Using a Rigid Restraint with a Built-In Tuned Mass Damper to Control the Vibration of Cables
Abstract
1. Introduction
2. Formulation of Cables Linked by the Rigid Restraint with Built-In TMD
2.1. Configuration of Rigid Restraint with Built-In TMD for Cables
2.2. Discrete Model for the System
3. Numerical Study on Cable Vibration Control Using Rigid Restraint with Built-In TMD
3.1. Numerical Model and Its Verification
3.2. Numerical Results Under Harmonic Excitation
4. Experimental Investigation of Cable Vibration Control Using Rigid Restraint with Built-In TMD
4.1. Experimental Setup
4.2. Experimental Results
4.3. Discussion
5. Conclusions
- The developed discrete model can describe the dynamic behavior of the controlled cables when the rigid restraint with a built-in tuned mass damper is located at an arbitrary location.
- The proposed device, with proper parameters, can reduce cable responses remarkably under sinusoidal excitations.
- The rigid restraint with a built-in tuned mass damper has a significant control effect on the wind-induced vibration of both upstream and downstream cables.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lou, Y.; Zhang, J.; Pan, Y. Static and Dynamic Response Analysis of Flexible Photovoltaic Mounts. Buildings 2024, 14, 2037. [Google Scholar] [CrossRef]
- An, M.; Li, S.; Sorokin, V.; Chen, Z.; Flay, R.G. Experimental study of vortex-induced vibration of stay cables installed with two types of perforated shroud light devices. J. Wind Eng. Ind. Aerodyn. 2024, 253, 105882. [Google Scholar] [CrossRef]
- Gao, D.; Li, W.; Jing, H.; Wang, J.; Wu, J.; Chen, W.; Hui, L. Role of dynamic water rivulets in the excitation of rain–wind-induced cable vibration: A critical review. Adv. Struct. Eng. 2021, 24, 3627–3644. [Google Scholar] [CrossRef]
- Ren, Z.Y. Nonlinear Analysis of Wind-Induced Buffeting of Large Span Cable-Stayed Bridges in Time Domain; Harbin Institute of Technology (People’s Republic of China): Harbin, China, 2023; p. 67373629. [Google Scholar]
- Zhang, Q.; Peng, Y.-X.; Zhu, Z.-C.; Chang, X.-D.; Lu, H.; Zhou, Z.; Jiang, F.; Tang, W.; Chen, G.-A. Tribo-failure characteristics of the multilayer winding hoisting wire ropes with two different structures under vibration. Eng. Fail. Anal. 2022, 140, 106538. [Google Scholar] [CrossRef]
- Zhang, Q.; Peng, Y.-X.; Zhu, Z.-C.; Chang, X.-D.; Lu, H.; Zhou, Z.; Cao, G.-H.; Tang, W.; Chen, G.-A. Influence of longitudinal vibration on the friction and wear characteristics of multi-layer winding hoisting wire rope. Wear 2022, 492, 204211. [Google Scholar] [CrossRef]
- Tan, X.M. Wind-Induced Vibration Analysis in Time Domain for Long Span Cable-Stayed Bridge–Engineering Application in Hong Kong Ting Kau Cable-Stayed Bridge. Ph.D. Thesis, South China University of Technology, Guangzhou, China, 1999. [Google Scholar]
- Chen, C.; Gao, D.; Chen, G.; Chen, W.-L.; Li, H. Amplification of flow-induced vibrations of a circular cylinder by an oscillating minute attachment. Phys. Fluids 2024, 36, 085160. [Google Scholar] [CrossRef]
- Yang, W.; Gao, D.; Chen, W. Self-issuing jet control for suppression of vortex-induced vibrations of a single box girder at low Sc. J. Wind Eng. Ind. Aerodyn. 2024, 253, 105883. [Google Scholar] [CrossRef]
- Chen, G.; Chen, W.-L.; Chen, C.; Gao, D.; Meng, H.; Kim, K.C. Experimental and coupled model investigation of an active jet for suppressing vortex-induced vibration of a box girder. J. Fluids Struct. 2024, 127, 104119. [Google Scholar] [CrossRef]
- Royer-Carfagni, G.F. Parametric-resonance-induced cable vibrations in network cable-stayed bridges. A continuum approach. J. Sound Vib. 2003, 262, 1191–1222. [Google Scholar] [CrossRef]
- Yang, D.H.; Gu, H.L.; Yi, T.H.; Li, H.N. Bridge cable anomaly detection based on local variability in feature vector of monitoring group cable forces. J. Bridge Eng. 2023, 28, 04023030. [Google Scholar] [CrossRef]
- Yan, G.; Jemison, S.; Duan, Q.; Feng, R. Detection of pretension loss of cable-net structures. In Smart Materials, Adaptive Structures and Intelligent Systems; American Society of Mechanical Engineers: New York, NY, USA, 2015; Volume 57304, p. V002T05A010. [Google Scholar]
- Lai, K.; Fan, W.; Chen, Z.; Yang, C.; Liu, Z.; Li, S. Performance of wire rope damper in vibration reduction of stay cable. Eng. Struct. 2023, 278, 115527. [Google Scholar] [CrossRef]
