Systematic Exploration of the Knowledge Graph on Rock Porosity Structure
Abstract
:1. Introduction
2. Source of Data and Statistical Methods
2.1. Source of Data
2.2. Statistical Methods
2.3. Full-Text Screening
3. Result and Analysis
3.1. Trend of Publication Volume
3.2. Analysis of Output and Cooperation Among Countries
3.3. Institutional Output and Cooperation
3.4. Main Journal Sources and Co-Citation Analysis of Literature
3.5. The Co-Citation Analysis of Key Literature
3.6. Authors’ Output and Collaboration Analysis
3.7. Analysis of Research Hotspots
4. Development History and Future Research Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Anovitz, L.M.; Cole, D.R. Characterization and analysis of porosity and pore structures. Rev. Mineral. Geochem. 2015, 80, 61–164. [Google Scholar] [CrossRef]
- Ji, S.; Lai, X.; Cui, F.; Liu, Y.; Pan, R.; Karlovšek, J. The failure of edge-cracked hard roof in underground mining: An analytical study. Int. J. Rock Mech. Min. Sci. 2024, 183, 105934. [Google Scholar] [CrossRef]
- Ondrášik, M.; Kopecký, M. Rock pore structure as main reason of rock deterioration. Stud. Geotech. Mech. 2014, 36, 79–88. [Google Scholar] [CrossRef]
- Yan, Z.; Chen, C.; Fan, P.; Wang, M.; Fang, X. Pore structure characterization of ten typical rocks in China. Electron. J. Geotech. Eng. 2015, 20, 479–494. [Google Scholar]
- Cai, C.; Li, G.; Huang, Z.; Shen, Z.; Tian, S.; Wei, J. Experimental study of the effect of liquid nitrogen cooling on rock pore structure. J. Nat. Gas Sci. Eng. 2014, 21, 507–517. [Google Scholar] [CrossRef]
- Fredrich, J.T.; Menéndez, B.; Wong, T.F. Imaging the pore structure of geomaterials. Science 1995, 268, 276–279. [Google Scholar] [CrossRef]
- Tsakiroglou, C.D.; Ioannidis, M.A.; Amirtharaj, E.; Vizika, O. A new approach for the characterization of the pore structure of dual porosity rocks. Chem. Eng. Sci. 2009, 64, 847–859. [Google Scholar] [CrossRef]
- Sun, Y.F. Pore structure effects on elastic wave propagation in rocks: AVO modelling. J. Geophys. Eng. 2004, 1, 268–276. [Google Scholar] [CrossRef]
- Zhu, H.; Ju, Y.; Qi, Y.; Huang, C.; Zhang, L. Impact of tectonism on pore type and pore structure evolution in organic-rich shale: Implications for gas storage and migration pathways in naturally deformed rocks. Fuel 2018, 228, 272–289. [Google Scholar] [CrossRef]
- Li, D.; Wang, G.; Han, L.; Liu, P.; He, M.; Yang, G.; Tai, Q.; Chen, C. Analysis of microscopic pore structures of rocks before and after water absorption. Min. Sci. Technol. 2011, 21, 287–293. [Google Scholar]
- De Las Cuevas, C. Pore structure characterization in rock salt. Eng. Geol. 1997, 47, 17–30. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Moher, D. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; He, M.; Zhang, B.; Qiao, F.; Sheng, H.; Hu, Q. Pore structure characteristics and permeability of deep sedimentary rocks determined by mercury intrusion porosimetry. J. Earth Sci. 2016, 27, 670–676. [Google Scholar] [CrossRef]
- Xu, Z.; Lin, M.; Jiang, W.; Cao, G.; Yi, Z. Identifying the comprehensive pore structure characteristics of a rock from 3D images. J. Pet. Sci. Eng. 2020, 187, 106764. [Google Scholar] [CrossRef]
- Sun, Y.F. Seismic signatures of rock pore structure. Appl. Geophys. 2004, 1, 42–49. [Google Scholar] [CrossRef]
- Wardlaw, N.C. The effects of pore structure on displacement efficiency in reservoir rocks and in glass micromodels. In SPE Improved Oil Recovery Conference; SPE: Tusla, OK, USA, 1980; p. SPE-8843. [Google Scholar]
- Wang, Z.; Wang, R.; Wang, F.; Qiu, H.; Li, T. Experiment study of pore structure effects on velocities in synthetic carbonate rocks. Geophysics 2015, 80, D207–D219. [Google Scholar] [CrossRef]
