Study on the Evolution Law of Mechanical Properties of the Modified High Strength BF-RCC Subjected to High Temperature
Abstract
:1. Introduction
2. Experiment Preparation
2.1. Surface Modification of BF
2.2. Preparation of the Modified BF-RCC
2.3. High Temperature Treatment of the BF-RCC
2.4. Testing Method
3. The Quality Variation in the BF-RCC Under High Temperature
4. The BF-RCC Tensile Strength Test
5. The BF-RCC Compressive Strength
5.1. Compressive Strength and Elastic Modulus
5.2. Toughness Index
6. Crack Propagation Behavior Analysis
6.1. Strain Field Distribution
6.2. Energy Evolution Law
7. Conclusions
- (1).
- The addition of the modified BF can effectively reduce the mass loss of the BF-RCC at high temperature. Compared with the ordinary BF-RCC, the mass loss rate of the modified BF-RCC is reduced by 30%. The surface modification of BF by the SCA significantly improved the mechanical properties of BF-RCC. Among them, the tensile strength, compressive strength, elastic modulus and toughness index of the BF-RCC were 1.5 times, 1.7 times, 1.4 times and 1.6 times higher than those of the ordinary BF-RCC, respectively. The results show that when the concentration of SCA is 2.5% KH602, the elastic modulus, toughness index and comprehensive mechanical properties of the BF-RCC reach the maximum value.
- (2).
- Elevated temperatures significantly impact the mechanical strength of the BF-RCC. The SCA modification demonstrates effectiveness in enhancing material properties at temperatures below 300 °C, but this improvement diminishes substantially when exposed to higher temperatures. Particularly noteworthy is the progressive reduction in both elastic modulus and toughness index as temperature increases. These changes primarily result from structural deterioration within the interfacial transition zone and weakened interfacial bonding between fibers and matrix. At the extreme temperature of 400 °C, modified and unmodified BF-RCC specimens exhibit nearly identical values for toughness index and elastic modulus, clearly indicating the limited effectiveness of SCA modification under such severe thermal conditions.
- (3).
- The SCA modification enhances the interfacial bonding between basalt fibers and the cement matrix, thereby improving the crack resistance of the BF. DIC analysis reveals that the maximum strain of the BF-RCC specimens modified with 2.5% KH602 and 4.5% KH602 increased by 1.1 times and 1.3 times, respectively, compared to the ordinary BF-RCC. This demonstrates that after surface modification, the BF can maintain good bonding with the cement matrix even after matrix cracking occurs, resulting in increased crack propagation displacement.
- (4).
- The SCA treatment significantly increased the total energy absorption and post-peak fracture energy of BF-RCC. The post-peak fracture energy of the samples modified by 2.5% and 4.5% KH602 reached 5.27 times and 12.82 times at 400 °C, compared to unmodified BF-RCC. Moreover, the modified BF-RCC exhibits more uniform microcrack distribution and progressive fracture behavior, effectively preventing brittle failure and demonstrating superior ductility.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, V.C.; Wu, C.; Wang, S.X.; Ogawa, A.; Saito, T. Interface tailoring for strain- hardening polyvinyl alcohol engineered cementitious composite (PVA-ECC). ACI Mater. 2002, 99, 463–472. [Google Scholar]
- Udebunu, J.; Abdolpour, H.; Sadowski, Ł. Comprehensive experimental investigation of the mechanical properties and performance enhancement of polyvinyl alcohol fiber-reinforced cement mortar. Arch. Civ. Mech. Eng. 2024, 25, 58. [Google Scholar] [CrossRef]