- Zang, J.; Ren, H.M.; Song, X.Y.; Zhang, Z.; Zhang, Y.W.; Chen, L.Q. Vibration control of interconnected composite beams: Dynamical analysis and experimental validations. Mech. Syst. Signal Process. 2024, 208, 111008. [Google Scholar] [CrossRef]
- Lai, K.; Fan, W.; Chen, Z.; Niu, H.; Ma, L.; Li, S. Optimal design of transverse dampers incorporating inherent stiffness effects for stay cable vibration control: A case study with wire rope dampers. Eng. Struct. 2024, 308, 118015. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, S.; Zhang, S.; Zhu, H.; Cao, M.; Wang, Q.; Sumarac, D. Modal analysis and vibration control of a vertical cable with dual tuned mass dampers. J. Low Freq. Noise Vib. Act. Control. 2024, 43, 455–475. [Google Scholar] [CrossRef]
- Li, Z.; Xu, K.; Ma, R.; Fang, G.; Han, Q. Vibration Control of Irregular Bridges Using Spatially Distributed TMD-Type Counterweights. Int. J. Struct. Stab. Dyn. 2023, 23, 2350127. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, L.; Sun, L.; Zhao, L.; Cui, W.; Guan, H. Multimode damping optimization of a long-span suspension bridge with damped outriggers for suppressing vortex-induced vibrations. Eng. Struct. 2023, 286, 115959. [Google Scholar] [CrossRef]
- Zhou, P.; Liu, M.; Xiao, H.; Li, H. Feasibility of using a negative stiffness damper to two interconnected stay cables for damping enhancement. Int. J. Struct. Stab. Dyn. 2019, 19, 1950058. [Google Scholar] [CrossRef]
- Chen, L.; Liu, Z.; Zou, Y.; Wang, M.; Nagarajaiah, S.; Sun, F.; Sun, L. Practical negative stiffness device with viscoelastic damper in parallel or series configuration for cable damping improvement. J. Sound Vib. 2023, 560, 117757. [Google Scholar] [CrossRef]
- Wang, Y.; Li, S.; Qie, K.; Chen, Z. Numerical study on the effectiveness of two dampers on high-order vortex-induced vibration and low-order rain-wind-induced vibration of stay cables. J. Wind Eng. Ind. Aerodyn. 2024, 253, 105849. [Google Scholar] [CrossRef]
- Wen, Y.; Zhao, Y.; Chen, L. Damping and tuning of inerter-based dampers for cable vibration mitigation considering girder vibrations. Eng. Struct. 2023, 296, 116893. [Google Scholar] [CrossRef]
- Chen, L.; Xia, Y.; Di, F.; Zhang, G.; Li, X.; He, T.; Sun, L. Dynamic modeling and analysis of hanger cables with spacers and dampers for vibration mitigation. Structures 2023, 57, 105209. [Google Scholar] [CrossRef]
- Xu, Y.W.; Xu, Z.D.; Guo, Y.Q.; Huang, X.H.; Zhang, J.; Zhao, Y.L.; Yang, Y.; Zhu, C.; Zhou, M. Single input magnetorheological pseudo negative stiffness control for bridge stay cables. Smart Mater. Struct. 2020, 30, 015032. [Google Scholar] [CrossRef]
- Guo, Y.Q.; Li, M.; Yang, Y.; Xu, Z.D.; Xie, W.H. A Particle-Swarm-Optimization-Algorithm-Improved Jiles–Atherton Model for Magnetorheological Dampers Considering Magnetic Hysteresis Characteristics. Information 2024, 15, 101. [Google Scholar] [CrossRef]
- Du, J.; Liu, M.; Zhou, P.; Xiao, H. Semiactive Control of Nonlinear Parametric Vibration of Super-Long Stay Cable in Cable-Stayed Bridge Installed with Magnetorheological Fluid Damper. Struct. Control Health Monit. 2024, 2024, 2161065. [Google Scholar] [CrossRef]
- Zhou, P.; Fang, Q.H. Match of negative stiffness and viscous damping in a passive damper for cable vibration control. Shock Vib. 2019, 2019, 3208321. [Google Scholar] [CrossRef]
Material Parameters | Values |
---|---|
Diameter of steel wire | 1.80 mm |
Number of steel wire | 19 |
Diameter of steel strand | 9.0 mm |
Elastic modulus | |
Mass per unit length | 0.38 kg/m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Zhou, P.; Li, Z. Using a Rigid Restraint with a Built-In Tuned Mass Damper to Control the Vibration of Cables. Buildings 2024, 14, 3785. https://doi.org/10.3390/buildings14123785
Li H, Zhou P, Li Z. Using a Rigid Restraint with a Built-In Tuned Mass Damper to Control the Vibration of Cables. Buildings. 2024; 14(12):3785. https://doi.org/10.3390/buildings14123785
Chicago/Turabian StyleLi, Honghai, Peng Zhou, and Zeping Li. 2024. "Using a Rigid Restraint with a Built-In Tuned Mass Damper to Control the Vibration of Cables" Buildings 14, no. 12: 3785. https://doi.org/10.3390/buildings14123785
APA StyleLi, H., Zhou, P., & Li, Z. (2024). Using a Rigid Restraint with a Built-In Tuned Mass Damper to Control the Vibration of Cables. Buildings, 14(12), 3785. https://doi.org/10.3390/buildings14123785