- An, S.; Yao, J.; Yang, Y.; Zhang, L.; Zhao, J.; Gao, Y. Influence of pore structure parameters on flow characteristics based on a digital rock and the pore network model. J. Nat. Gas Sci. Eng. 2016, 31, 156–163. [Google Scholar] [CrossRef]
- Tian, W.; Lu, S.; Li, J.; Wang, W.; Li, J.; Wen, Z. Insights into the pore structure and pore development pattern of subaqueous volcanic rocks in the Santanghu Basin, western China. Mar. Pet. Geol. 2022, 135, 105387. [Google Scholar] [CrossRef]
- Yao, J.; Hu, R.; Wang, C.; Yang, Y. Multiscale pore structure analysis in carbonate rocks. Int. J. Multiscale Comput. Eng. 2015, 13, 1–9. [Google Scholar] [CrossRef]
- Chen, C.; Wei, J.; Zhang, T.; Zhang, H.; Liu, Y. Effect of abrasive volume fraction on energy utilization in suspension abrasive water jets based on VOF-DEM method. Powder Technol. 2025, 449, 120427. [Google Scholar] [CrossRef]
- Evans, B.; Bernabé, Y.; Zhu, W. Evolution of pore structure and permeability of rocks in laboratory experiments. In Growth, Dissolution and Pattern Formation in Geosystems; Springer: Dordrecht, The Netherlands, 1999; pp. 327–344. [Google Scholar]
- Jia, H.; Ding, S.; Zi, F.; Dong, Y.; Shen, Y. Evolution in sandstone pore structures with freeze-thaw cycling and interpretation of damage mechanisms in saturated porous rocks. Catena 2020, 195, 104915. [Google Scholar] [CrossRef]
- Chalmers, G.R.; Bustin, R.M.; Power, I.M. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units. AAPG Bull. 2012, 96, 1099–1119. [Google Scholar]
- Nelson, P.H. Pore-throat sizes in sandstones, tight sandstones, and shales. AAPG Bull. 2009, 93, 329–340. [Google Scholar] [CrossRef]
- Curtis, M.E.; Cardott, B.J.; Sondergeld, C.H.; Rai, C.S. The development of organic porosity in the Woodford Shale related to thermal maturity. In SPE Annual Technical Conference and Exhibition; SPE: San Antonio, TX, USA, 2012; p. SPE-160158. [Google Scholar]
- Kuila, U.; Prasad, M. Specific surface area and pore-size distribution in clays and shales. Geophys. Prospect. 61(2-Rock Phys. Reserv. Explor. Characterisation Monit.) 2013, 61, 341–362. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, D.; Che, Y.; Tang, D.; Tang, S.; Huang, W. Petrophysical characterization of coals by low-field nuclear magnetic resonance (NMR). Fuel 2010, 89, 1371–1380. [Google Scholar] [CrossRef]
- Slatt, R.M.; O’Brien, N.R. Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks. AAPG Bull. 2011, 95, 2017–2030. [Google Scholar] [CrossRef]
- Ji, L.; Zhang, T.; Milliken, K.L.; Qu, J.; Zhang, X. Experimental investigation of main controls to methane adsorption in clay-rich rocks. Appl. Geochem. 2012, 27, 2533–2545. [Google Scholar] [CrossRef]
- Cui, X.; Bustin, A.M.M.; Bustin, R.M. Measurements of gas permeability and diffusivity of tight reservoir rocks: Different approaches and their applications. Geofluids 2009, 9, 208–223. [Google Scholar] [CrossRef]
- Yang, R.; He, S.; Yi, J.; Hu, Q. Nano-scale pore structure and fractal dimension of organic-rich Wufeng-Longmaxi shale from Jiaoshiba area, Sichuan Basin: Investigations using FE-SEM, gas adsorption and helium pycnometry. Mar. Pet. Geol. 2016, 70, 27–45. [Google Scholar] [CrossRef]
- Olson, J.E.; Laubach, S.E.; Lander, R.H. Natural fracture characterization in tight gas sandstones: Integrating mechanics and diagenesis. AAPG Bull. 2009, 93, 1535–1549. [Google Scholar] [CrossRef]
- Suman, R.J.; Knight, R.J. Effects of pore structure and wettability on the electrical resistivity of partially saturated rocks—A network study. Geophysics 1997, 62, 1151–1162. [Google Scholar] [CrossRef]