- Jia, Z.; Huo, H.; Zhang, C.; Wang, W.; Wang, X.; Du, X.; Zhong, J.; Li, Y.; Xu, L.; Cao, Y. Force-electric properties of smart cementitious composites reinforced with carbon fiber and conductive recycled fine aggregates. Constr. Build. Mater. 2024, 456, 139282. [Google Scholar] [CrossRef]
- Kaboré, M.W.; El Bitouri, Y.; Lharti, H.; Salgues, M.; Frugier, J.; Léger, R.; Perrin, D.; Ienny, P.; Garcia-Diaz, E. Insights into the Effect of Recycled Glass Fiber Reinforced Polymer on the Mechanical Strengths of Cement Mortar. Eng 2024, 5, 2966–2977. [Google Scholar] [CrossRef]
- Kidari, R.; Tilioua, A. Investigation of the thermomechanical characteristics of compressed earth bricks reinforced with cement and corn straw waste fibers. Clean. Waste Syst. 2024, 9, 100160. [Google Scholar] [CrossRef]
- Jagadeesh, P.; Rangappa, S.M.; Siengchin, S. Basalt fibers: An environmentally acceptable and sustainable green material for polymer composites. Constr. Build. Mater. 2024, 436, 136834. [Google Scholar] [CrossRef]
- Xu, M.; Song, S.; Feng, L.; Zhou, J.; Li, H.; Li, V.C. Development of basalt fiber engineered cementitious composites and its mechanical properties. Constr. Build. Mater. 2021, 266, 121173. [Google Scholar] [CrossRef]
- Xing, D.; Xi, X.Y.; Ma, P.C. Factors governing the tensile strength of basalt fibre. Compos. Part A Appl. Sci. Manuf. 2019, 119, 127–133. [Google Scholar] [CrossRef]
- Khandelwal, S.; Rhee, K.Y. Recent advances in basalt-fiber-reinforced composites: Tailoring the fiber-matrix interface. Compos. Part B Eng. 2020, 192, 108011. [Google Scholar] [CrossRef]
- Zheng, Y.; Sun, D.; Peng, F.Z. Nano-SiO2 modified basalt fiber for enhancing mechanical properties of oil well cement. Colloids Surf. A. Physicochem. Eng. Asp. 2022, 648 Pt 1, 1289001. [Google Scholar] [CrossRef]
- Xiang, Y.; Xie, Y.; Long, G. Effect of basalt fiber surface silane coupling agent coating on fiber-reinforced asphalt: From macro-mechanical performance to micro-interfacial mechanism. Constr. Build. Mater. 2018, 179, 107–116. [Google Scholar] [CrossRef]
- Branston, J.; Das, S.; Kenno, S.Y.; Taylor, C. Mechanical behaviour of basalt fibre reinforced concrete. Constr. Build. Mater. 2016, 124, 878–886. [Google Scholar] [CrossRef]
- Ge, Z.; Sun, Q.; Yang, T.; Luo, T.; Jia, H.; Yang, D. Effect of high temperature on mode-I fracture toughness of granite subjected to liquid nitrogen cooling. Eng. Fract. Mech. 2021, 252, 107834. [Google Scholar] [CrossRef]
- Zhou, H.; Jia, B.; Huang, H.; Mou, Y. Experimental Study on Basic Mechanical Properties of Basalt Fiber Reinforced Concrete. Materials 2020, 13, 1362. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Shen, A.; Zeng, G.; Chen, Z.; Guo, Y. Research progress on properties of basalt fiber-reinforced cement concrete. Mater. Today Commun. 2022. [Google Scholar] [CrossRef]
- Zych, T.; Krasodomski, W. Study on the properties of cement mortars with basalt fibres. Brittle Matrix Compos. 2012, 10, 155–166. [Google Scholar]
- Zhang, N.; Xu, M.; Song, S.; Li, H.; Zhou, J.; Ma, G. Impact resistance of basalt fiber strain-hardening cementitious composites exposed to elevated temperatures. Constr. Build. Mater. 2020, 262, 120081. [Google Scholar] [CrossRef]
- Sahmaran, M.; Lachemi, M.; Li, V.C. Assessing Mechanical Properties and Microstructure of Fire-Damaged Engineered Cementitious Composites. ACI Mater. J. 2010, 107, 297–304. [Google Scholar]
- Bhat, P.S.; Chang, V.; Li, M. Effect of elevated temperature on strain-hardening engineered cementitious composites. Constr. Build. Mater. 2014, 69, 370–380. [Google Scholar] [CrossRef]
- Yu, K.; Dai, J.; Lu, Z.; Leung Christopher, K.Y. Mechanical Properties of Engineered Cementitious Composites Subjected to Elevated Temperatures. J. Mater. Civ. Eng. 2015, 27, 04014268. [Google Scholar] [CrossRef]
