# Experimental Test and Finite Element Analysis on a Concrete Box Girder of a Cable-Stayed Bridge with W-Shaped Prestressed Concrete Diagonal Braces

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Experimental Research

#### 2.1. Project Overview

#### 2.2. Test Model

#### 2.3. Test Program

#### 2.3.1. Test Setup

#### 2.3.2. Loading Protocol

#### 2.3.3. Instrument Layout

## 3. Test Results and Discussions

#### 3.1. Deflection of the Girder

#### 3.2. Strain Results

## 4. Finite Element Analysis

#### 4.1. Numerical Model

#### 4.2. Analysis Results

#### 4.2.1. Comparison between Modelling and Test Results of the Deflection

#### 4.2.2. Comparison of the Strains

#### 4.3. Torsional Performance of the W-Shaped Web Box Girder

## 5. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Lenglet, C. Brotonne Bridge Longest Prestressed Concrete Cable Stayed Bridge. In Cable-Stayed Bridges, Structural Engineering Series; Bridge Division, Office of Engineering, Federal Highway Administration: Washington, DC, USA, 1978. [Google Scholar]
- Svensson, H.S.; Christopher, B.G.; Saul, R. Design of a cable-stayed steel composite bridge. J. Struct. Eng.
**1986**, 112, 489–504. [Google Scholar] [CrossRef] - Hao, Q.; Jufeng, S.; Pingming, H. Study on dynamic characteristics and seismic response of the extradosed cable-stayed bridge with single pylon and single cable plane. J. Civ. Struct. Health Monit.
**2017**, 7, 589–599. [Google Scholar] [CrossRef] - Huang, W.; Pei, M.; Liu, X.; Wei, Y. Engineering, C. Design and construction of super-long span bridges in China: Review and future perspectives. Front. Struct. Civ. Eng.
**2020**, 14, 803–838. [Google Scholar] [CrossRef] - Soto, A.G.; Caldentey, A.P.; Peiretti, H.C.; Benítez, J.C. Experimental behaviour of steel-concrete composite box girders subject bending, shear and torsion. Eng. Struct.
**2020**, 206, 110169. [Google Scholar] [CrossRef] - Arici, M.; Granata, M.F.; Longo, G. Symplectic analysis of thin-walled curved box girders with torsion, distortion and shear lag warping effects. Thin Wall. Struct.
**2022**, 175, 109244. [Google Scholar] [CrossRef] - He, X.; Sheng, X.; Scanlon, A.; Linzell, D.; Yu, X. Skewed concrete box girder bridge static and dynamic testing and analysis. Eng. Struct.
**2012**, 39, 38–49. [Google Scholar] [CrossRef] - Zhu, M.; Yan, Z.; Chen, L.; Lu, Z.; Chen, Y.F. Experimental study on composite mechanical properties of a double-deck prestressed concrete box girder. Adv. Struct. Eng.
**2019**, 22, 2545–2556. [Google Scholar] [CrossRef] - Campo-Rumoroso, I.; Ramos-Gutiérrez, Ó.R.; Cambronero-Barrientos, F. Distortion analysis of horizontally curved trapezoidal box girder bridges. Eng. Struct.
**2023**, 282, 115798. [Google Scholar] [CrossRef] - Kim, K.; Yoo, C.H. Ultimate strength interaction of bending and torsion of steel/concrete composite trapezoidal box girders in positive bending. Adv. Struct. Eng.
**2006**, 9, 707–718. [Google Scholar] [CrossRef] - Chidolue, C.; Amadou, A.; Ezeagu, C. Torsional-distortional performance of multi-cell trapezoidal box girder with all inclined web members. Int. J. Eng. Res.
**2015**, 5, 45–51. [Google Scholar] - Li, L.; Zhou, C.; Wang, L. Distortion analysis of non-prismatic composite box girders with corrugated steel webs. J. Constr. Steel Res.
**2018**, 147, 74–86. [Google Scholar] [CrossRef] - Mo, Y.; Fan, Y.-L. Torsional design of hybrid concrete box girders. J. Bridge Eng.
**2006**, 11, 329–339. [Google Scholar] [CrossRef] - National Railway Administration of the People’s Republic of China. Code for Design on Railway Bridge and Culvert; China Railway Publishing House: Beijing, China, 2017. [Google Scholar]
- Simulia, D.S. Abaqus 6.12 Documentation; Dassault Systèmes Simulia Corp.: Providence, RI, USA, 2012. [Google Scholar]
- Li, Q.; Hu, S.; Shi, L.; Su, Y. Analysis of Torsion Deformation Performance of Railway Simply Supported Box Girder. Railw. Eng.
**2021**, 61, 1–5. (In Chinese) [Google Scholar]

**Figure 7.**Longitudinal bridge arrangement of transverse pre-stressed reinforcements on the top plate (unit: mm).

**Figure 8.**Cross-sectional layout of the longitudinal pre-stressed reinforcement for the full length of the top and bottom plates (unit: mm).

