |
B1 | 751.75 | 3.46 | 360.29 | 12.66 |
B2 | 754.72 | 3.62 | 361.07 | 14.57 |
B3 | 761.98 | 4.01 | 362.25 | 18.93 |
C1 | 754.83 | 3.33 | 360.42 | 10.77 |
C2 | 763.77 | 4.20 | 361.90 | 19.51 |
C3 | 770.52 | 4.51 | 361.96 | 21.47 |
D1 | 775.81 | 2.19 | 378.13 | 4.16 |
D2 | 751.91 | 7.38 | 360.44 | 26.06 |
D3 | 747.16 | 8.22 | 358.41 | 25.77 |
D4 | 743.89 | 8.23 | 358.54 | 25.07 |
E1 | 760.14 | 5.27 | 379.80 | 25.77 |
E2 | 751.99 | 3.26 | 353.69 | 9.58 |
Condition | Soil Pressure Acting Point of Retaining Wall z1/m | Action Point of Platform Soil Pressure z2/m | ||
---|---|---|---|---|
µz1 | COVz1 (×10−3) | µz2 | COVz2 (×10−3) | |
A0 | 9.7120 | 1.29 | 3.5137 | 2.36 |
B1 | 9.7124 | 1.02 | 3.5133 | 1.85 |
B2 | 9.7122 | 1.08 | 3.5135 | 2.33 |
B3 | 9.7114 | 1.23 | 3.5143 | 2.50 |
C1 | 9.7122 | 1.03 | 3.5133 | 1.76 |
C2 | 9.7116 | 1.26 | 3.5139 | 2.65 |
C3 | 9.7117 | 1.43 | 3.5137 | 2.82 |
D1 | 9.7115 | 0.39 | 3.5136 | 0.63 |
D2 | 9.7241 | 2.46 | 3.5062 | 4.45 |
D3 | 9.7285 | 2.57 | 3.5029 | 5.05 |
D4 | 9.7322 | 2.76 | 3.5000 | 4.97 |
E1 | 9.7055 | 1.84 | 3.5183 | 3.30 |
E2 | 9.7140 | 0.75 | 3.5123 | 1.65 |
Spatial Variability Index (Expressed by x) | μXo/Xo | |
---|---|---|
Lateral Soil Pressure Response Value of Retaining Wall | Lateral Soil Pressure Response Value of Platform | |
θh | fw1 = 1.01153 + 0.0000288x + 0.00000052x2 | fp1 = 1.03367 + 0.000544x − 0.0000096x2 |
θv | fw2 = 1.0133 + 0.000175x | fp2 = 1.03401 + 0.00242x − 0.000146x2 |
COVφ | fw3 = 1.02202 − 0.10512x + 0.46084x2 − 0.8899x3 + 0.55365x4 | fp3 = 0.99232 + 0.45797x − 0.95397x2 + 0.78901x3 |
μφ | fw4 = 1.9245 − 0.04228x + 0.0004875x2 | fp4 = 8.2243 − 0.33955x + 0.004x2 |
Spatial Variability Index (Expressed by x) | COVμXu/Xo | |
---|---|---|
Lateral Soil Pressure Response Value of Retaining Wall | Lateral Soil Pressure Response Value Platform | |
θh | gw1 = 0.00216 + 0.00006x | p1 = 0.00804 + 0.000896x − 0.0000172x2 |
θv | gw2 = 0.00223 + 0.00102x − 0.000133x2 + 0.00000625x3 | gp2 = 0.01753 − 0.00109x + 0.0001583x2 |
COVφ | gw3 = 0.00102 + 0.01991x + 0.009x2 − 0.09316x3 | gp3 = −0.00351 + 0.16834x − 0.19607x2 |
μφ | gw4 = 0.1356 − 0.00578x + 0.0000625x2 | gp4 = 2.0329 − 0.0954x + 0.000113x2 |
Soil Pressure Category | Basic Operation Condition | Actual Simulation Results | Equivalent Estimation Results | Relative Error (%) | |
---|---|---|---|---|---|
Lateral soil pressure response value of retaining wall | μXo/Xo | 1.0139 | 1.0293 | 1.0211 | 0.797 |
COVμXu/Xo | 0.0046 | 0.0206 | 0.0194 | 5.825 | |
Lateral soil pressure response value of platform | μXo/Xo | 1.0423 | 1.0121 | 0.9961 | 1.581 |
COVμXu/ | 0.0169 | 0.0312 | 0.0292 | 6.410 |
Condition | Anti-Slip Limit State Reliability Index βF | Anti-Overturning Limit State Reliability Index βM |
---|---|---|
A0 | 2.7278 | 3.4855 |
B1 | 2.7602 | 3.5178 |
B2 | 2.7463 | 3.5041 |
B3 | 2.7144 | 3.4719 |
C1 | 2.7475 | 3.5043 |
C2 | 2.7082 | 3.4646 |
C3 | 2.6816 | 3.4361 |
D1 | 3.6841 | 4.4963 |
D2 | 1.9268 | 2.7576 |
D3 | 1.6184 | 2.3266 |
D4 | 1.3929 | 2.0654 |
E1 | 3.1740 | 4.3739 |
E2 | 2.4941 | 3.3224 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Wen, J.; Shang, X.; Bian, X.; Chen, J. Simplified Reliability Analysis Method of Pile-Wall Combined Supporting Embankment Considering Spatial Variability of Filling Parameters. Buildings 2025, 15, 2053. https://doi.org/10.3390/buildings15122053
Liu H, Wen J, Shang X, Bian X, Chen J. Simplified Reliability Analysis Method of Pile-Wall Combined Supporting Embankment Considering Spatial Variability of Filling Parameters. Buildings. 2025; 15(12):2053. https://doi.org/10.3390/buildings15122053
Chicago/Turabian StyleLiu, Hui, Jianing Wen, Xinhong Shang, Xiaoya Bian, and Jiawei Chen. 2025. "Simplified Reliability Analysis Method of Pile-Wall Combined Supporting Embankment Considering Spatial Variability of Filling Parameters" Buildings 15, no. 12: 2053. https://doi.org/10.3390/buildings15122053
APA StyleLiu, H., Wen, J., Shang, X., Bian, X., & Chen, J. (2025). Simplified Reliability Analysis Method of Pile-Wall Combined Supporting Embankment Considering Spatial Variability of Filling Parameters. Buildings, 15(12), 2053. https://doi.org/10.3390/buildings15122053