- Ling, W.; Ba, J.; Carcione, J.M.; Zhang, L. Poroacoustoelasticity for rocks with a dual-pore structure. Geophysics 2021, 86, MR17–MR25. [Google Scholar] [CrossRef]
- Lai, J.; Wang, G.; Wang, Z.; Chen, J.; Pang, X.; Wang, S.; Fan, X. A review on pore structure characterization in tight sandstones. Earth-Sci. Rev. 2018, 177, 436–457. [Google Scholar] [CrossRef]
- Benavente, D.; Del Cura, M.G.; Fort, R.; Ordóñez, S. Durability estimation of porous building stones from pore structure and strength. Eng. Geol. 2004, 74, 113–127. [Google Scholar] [CrossRef]
- Tsakiroglou, C.D.; Payatakes, A.C. Characterization of the pore structure of reservoir rocks with the aid of serial sectioning analysis, mercury porosimetry and network simulation. Adv. Water Resour. 2000, 23, 773–789. [Google Scholar] [CrossRef]
- De Argandona, V.R.; Rey, A.R.; Celorio, C.; Del Río, L.S.; Calleja, L.; Llavona, J. Characterization by computed X-ray tomography of the evolution of the pore structure of a dolomite rock during freeze-thaw cyclic tests. Phys. Chem. Earth Part A Solid Earth Geod. 1999, 24, 633–637. [Google Scholar] [CrossRef]
- Kwon, B.S.; Pickett, G.R. A new pore structure model and pore structure interrelationships. In SPWLA Annual Logging Symposium; SPWLA: Houston, TX, USA, 1975; p. SPWLA-1975. [Google Scholar]
- Xue, Y.; Wang, L.; Liu, Y.; Ranjith, P.G.; Cao, Z.; Shi, X.; Gao, F.; Kong, H. Brittleness evaluation of gas-bearing coal based on statistical damage constitution model and energy evolution mechanism. J. Cent. South Univ. 2025, 32, 1–15. [Google Scholar]
- Gao, H.; Xie, Y.; Cheng, Z.; Wang, C.; Li, T.; Zhu, X.; Li, N. A minireview of the influence of CO2 injection on the pore structure of reservoir rocks: Advances and outlook. Energy Fuels 2022, 37, 118–135. [Google Scholar] [CrossRef]
- Zhou, M.; Li, J.; Luo, Z.; Sun, J.; Xu, F.; Jiang, Q.; Deng, H. Impact of water–rock interaction on the pore structures of red-bed soft rock. Sci. Rep. 2021, 11, 7398. [Google Scholar] [CrossRef]
- Bustin, R.M.; Bustin, A.M.; Cui, X.; Ross, D.J.K.; Pathi, V.M. Impact of shale properties on pore structure and storage characteristics. In SPE Shale Gas Production Conference; SPE: Fort Worth, TX, USA, 2008; p. SPE-119892. [Google Scholar]
- Pan, J.G.; Wang, H.B.; Li, C.; Zhao, J.G. Effect of pore structure on seismic rock-physics characteristics of dense carbonates. Appl. Geophys. 2015, 12, 1–10. [Google Scholar] [CrossRef]
- Li, Q.; Ma, D.; Zhang, Y.; Liu, Y.; Ma, Y.; Hu, D. Insights into controlling factors of pore structure and hydraulic properties of broken rock mass in a geothermal reservoir. Lithosphere 2021, 2021, 3887832. [Google Scholar] [CrossRef]
- Benavente, D.; Pla, C.; Cueto, N.; Galvañ, S.; Martínez-Martínez, J.; García-del-Cura, M.A.; Ordóñez, S. Predicting water permeability in sedimentary rocks from capillary imbibition and pore structure. Eng. Geol. 2015, 195, 301–311. [Google Scholar] [CrossRef]
- Al Ismail, M.I.; Zoback, M.D. Effects of rock mineralogy and pore structure on stress-dependent permeability of shale samples. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150428. [Google Scholar] [CrossRef] [PubMed]
- Timur, A.; Hempkins, W.B.; Weinbrandt, R.M. Scanning electron microscope study of pore systems in rocks. J. Geophys. Res. 1971, 76, 4932–4948. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, R.; Li, T.; Zhao, M. The combined effects of pore structure and pore fluid on the acoustic properties of cracked and vuggy synthetic rocks. J. Pet. Sci. Eng. 2017, 156, 202–211. [Google Scholar] [CrossRef]