- Wang, Z.T.; Luo, H.J.; Zhang, L.; Zhang, J.; Chen, H.W.; Jiang, H. Mechanical Properties of Basalt Fiber Improved by Starch Phosphates Sizing Agent. Appl. Surf. Sci. 2020, 521, 146196. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, H.; Liu, G.; Wang, W.; Zhong, Y.; Bao, J. Experimental and data-driven analysis on shear behavior of basalt fiber reinforced concrete deep beams with BFRP bars. Structures 2025, 78, 109197. [Google Scholar] [CrossRef]
- Valentini, M.; De Almeida, O.; Kakkonen, M.; Kalinka, G.; Dorigato, A.; Kallio, P.; Fredi, G. Effect of fiber surface state on the thermomechanical and interfacial properties of in situ polymerized polyamide 6/basalt fiber composites. Compos. Part A 2025, 190, 108681. [Google Scholar] [CrossRef]
- Zou, Q.; Ye, X.; Huang, X.; Zhang, W.; Zhang, L. Influence of elevated temperature on the interfacial adhesion properties of cement composites reinforced with recycled coconut fiber. J. Build. Eng. 2024, 98, 111270. [Google Scholar] [CrossRef]
- Zheng, X.; Ban, Y.; Chen, Z.; Fu, T.; Fei, M.; Liu, W.; Qiu, R. Modification of bamboo fiber for reinforcing cement-based composites and durability improvement. Constr. Build. Mater. 2024, 451, 138802. [Google Scholar] [CrossRef]
- Zhuang, J.; Ni, P.; Xu, R.; Wu, M. Dynamic properties of steel fiber-reinforced potassium magnesium phosphate cement-based materials after high-temperature treatment. J. Clean. Prod. 2023, 429, 139530. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, L.; Zhu, Z.; Ma, L.; Wang, M.; Deng, Z. Crack propagation analysis and mechanical properties of basalt fiber reinforced cement composites with changing fiber surface characteristics. Constr. Build. Mater. 2023, 392, 131738. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Z.; Xiang, Y.; Cao, Q. Mechanism and road performance of basalt fiber modified by silane coupling agent. J. Build. Mater. 2017, 20, 623–629. [Google Scholar]
- Huang, Z.; Luo, Y.; Zhang, W.; Ye, Z.; Li, Z.; Liang, Y. Thermal insulation and high-temperature resistant cement-based materials with different pore structure characteristics: Performance and high-temperature testing. J. Build. Eng. 2025, 101, 111839. [Google Scholar] [CrossRef]
- Zhang, Q.; Ye, G. Dehydration kinetics of Portland cement paste at high temperature. J. Therm. Anal. Calorim. 2012, 110, 153–158. [Google Scholar] [CrossRef]
- Maaroufi, M.A.; Lecomte, A.; Diliberto, C.; Francy, O.; Le Brun, P. Thermo-hydrous behavior of hardened cement paste based on calcium aluminate cement. J. Eur. Ceram. Soc. 2015, 35, 1637–1646. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Xiao, J.; Wei, H.; Yang, R. Thermal damage law of silicate cement stone in ultra-high temperature dry-heat environment. Drill. Fluid Complet. Fluid 2025, 42, 247–254. [Google Scholar] [CrossRef]
- Shahraki, M.; Hua, N.; Elhami-Khorasani, N.; Tessari, A.; Garlock, M. Residual compressive strength of concrete after exposure to high temperatures: A review and probabilistic models. Fire Saf. J. Int. J. Devoted Res. Fire Saf. Sci. Eng. 2023, 135, 103698. [Google Scholar] [CrossRef]
- Kannangara, T.; Joseph, P.; Fragomeni, S.; Guerrieri, M. Existing theories of concrete spalling and test methods relating to moisture migration patterns upon exposure to elevated temperatures—A review. Case Stud. Constr. Mater. 2022, 16, e01111. [Google Scholar] [CrossRef]
- Cao, K.; Li, H.; Liu, G.; Huang, Z.; Wu, G. Bonding properties between steel-basalt hybrid fibers reinforced cementitious composites and existing concrete at high temperatures. J. Build. Eng. 2023, 70, 106371. [Google Scholar] [CrossRef]
- Ngollè, A.; Péra, J. Microstructural based modelling of the elastic modulus of fiber reinforced cement composites. Adv. Cem. Based Mater. 1997, 6, 130–137. [Google Scholar] [CrossRef]