**Figure 9.**Longitudinal bridge layout of loading points, vertical stay cables, stay cables, and the reaction frame (unit: mm).

**Figure 10.**Schematic diagram of loading points under working conditions: cross-sectional view (

**a**) symmetrical load; (

**b**) unsymmetrical load (unit: mm).

**Figure 19.**Comparison between theoretical and test results of deflection under graded symmetrical loads (

**a**) point 1; (

**b**) point 2; (

**c**) point 3.

**Figure 20.**Comparison between theoretical and test results of deflection under graded unsymmetrical loads (unit: mm): (

**a**) point 1; (

**b**) point 2; (

**c**) point 3.

**Figure 21.**Comparison between theoretical and test results of strain under graded symmetrical loads: (

**a**) 3A-1; (

**b**) 3A-8; (

**c**) 3B-1; (

**d**) 3B-8.

**Figure 22.**Comparison between theoretical and test results of strain under graded unsymmetrical loads: (

**a**) 3A-1; (

**b**) 3A-8; (

**c**) 3B-1; (

**d**) 3B-8.

Load Value | 34.2 kN | 40.2 kN | 43.2 kN | 46.2 kN | 49.2 kN | 52.2 kN | 55.2 kN | 57 kN |
---|---|---|---|---|---|---|---|---|

Point 1 | −0.06 | −0.12 | −0.15 | −0.18 | −0.2 | −0.23 | −0.26 | −0.28 |

Point 2 | −0.06 | −0.1 | −0.13 | −0.15 | −0.18 | −0.2 | −0.23 | −0.25 |

Point 3 | −0.06 | −0.11 | −0.13 | −0.16 | −0.18 | −0.2 | −0.23 | −0.25 |

Load Value | 34.2 kN | 40.2 kN | 43.2 kN | 46.2 kN | 49.2 kN | 52.2 kN | 55.2 kN | 57 kN |
---|---|---|---|---|---|---|---|---|

Point 1 | −0.03 | −0.07 | −0.09 | −0.11 | −0.14 | −0.15 | −0.17 | −0.18 |

Point 2 | −0.01 | −0.03 | −0.03 | −0.05 | −0.06 | −0.07 | −0.08 | −0.09 |

Point 3 | −0.01 | −0.03 | −0.04 | −0.05 | −0.05 | −0.06 | −0.07 | −0.08 |

**Table 3.**Strain value of measuring points under graded symmetrical loads (unit: $\mathsf{\mu}\mathsf{\epsilon}$).

Measuring | 34.2 kN | 40.2 kN | 43.2 kN | 46.2 kN | 49.2 kN | 52.2 kN | 55.2 kN | 57 kN |
---|---|---|---|---|---|---|---|---|

Points | ||||||||

3A-1 | 2 | 3 | 3 | 4 | 5 | 6 | 7 | 8 |

3A-8 | 2 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

3B-1 | 2 | 3 | 4 | 4 | 5 | 6 | 7 | 8 |

3B-8 | 2 | 3 | 4 | 5 | 5 | 6 | 7 | 8 |

**Table 4.**Strains of measuring points under graded unsymmetrical loads (unit: $\mathsf{\mu}\mathsf{\epsilon}$).

Measuring | 34.2 kN | 40.2 kN | 43.2 kN | 46.2 kN | 49.2 kN | 52.2 kN | 55.2 kN | 57 kN |
---|---|---|---|---|---|---|---|---|

Points | ||||||||

3A-1 | 2 | 3 | 4 | 4 | 5 | 6 | 7 | 8 |

3A-8 | 2 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

3B-1 | −3 | −5 | −6 | −9 | −10 | −14 | −16 | −17 |

3B-8 | −2 | −4 | −6 | −7 | −7 | −8 | −8 | −9 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

He, X.; Wang, Z.; Li, C.; Gao, C.; Liu, Y.; Li, C.; Liu, B.
Experimental Test and Finite Element Analysis on a Concrete Box Girder of a Cable-Stayed Bridge with W-Shaped Prestressed Concrete Diagonal Braces. *Buildings* **2024**, *14*, 506.
https://doi.org/10.3390/buildings14020506

**AMA Style**

He X, Wang Z, Li C, Gao C, Liu Y, Li C, Liu B.
Experimental Test and Finite Element Analysis on a Concrete Box Girder of a Cable-Stayed Bridge with W-Shaped Prestressed Concrete Diagonal Braces. *Buildings*. 2024; 14(2):506.
https://doi.org/10.3390/buildings14020506

**Chicago/Turabian Style**

He, Xuhui, Zhiyu Wang, Chao Li, Ce Gao, Yongfeng Liu, Changpeng Li, and Bin Liu.
2024. "Experimental Test and Finite Element Analysis on a Concrete Box Girder of a Cable-Stayed Bridge with W-Shaped Prestressed Concrete Diagonal Braces" *Buildings* 14, no. 2: 506.
https://doi.org/10.3390/buildings14020506