Multi-Analytical Investigations of the Medieval Turkish Bath from Golești Open Air Museum
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. HSI Analysis
3.2. LIBS
3.3. Classification
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fernandes, F.M.; Lourenço, P.B.; Castro, F. Ancient Clay Bricks: Manufacture and Properties. In Materials, Technologies and Practice in Historic Heritage Structures; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Teodoru, R. Curți întărite târzii. Stud. Și Cercet. Istor. Artei 1963, X, 343. [Google Scholar]
- Din Alep, P. Jurnal de călătorie în Moldova și Valahia; Ioana Feodorov editions; Romanian Academy Publishing House and Istros Publishing House: Bucharest, Romania, 2014. [Google Scholar]
- Potra, G. Din Bucureștii de Altădată; Scientific and Encyclopedic Publishing House: Bucharest, Romania, 1981. [Google Scholar]
- Galbács, G. A critical review of recent progress in analytical laser-induced breakdown spectroscopy. Anal. Bioanal. Chem. 2015, 407, 7537–7562. [Google Scholar] [CrossRef] [PubMed]
- Carmona-Quiroga, P.M.; Martínez-Ramírez, S.; Sánchez-Cortés, S.; Oujja, M.; Castillejo, M.; Blanco-Varela, M.T. Effectiveness of antigraffiti treatments in connection with penetration depth determined by different techniques. J. Cult. Herit. 2010, 11, 297–303. [Google Scholar] [CrossRef]
- Palleschi, V. (Ed.) Chemometrics and Numerical Methods in LIBS. Wiley: Hoboken, NJ, USA, 2022. [Google Scholar]
- Zahiri, Z.; Laefer, D.F.; Kurz, T.; Buckley, S.; Gowen, A. A comparison of ground-based hyperspectral imaging and red-edge multispectral imaging for façade material classification. Autom. Constr. 2022, 136, 104164. [Google Scholar] [CrossRef]
- Popescu, M.; Iliescu, C. Golești; Meridiane Publishing House: Bucharest, Romania, 1966. [Google Scholar]
- Pagnotta, S.; Lezzerini, M.; Campanella, B.; Gallello, G.; Grifoni, E.; Legnaioli, S.; Lorenzetti, G.; Poggialini, F.; Raneri, S.; Safi, A.; et al. Fast quantitative elemental mapping of highly inhomogeneous materials by micro-Laser-Induced Breakdown Spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2018, 146, 9–15. [Google Scholar] [CrossRef]
- Živković, S.; Botto, A.; Campanella, B.; Lezzerini, M.; Momčilović, M.; Pagnotta, S.; Palleschi, V.; Poggialini, F.; Legnaioli, S. Laser-Induced Breakdown Spectroscopy elemental mapping of the construction material from the Smederevo Fortress (Republic of Serbia). Spectrochim. Acta Part B At. Spectrosc. 2021, 181, 106219. [Google Scholar] [CrossRef]
- Dontu, S.; Miclos, S.; Savastru, D.; Tautan, M. Combined spectral-domain optical coherence tomography and hyperspectral imaging applied for tissue analysis: Preliminary results. Appl. Surf. Sci. 2017, 417, 119–123. [Google Scholar] [CrossRef]
- Cheng, J.H.; Nicolai, B.; Sun, D.W. Hyperspectral imaging with multivariate analysis for technological parameters prediction and classification of muscle foods: A review. Meat Sci. 2017, 123, 182–191. [Google Scholar] [CrossRef]
- Ravikanth, L.; Jayas, D.S.; White, N.D.G.; Fields, P.G.; Sun, D.W. Extraction of Spectral Information from Hyperspectral Data and Application of Hyperspectral Imaging for Food and Agricultural Products. Food Bioprocess Technol. 2017, 10, 1–33. [Google Scholar] [CrossRef]
- Spizzichino, V.; Fantoni, R. Laser Induced Breakdown Spectroscopy in archeometry: A review of its application and future perspectives. Spectrochim. Acta Part B At. Spectrosc. 2014, 99, 201–209. [Google Scholar] [CrossRef]
- Gaudiuso, R.; Dell’Aglio, M.; de Pascale, O.; Senesi, G.S.; de Giacomo, A. Laser induced breakdown spectroscopy for elemental analysis in environmental, cultural heritage and space applications: A review of methods and results. Sensors 2010, 10, 7434–7468. [Google Scholar] [CrossRef] [PubMed]
- Hahn, D.W.; Omenetto, N. Laser-induced breakdown spectroscopy (LIBS), part II: Review of instrumental and methodological approaches to material analysis and applications to different fields. Appl. Spectrosc. 2012, 66, 347–419. [Google Scholar] [CrossRef]
- Botto, A.; Campanella, B.; Legnaioli, S.; Lezzerini, M.; Lorenzetti, G.; Pagnotta, S.; Poggialini, F.; Palleschi, V. Applications of laser-induced breakdown spectroscopy in cultural heritage and archaeology: A critical review. J. Anal. At. Spectrom. 2019, 34, 81–103. [Google Scholar] [CrossRef]
- Atanassova, V.; Ghervase, L.; Cortea, I.M.; Mihailov, V.; Tankova, V.; Nikolov, V. Multi-analytical approach for characterization of archaeological pottery excavated in the Early-Neolithic settlement of Chavdar, Bulgaria. Spectrosc. Lett. 2021, 54, 549–559. [Google Scholar] [CrossRef]