- Mosquera, M.J.; Rivas, T.; Prieto, B.; Silva, B. Capillary rise in granitic rocks: Interpretation of kinetics on the basis of pore structure. J. Colloid Interface Sci. 2000, 222, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Friedman, M. Porosity, permeability, and rock mechanics-a review. In ARMA US Rock Mechanics/Geomechanics Symposium; ARMA: Snow bird, UT, USA, 1976; p. ARMA-76. [Google Scholar]
- Siegesmund, S.; Dürrast, H. Physical and mechanical properties of rocks. In Stone in Architecture: Properties Durability; Springer: Berlin/Heidelberg, Germany, 2010; pp. 97–225. [Google Scholar]
- Liang, X.; Zhi-qiang, M.; Yan, J. Tight gas sandstone reservoirs evaluation from nuclear magnetic resonance (NMR) logs: Case studies. Arab. J. Sci. Eng. 2015, 40, 1223–1237. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, D.; Cai, Y.; Yao, Y.; Pan, Z.; Zhou, Y. Application of nuclear magnetic resonance (NMR) in coalbed methane and shale reservoirs: A review. Int. J. Coal Geol. 2020, 218, 103261. [Google Scholar] [CrossRef]
- Zhang, H.; Li, G.; Guo, H.; Zhang, W.; Wang, Y.; Li, W.; Wang, C. Applications of nuclear magnetic resonance (NMR) logging in tight sandstone reservoir pore structure characterization. Arab. J. Geosci. 2020, 13, 1–8. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, N.; Sima, L.; Meng, F.; Guo, Y. Pore structure characterization of the tight reservoir: Systematic integration of mercury injection and nuclear magnetic resonance. Energy Fuels 2018, 32, 7471–7484. [Google Scholar] [CrossRef]
- Ho, T.A. Water and methane in shale rocks: Flow pattern effects on fluid transport and pore structure. Nanoscale Fluid Transp. Mol. Signat. Appl. 2017, 53–64. [Google Scholar]
- Goral, J.; Panja, P.; Deo, M.; Andrew, M.; Linden, S.; Schwarz, J.O.; Wiegmann, A. Confinement effect on porosity and permeability of shales. Sci. Rep. 2020, 10, 49. [Google Scholar] [CrossRef] [PubMed]
- Amanambu, A.C.; Obarein, O.A.; Mossa, J.; Li, L.; Ayeni, S.S.; Balogun, O.; Ochege, F.U. Groundwater system and climate change: Present status and future considerations. J. Hydrol. 2020, 589, 125163. [Google Scholar] [CrossRef]
- Pavan, T.N.V.; Govindarajan, S.K. Numerical investigations on performance of sc-CO2 sequestration associated with the evolution of porosity and permeability in low permeable saline aquifers. Geoenergy Sci. Eng. 2023, 225, 211681. [Google Scholar] [CrossRef]
Rank | Countries | Publications | Citations | Total Link Strength |
---|---|---|---|---|
1 | China | 3185 | 55,094 | 854 |
2 | USA | 744 | 37,463 | 600 |
3 | Australia | 251 | 8667 | 267 |
4 | England | 191 | 5872 | 251 |
5 | Canada | 174 | 5822 | 183 |
6 | France | 174 | 5197 | 174 |
7 | Germany | 174 | 4626 | 217 |
8 | Italy | 118 | 3009 | 127 |
9 | Russia | 98 | 1015 | 45 |
10 | Saudi Arabia | 97 | 1250 | 88 |
Rank | Institution | Publications | Proportion |
---|---|---|---|
1 | China University of Petroleum (China) | 806 | 16.87% |
2 | China National Petroleum Corporation (China) | 589 | 12.34% |
3 | China University of Geosciences (China) | 391 | 8.18% |
4 | China University of Mining Technology (China) | 347 | 7.26% |
5 | Sinopec (China) | 327 | 6.84% |
6 | Chinese Academy of Sciences (China) | 310 | 6.49% |
7 | Southwest Petroleum University (China) | 191 | 3.99% |
8 | University of Chinese Academy of Sciences Cas (China) | 159 | 3.33% |
9 | University of Texas System (USA) | 126 | 2.64% |
10 | Center National De La Recherche Scientifique CNRS (France) | 112 | 2.34% |
Rank | Disciplines | Publications | JCI | Citation Index |
---|---|---|---|---|
1 | Journal of Petroleum Science and Engineering | 237 | 1.08 | SCI |
2 | Marine and Petroleum Geology | 190 | 1.08 | SCI |
3 | Energy Fuels | 177 | 0.68 | SCI |