- Lin, H.; Takasu, K.; Suyama, H.; Koyamada, H.; Liu, S. A study on properties, static and dynamic elastic modulus of recycled concrete under the influence of modified fly ash. Constr. Build. Mater. 2022, 347, 128585. [Google Scholar] [CrossRef]
- Hashmi, A.F.; Shariq, M.; Baqi, A. An investigation into age-dependent strength, elastic modulus and deflection of low calcium fly ash concrete for sustainable construction. Constr. Build. Mater. 2021, 283, 122772. [Google Scholar] [CrossRef]
- Johnston, C.D.; Skarendahl, Å. Comparative flexural performance evaluation of steel fibre-reinforced concretes acoording to ASTM C1018 shows importance of fibre parameters. Mater. Struct. 1992, 25, 191–200. [Google Scholar] [CrossRef]
- Wang, Y.; Kang, A.H.; Wu, Z.G.; Xiao, P.; Gong, Y.F.; Sun, H.F. Investigation of the basalt fiber type and content on performances of cement mortar and concrete. Constr. Build. Mater. 2023, 408, 133720. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, W.; He, B.; Zhu, X.; Jiang, Z. Compressive behaviour and microstructure of geopolymer mortar subjected to cryogenic freeze-thaw cycle: Effects of cycles and polypropylene fiber. Cem. Concr. Compos. 2024, 149, 105505. [Google Scholar] [CrossRef]
- Wang, X.; Liu, S.; Liu, X.; Shan, T.; Zhou, X.; Xie, H.; Wang, J. Mode I fracture propagation and post-peak behavior of sandstone: Insight from AE and DIC observation. Eng. Fract. Mech. 2024, 302, 110093. [Google Scholar] [CrossRef]
- Chen, Y.; Li, W.; Feng, G.; Gao, Z.; Liu, S.; Zhang, H.; Wang, T.; Hao, R. Failure characteristics and surrounding damage mechanisms of containing hole sandstone under DIC and AE monitoring: The influence of loading rate. Theor. Appl. Fract. Mech. 2025, 136, 104784. [Google Scholar] [CrossRef]
- Zhou, K.; Lei, D.; Chun, P.J.; She, Z.; He, J.; Du, W.; Hong, M. Evaluation of BFRP strengthening and repairing effects on concrete beams using DIC and YOLO-v5 object detection algorithm. Constr. Build. Mater. 2024, 411, 134594. [Google Scholar] [CrossRef]
- Yu, S.; Wang, J.; Gao, Y.; Sun, W.; Lu, J.; Liu, R.; Shi, Y. Effects of fissure properties on the tunnel damage evolutions: Insights from DIC-based 3D printing experiments and meshless numerical simulations. Tunn. Undergr. Space Technol. Inc. Trenchless Technol. Res. 2024, 149, 105817. [Google Scholar] [CrossRef]
- Li, N.; Zou, Y.; Zhang, S.; Ma, X.; Zhu, X.; Li, S.; Cao, T. Rock brittleness evaluation based on energy dissipation under triaxial compression. J. Pet. Sci. Eng. 2019, 183, 106349. [Google Scholar] [CrossRef]
Cement | Quartz Sand | Fly Ash | Water | Water Reducing Agent | BF |
---|---|---|---|---|---|
1 | 1.38 | 2.53 | 0.96 | 0.04 | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Zhou, L.; Nie, F.; Hua, J.; Zhang, H.; Li, Y.; Liu, J. Study on the Evolution Law of Mechanical Properties of the Modified High Strength BF-RCC Subjected to High Temperature. Buildings 2025, 15, 2012. https://doi.org/10.3390/buildings15122012
Liu Z, Zhou L, Nie F, Hua J, Zhang H, Li Y, Liu J. Study on the Evolution Law of Mechanical Properties of the Modified High Strength BF-RCC Subjected to High Temperature. Buildings. 2025; 15(12):2012. https://doi.org/10.3390/buildings15122012
Chicago/Turabian StyleLiu, Zixuan, Lei Zhou, Fukuan Nie, Jian Hua, Hongdan Zhang, Yao Li, and Junjie Liu. 2025. "Study on the Evolution Law of Mechanical Properties of the Modified High Strength BF-RCC Subjected to High Temperature" Buildings 15, no. 12: 2012. https://doi.org/10.3390/buildings15122012
APA StyleLiu, Z., Zhou, L., Nie, F., Hua, J., Zhang, H., Li, Y., & Liu, J. (2025). Study on the Evolution Law of Mechanical Properties of the Modified High Strength BF-RCC Subjected to High Temperature. Buildings, 15(12), 2012. https://doi.org/10.3390/buildings15122012