- Pacher, U.; Dinu, M.; Nagy, T.O.; Radvan, R.; Kautek, W. Multiple wavelength stratigraphy by laser-induced breakdown spectroscopy of Ni-Co alloy coatings on steel. Spectrochim. Acta Part B At. Spectrosc. 2018, 146, 36–40. [Google Scholar] [CrossRef]
- Ghervase, L.; Dinu, M.; Borș, C.; Angheluță, L.M.; Rădvan, R.; Cortea, I.M. Investigation on Metal Adornments From Ancient Eastern Europe. Front. Mater. 2020, 7, 600913. [Google Scholar] [CrossRef]
- Cortea, I.M.; Ratoiu, L.; Ghervase, L.; Țentea, O.; Dinu, M. Investigation of ancient wall painting fragments discovered in the roman baths from alburnus maior by complementary non-destructive techniques. Appl. Sci. 2021, 11, 10049. [Google Scholar] [CrossRef]
- Cucci, C.; Picollo, M.; Chiarantini, L.; Uda, G.; Fiori, L.; De Nigris, B.; Osanna, M. Remote-sensing hyperspectral imaging for applications in archaeological areas: Non-invasive investigations on wall paintings and on mural inscriptions in the Pompeii site. Microchem. J. 2020, 158, 105082. [Google Scholar] [CrossRef]
- Miliani, C.; Rosi, F.; Daveri, A.; Brunetti, B.G. Reflection infrared spectroscopy for the non-invasive in situ study of artists’ pigments. Appl. Phys. A Mater. Sci. Process. 2012, 106, 295–307. [Google Scholar] [CrossRef]
- Sánchez, J.; Quirós, E. Semiautomatic detection and classification of materials in historic buildings with low-cost photogrammetric equipment. J. Cult. Herit. 2017, 25, 21–30. [Google Scholar] [CrossRef]
- Canty, M.J. Image Analysis, Classification and Change Detection in Remote Sensing: With Algorithms for ENVI/IDL and Python, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2014; ISBN 9781466570382. [Google Scholar]
- Bai, D.; Messinger, D.W.; Howell, D. A hyperspectral imaging spectral unmixing and classification approach to pigment mapping in the Gough & Selden Maps. J. Am. Inst. Conserv. 2019, 58, 69–89. [Google Scholar] [CrossRef]
- Allios, D.; Guermeur, N.; Cocoual, A.; Linderholm, J.; Sciuto, C.; Geladi, P.; Gobrecht, A.; Bendoula, R.; Moura, D.; Jay, S.; et al. Near Infrared Spectra and Hyperspectral Imaging of Medieval Fortress Walls in Carcassonne: A Comprehensive Interdisciplinary Field Study. NIR News 2016, 27, 16–20. [Google Scholar] [CrossRef]
- Bernstein, L.S. Quick atmospheric correction code: Algorithm description and recent upgrades. Opt. Eng. 2012, 51, 111719. [Google Scholar] [CrossRef]
- Capedri, S.; Venturelli, G. Provenance determination of trachyctic lavas, employed as blocks in the Romanesque cathedral of Modena (Northern Italy), using magnetic susceptibility, and petrographic and chemical parameters. J. Cult. Herit. 2005, 6, 7–19. [Google Scholar] [CrossRef]
- Gomoiu, R.I.; Cojoc, R.; Ruginescu, S.; Neagu, M.; Enache, G.; Maria, M.; Dumbrăvician, I.; Olteanu, R.; Rădvan, L.; Ratoiu, V.; et al. Brackish and Hypersaline Lakes as Potential Reservoir for Enzymes Involved in Decomposition of Organic Materials on Frescoes. Fermentation 2022, 8, 462. [Google Scholar] [CrossRef]
- Angheluta, L.; Striber, J.; Radvan, R.; Gomoiu, I.; Dragomir, V. Non-contact and non-invasive photonic device for qualitative fungal contamination control. Math. Comput. Biol. Chem. 2008, 4, 147–156. [Google Scholar]
- Angheluţă, L.M.; Chiroşca, A. Physical degradation detection on artwork surface polychromies using deep learning models. Rom. Rep. Phys. 2020, 72, 805. [Google Scholar]
Type of Material | Main Chemical Elements Identified by LIBS Averaged Data |
---|---|
Bricks | Si, Al, Mg, Fe, K, Na, Ca, O, C, Ti |
Reddish mortar areas | Ca, Si, Sr, Al, Na, Mg, K, C, Fe, O, Ti |
Grey mortar areas | Ca, Si, Na, Al, K, C, Sr, O |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dinu, M.; Ratoiu, L.C.; Călin, C.; Călin, G. Multi-Analytical Investigations of the Medieval Turkish Bath from Golești Open Air Museum. Buildings 2023, 13, 321. https://doi.org/10.3390/buildings13020321
Dinu M, Ratoiu LC, Călin C, Călin G. Multi-Analytical Investigations of the Medieval Turkish Bath from Golești Open Air Museum. Buildings. 2023; 13(2):321. https://doi.org/10.3390/buildings13020321
Chicago/Turabian StyleDinu, Monica, Lucian Cristian Ratoiu, Camelia Călin, and Gerard Călin. 2023. "Multi-Analytical Investigations of the Medieval Turkish Bath from Golești Open Air Museum" Buildings 13, no. 2: 321. https://doi.org/10.3390/buildings13020321
APA StyleDinu, M., Ratoiu, L. C., Călin, C., & Călin, G. (2023). Multi-Analytical Investigations of the Medieval Turkish Bath from Golești Open Air Museum. Buildings, 13(2), 321. https://doi.org/10.3390/buildings13020321