4 | Journal of Natural Gas Science and Engineering | 153 | 0.74 | SCI |
5 | Fuel | 136 | 1.11 | SCI |
6 | Geofluids | 106 | 0.53 | SCI |
7 | Energies | 102 | 0.46 | SCI |
8 | Frontiers in Earth Science | 82 | 0.58 | SCI |
9 | Journal of Geophysical Research Solid Earth | 81 | 1.11 | SCI |
10 | Geoenergy Science and Engineering | 78 | 0.51 | SCI |
Rank | Title | Journal | Author | Year | Citation |
---|---|---|---|---|---|
1 | Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units | Aapg Bulletin | Chalmers, G.R. et al. [24]. | 2012 | 1237 |
2 | Pore-throat sizes in sandstones, tight sandstones, and shales | Aapg Bulletin | Nelson, P.H. et al. [25]. | 2009 | 935 |
3 | Development of organic porosity in the Woodford Shale with increasing thermal maturity | International Journal of Coal Geology | Curtis, M.E. et al. [26]. | 2012 | 868 |
4 | Specific surface area and pore-size distribution in clays and shales | Geophysical Prospecting | Kuila, U. et al. [27]. | 2013 | 845 |
5 | Petrophysical characterization of coals by low-field nuclear magnetic resonance (NMR) | Fuel | Yao, Y.B. et al. [28]. | 2010 | 714 |
6 | Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks | Aapg Bulletin | Slatt, R.M. et al. [29]. | 2011 | 708 |
7 | Experimental investigation of main controls to methane adsorption in clay-rich rocks | Applied Geochemistry | Ji, L.M. et al. [30]. | 2012 | 530 |
8 | Measurements of gas permeability and diffusivity of tight reservoir rocks: different approaches and their applications | Geofluids | Cui, X. et al. [31]. | 2009 | 503 |
9 | Nano-scale pore structure and fractal dimension of organic-rich Wufeng-Longmaxi shale from Jiaoshiba area, Sichuan Basin: Investigations using FE-SEM, gas adsorption and helium pycnometry | Marine and Petroleum Geology | Yang, R. et al. [32]. | 2016 | 450 |
10 | Natural fracture characterization in tight gas sandstones: Integrating mechanics and diagenesis | Aapg Bulletin | Olson, J.E. et al. [33]. | 2009 | 332 |
Rank | Author | Publications | Proportion |
---|---|---|---|
1 | Hu, Qinhong | 57 | 1.193% |
2 | Ba, Jing | 49 | 1.025% |
3 | Ostadhassan, mehdi | 37 | 0.774% |
4 | Jiang, Zhenxue | 36 | 0.753% |
5 | Yao, Jun | 33 | 0.691% |
Rank | Keyword | Frequency | Year | Link | Centrality |
---|---|---|---|---|---|
1 | pore structure | 1121 | 2008 | 3558 | 0.02 |
2 | permeability | 899 | 2008 | 2788 | 0.00 |
3 | porosity | 847 | 2008 | 2760 | 0.02 |
4 | rock | 751 | 2008 | 2194 | 0.01 |
5 | model | 499 | 2008 | 1225 | 0.00 |
6 | porous-media | 463 | 2008 | 983 | 0.01 |
7 | Sichuan Basin | 381 | 2013 | 1361 | 0.05 |
8 | flow | 371 | 2008 | 1046 | 0.03 |
9 | shale | 366 | 2008 | 1168 | 0.12 |
10 | adsorption | 317 | 2009 | 1321 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, C.; Xiong, F.; Liu, Y.; Zhang, Y.; Xue, Y.; Xia, T.; Ji, M. Systematic Exploration of the Knowledge Graph on Rock Porosity Structure. Buildings 2025, 15, 101. https://doi.org/10.3390/buildings15010101
Geng C, Xiong F, Liu Y, Zhang Y, Xue Y, Xia T, Ji M. Systematic Exploration of the Knowledge Graph on Rock Porosity Structure. Buildings. 2025; 15(1):101. https://doi.org/10.3390/buildings15010101
Chicago/Turabian StyleGeng, Chengwei, Fei Xiong, Yong Liu, Yun Zhang, Yi Xue, Tongqiang Xia, and Ming Ji. 2025. "Systematic Exploration of the Knowledge Graph on Rock Porosity Structure" Buildings 15, no. 1: 101. https://doi.org/10.3390/buildings15010101
APA StyleGeng, C., Xiong, F., Liu, Y., Zhang, Y., Xue, Y., Xia, T., & Ji, M. (2025). Systematic Exploration of the Knowledge Graph on Rock Porosity Structure. Buildings, 15(1), 101. https://doi.org/10.3390/buildings15010101